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Abstract Multistability and dynamical properties of ion-acoustic flow are studied in a quantum plasma
containing positive beam ions, positive ions and electrons. A four dimensional conservative dynamical
system has been proposed for the considered plasma system and is analyzed by considering effects of Mach
number and quantum diffraction parameter. Coexistences of multiple chaotic trajectories, chaotic with
quasiperiodic and multiperiodic trajectories and chaotic with quasi-periodic and periodic trajectories for
ion-acoustic waves are established. The results are suitable for application in comprehending the beam-
plasma interaction and studying dynamics of coexisting features in extreme astrophysical plasmas, such
as, neutron stars.

1 Introduction

In 1963, Lorenz, a meteorologist, brought to light that
deterministic system can show sensitive dependence on
initial conditions [1]. This behaviour is termed as chaos.
One positive Lyapunov exponent in a dynamical system
is an indicator of chaos in that system. Over the years,
researchers have thoroughly examined many chaotic
systems and made significant contributions to it. In
quantum plasma, chaotic phenomena have been vigor-
ously studied using various techniques in many hydro-
dynamical models [2,3]. Recently, it was observed that
some of the chaotic system simultaneously show differ-
ent numerical solutions for a fixed parametric set and
separate initial values. This behaviour is termed as mul-
tistability or coexistence of trajectories and occurs as a
result of the system’s high sensitivity to initial condi-
tion. Arecchi et al. [4] were the first to experimentally
report multistable chaotic systems in a laser model of
Q-switched gas. Since then, coexisting chaotic systems
were extensively reported by various authors. A new
type of three-dimensional system displaying coexisting
chaotic phenomenon was put forward by Natiq et al. [5].
Numerous authors have studied chaotic [6] and hyper-
chaotic [7] multistable behaviour in a four-dimensional
system.

Coexisting features or multistability in plasmas were
investigated in plasma diodes [8] and experimentally
observed in discharge plasmas [9]. In the field of classical
plasma, multistability behaviours in novel lunar wake
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plasma, solar wind plasma and electron-ion plasma were
reported by Yan et al. [10], Prasad et al. [11] and
Abdikian et al. [12] respectively. Yan et al. [10] reported
multistable behaviour in a lunar wake plasma consisting
of electron-beams. In the field of quantum plasma, mul-
tistability features were reported in electron-ion plasma
[3] and pair-ion quantum plasma [13].

Lyapunov exponent (LE) quantifies the rate of con-
vergence or separation of infinitesimally nearby trajec-
tories [14] and was named after a Russian mathemati-
cian, physicist and mechanician, Aleksandr Lyapunov.
There are as many LEs as the number of dimensions of a
system. A positive value of largest Lyapunov exponent
(LLE) means that different states of a system that are
initially arbitrarily close, will become macroscopically
separated after sufficiently long times [15]. This implies
that the system is highly sensitive on initial states.
Hence, a positive LLE is taken as a signature of chaos.
Since many natural systems show nonlinear dynamics,
LE has diverse applications. On one hand, it is used to
detect seizures [16] and unilateral laryngeal paralysis
[17] in the medical field while on the other hand, it is
used in predicting the Earth’s atmosphere [18]. One of
the most popular methods to compute LEs is by using
Wolf’s algorithm [19]. Recently, De Witte et al. [20]
analyzed bifurcation of limit cycles by computing LEs.

Fundamentally, the ion-acoustic wave is a low fre-
quency wave in plasma physics, wherein the driving
force required to maintain the wave is supplied by
ions and restoring forces is supplied by the pressure of
inertialess electrons. Substantial amount of research on
localized electrostatic disturbances in laboratory, space,
and astrophysical plasmas mainly focus on ion-acoustic

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjs/s11734-021-00059-3&domain=pdf
mailto:asit_saha123@rediffmail.com


1504 Eur. Phys. J. Spec. Top. (2021) 230:1503–1515

waves. Haas et al. [21] investigated two-component
quantum hydrodynamic (QHD) model and identified
a nondimensional parameter H, proportional to quan-
tum diffraction effects. They showed that their system
supported linear waves that resembled the classical ion-
acoustic waves in the limit of small H. Since then, a
large number of authors [22–28] were encouraged to
study linear and nonlinear properties of quantum ion-
acoustic waves (QIAWs). Recently, El-Labany et al. [27]
investigated the propagation of QIAWs in a strongly
coupled plasma that consisted of trapped electrons and
ions.

Researchers are strongly emphasizing on the nonlin-
ear propagation of waves in a plasma comprising of
ion/electron beams. The presence of electron/ion beams
in a plasma may bring about significant change in its
nonlinear dynamical features. A few works related to
ion beams have been reported in the field of quan-
tum plasma. Elkamash et al. [29] proposed an ultra-
dense electron-ion QHD model containing ion beams
and reported the existence of three kinds of waves,
viz, Langmuir mode, ion-beam driven mode and ion-
acoustic mode. Recently, Paul et al. [30] studied nonlin-
ear propagation of QIAWs in a three-component quan-
tum plasma consisting of ion beams and reported that
ion beam had a significant impact on formation of soli-
tary waves.

Investigation of nonlinear waves in plasmas by employ-
ing the concept of nonlinear dynamical systems is gain-
ing immense popularity. In the field of quantum plas-
mas, Samanta et al. [31] applied the bifurcation the-
ory of planar dynamical system to investigate nonlin-
ear features for the first time. Chaotic and quasiperi-
odic phenomena without introduction of external force
were studied by Sahu et al. [32] in a pair-ion quantum
plasma. Very few works [3,13] have been reported for
dynamics of chaotic and coexisting features in quan-
tum plasmas. Coexisting features of small-amplitude
QIAWs were reported in electron-ion quantum plasma
[3] under the framework of nonlinear Schrodinger equa-
tion, while coexisting features and chaotic phenomenon
for arbitrary amplitude QIAWs were reported in pair-
ion quantum plasma [13]. But there is no work regard-
ing the dynamics of chaotic and coexisting features in
ion-beam quantum plasma. The main motivation of this
work is to investigate chaotic phenomena and to estab-
lish multistability in an ion-beam quantum plasma.

The manuscript is arranged as follows: in Sect. 2,
governing equations are presented. In Sect. 3, a four
dimensional dynamical system is proposed and stabil-
ity analysis of equilibrium points are briefly discussed.
Chaotic features for ion-acoustic waves are discussed in
Sect. 4. In Sect. 5, coexisting features for ion-acoustic
waves are shown. Conclusion is given in Sect. 6.

2 Governing equations

We consider an ion-beam quantum plasma that con-
sists of positive beam ions, positive ions and electrons.

Here, electrons are assumed to be inertialess as the low-
frequency ion-acoustic phase velocity is lesser than that
of electron Fermi velocity and greater than that of beam
ion and positive ion Fermi velocities. The plasma parti-
cles are assumed to act as a one-dimensional Fermi gas
at zero-temperature. Hence the pressure law is:

pj =
mjV

2
Fj

3n2
j0

n3
j ,

where index j = e, i and b for electrons, positive ions
and positive beam ions respectively. Here mj denotes
mass, VFj denotes Fermi speed, nj denotes number den-
sity and nj0 denotes equilibrium number density.

The normalized governing equations [30] are as fol-
lows:

0 =
∂φ

∂x
− ne

∂ne

∂x
− H2

6
∂

∂x

(
∂2

√
ne/∂x2

√
ne

)
, (1)

∂ni

∂t
+

∂(niui)
∂x

= 0, (2)(
∂

∂t
+ ui

∂

∂x

)
ui = −∂φ

∂x
− σini

∂ni

∂x
, (3)

∂nb

∂t
+

∂(nbub)
∂x

= 0, (4)(
∂

∂t
+ ub

∂

∂x

)
ub = −μ

∂φ

∂x
− μσbnb

∂nb

∂x
, (5)

∂2φ

∂x2
= χne − ni − (χ − 1)nb, (6)

where space variable x, time variable t, electrostatic
potential φ, number density nj and velocity uj are nor-
malised by VFi/ωpi, 1/ωpi, 2KBTFj/e, n0 and VFe

respectively. Here quantum diffraction parameter is
denoted by H, where H = �ωpe/2kBTFe. The ratio
between unperturbed number density of electrons and
ions is denoted by χ, i.e. χ = ne0/ni0. The mass ratio
between positive ions and beam ions is denoted by μ, i.e.
μ = mi/mb, while the Fermi temperature ratio between
positive ions (beam ions) and electrons is denoted by
σi,b, i.e. σi,b = TFi,b/TFe.

In case of one-dimensional, strong degeneracy limit,
the pre-factor of Bohm potential for low frequency ion-
acoustic wave is −1/3 [33,34], which has been used in
Eq. (1).

3 Dynamical system and stability analysis

To study arbitrary amplitude QIAWs, we consider the
transformation ξ = x−Mt, where M is the Mach num-
ber. Employing the transformation in Eqs. (1)–(6) and
considering ne = A2, we get the following system of
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ODEs:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
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3
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4
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3

2
+
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2

)
,

(7)
where a = M+

√
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Here, we have assumed φ = x1, dφ
dξ = x2, A = x3 and

dA
dξ = x4.

Let −→
F =

(
x2, χx2

3 + P1 + P2x1 + P3x2
1 + P4x3

1 +

P5x4
1, x4, 6x3

H2

(
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3
2 +χ2
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(
∂

∂x1
, ∂

∂x2
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∂x3
, ∂

∂x4

)
.

Then vector field divergence of
−→
F is:

−→∇ .
−→
F =

∂ẋ1

∂x1
+

∂ẋ2

∂x2
+

∂ẋ3

∂x3
+

∂ẋ4

∂x4
= 0. (8)

Therefore we can conclude that the dynamical system
is conservative which is further supported by zero sum
of Lyapunov exponents given in Fig. 2a and b.

The equilibrium points of the conservative dynamical
system (CDS) (7) are calculated by solving the follow-
ing equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x2 = 0,
χx2

3 + P1 + P2x1 + P3x
2
1 + P4x

3
1 + P5x

4
1 = 0,
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(
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3

2
+
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2

)
= 0,

(9)

The equilibrium point E(x∗
1, x∗

2, x∗
3, x∗

4) of the sys-
tem (7) can be obtained in the following way:

Case I:
When we consider x3 = 0, equilibrium points are of the
form E(x∗

1, x∗
2, x∗

3, x∗
4), where x∗

2 = 0, x∗
3 = 0, x∗

4 = 0
and x∗

1 is a root of the equation given below:

P1 + P2x1 + P3x
2
1 + P4x

3
1 + P5x

4
1 = 0. (10)

which is obviously a biquadratic equation of x1 with
P5 �= 0. Using Ferrari’s method, we obtain a solution of

Eq. (10) having the form

x1 =
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√
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4
,
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√
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4
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5

− 4P3
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√
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and y1 is a real root of the cubic equation
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5

− P2
2
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5

)
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Therefore, in this case equilibrium points of the system

(7) are of the form
(

−g±
√

g2−8h

4 , 0, 0, 0
)

.

Case II:
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(

x1 − x4
3
2 + χ2

2

)
= 0, equilibrium points are of

the form E(x∗
1, x∗

2, x∗
3, x∗

4), where x∗
2 = 0, x∗

4 = 0,
x∗
1 = x∗4

3
2 − χ2

2 and x∗
3 is a root of the equation given

below:

χx2
3 + P1 + P2

(
x4
3

2
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2

)
+ P3

(
x4
3

2
− χ2

2

)2

+P4

(
x4
3

2
− χ2

2

)3

+ P5

(
x4
3

2
− χ2

2

)4

= 0. (11)

This equation in x3 can be numerically solved using
Matlab or Mathematica for a distinct set of values.

The CDS (7) has no equilibrium point if Eq. (9) has
no real solution. On the other hand, if Eq. (9) has (have)
real solution(s) then the CDS (7) has (have) equilibrium
point(s). The stability of equilibrium point depends on
the nature of eigenvalues of the Jacobian matrix JE .

After linearising system (7) at equilibrium point
E(x∗

1, x∗
2, x∗

3, x∗
4), the Jacobian matrix JE can be writ-

ten as:

JE =

⎛
⎜⎜⎜⎜⎝

0 1 0 0

P2 + 2P3x∗
1 + 3P4x∗2

1 + 4P5x∗3
1 0 2χx∗

3 0

0 0 0 1
6x∗

3
H2 0 6

H2

(
x∗
1 + χ2

2

)
− 15x∗4

3
H2 0

⎞
⎟⎟⎟⎟⎠

.

One can obtain eigenvalues of the CDS (7) at
E(x∗

1, x∗
2, x∗

3, x∗
4)by solving the following equation:

det(λI − JE) = 0. (12)

The characteristic equation is given by:

λ4 + M1λ
3 + M2λ

2 + M3λ + M4 = 0, (13)
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where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M1 = 0,
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15x∗4

3
H2 + 6

H2

(
x∗
1 + χ2

2

)
− P2 − 2P3x∗

1 − 3P4x∗2
1 − 4P5x∗3

1 ,

M3 = 0,

M4 = −
(

P2 + 2P3x∗
1 + 3P4x∗2

1 + 4P5x∗3
1

)

(
15x∗4

3
H2 − 6

H2

(
x∗
1 + χ2

2

))
− 12χx∗2

3
H2 .

The equilibrium point E(x∗
1, x∗

2, x∗
3, x∗

4) is stable if
all the solutions of Eq. (13) have negative real parts for
a given equilibrium point or else it is unstable. For the
plasma system (7), it is not possible to find a relation
for the stability of the fixed points. We have discussed
stability (stable/unstable) of the fixed point based on
suitable values of the physical parameters in Sect. 4.

4 Chaotic features of quantum ion-acoustic
flow

A situation where the solutions (or trajectories) of a
set of ODEs do not converge to a periodic or a station-
ary function but continue to show irregular and unpre-
dictable phenomenon is described by the term chaos.
It is a long term aperiodic behaviour in a determin-
istic system and shows sensitive dependence on initial
condition [14].

Case I: Effect of quantum diffraction parameter
H
We set parameter values of system (7) fixed at σi =
0.08, σb = 0.1, μ = 1, χ = 1.3, M = 3 and show
the effect of quantum diffraction parameter H by plot-
ting different phase orientations of chaotic trajecto-
ries for ion-acoustic waves. Initial value is taken as
(5, − 0.2, − 1.5, 0.3). Figure 1a–c depict phase ori-
entations of the chaotic orbits for ion-acoustic waves
when H = 5.5, H = 6.92 and H = 9.4 respectively.
The system (7) has four equilibrium points for all val-
ues of H: (6.37846, 0, − 1.94959, 0), (6.37846, 0,
1.94959, 0), (−0.523958, 0, − 0.895155, 0) and
(−0.523958, 0, 0.895155, 0). Stabilities of these four
equilibrium points are discussed below for three cases
viz. H = 5.5, H = 6.92 and H = 9.4:

1. When H=5.5: Eigenvalues corresponding to equi-
librium points (6.37846, 0, − 1.94959, 0) and
(6.37846, 0, 1.94959, 0) are λ1,2 = ±1.11622i
and λ3,4 = ±2.48356i, while eigenvalues corre-
sponding to equilibrium points (−0.523958, 0, −
0.895155, 0) and (−0.523958, 0, 0.895155, 0)
are λ1 = −0.69253, λ2 = 0.69253 and λ3,4 =
±0.904137i. We can clearly see that some eigenval-
ues corresponding to each of the four equilibrium
points do not have negative real parts. Hence we
can say that equilibrium points corresponding to
H = 5.5 are unstable.

2. When H=6.92: For H = 6.92, eigenvalues cor-
responding to equilibrium points (6.37846, 0, −
1.94959, 0) and (6.37846, 0, 1.94959, 0) are λ1,2 =
±1.08459i and λ3,4 = ±2.03149i, while eigenvalues
corresponding to equilibrium points (−0.523958, 0,
− 0.895155, 0) and (−0.523958, 0, 0.895155, 0)
are λ1 = −0.624796, λ2 = 0.624796 and λ3,4 =
±0.796509i. In this case also we can see that some
eigenvalues corresponding to each of the four equi-
librium points do not have negative real parts.
Therefore it is obvious that equilibrium points cor-
responding to H = 5.5 are unstable.

3. When H=9.4: Here, eigenvalues corresponding to
equilibrium points (−0.523958, 0, − 0.895155, 0)
and (−0.523958, 0, 0.895155, 0) are λ1,2 =
± 0.679197i, λ3 = 0.539401 and λ3.4 = −0.539401.
With arguments same as in the above cases it
becomes evident that equilibrium points corre-
sponding to H = 9.4 are also unstable. It is interest-
ing to note that the system (7) shows chaotic phe-
nomenon without the introduction of any external
force.

Lyaunov exponent (LE) quantifies the exponential
rate of divergence or convergence of nearby trajecto-
ries of a dynamical system [14]. A positive value of
LE signifies that the nearby trajectories of that system
move apart from each other in every iteration. There-
fore, that system is said to be chaotic when it possesses
one positive value of LE. By setting parameters fixed
at σi = 0.08, σb = 0.1, μ = 1, χ = 1.3, M = 3 and
H ∈ [5, 10], Fig. 2a shows the graph of LEs of the sys-
tem (7) w.r.t. quantum diffraction parameter H for the
initial value (5, − 0.2, − 1.5, 0.3). Clearly, we can see
one positive LE (LE1 > 0) throughout the range of H
which confirms chaotic behaviour of the three trajecto-
ries for ion-acoustic waves shown in Fig. 1a–c. Further,
the sum of all Lyapunov exponents

∑4
i=1 LEi = 0, with

LE1 = −LE4 and LE2 = −LE3, clearly indicating con-
servative behaviour of the dynamical system (7).
Case II: Effect of Mach number M
We set parameter values fixed at σi = 0.08, σb =
0.1, μ = 1, χ = 1.3, H = 7 and show effect of Mach
number M by plotting phase spaces of chaotic trajec-
tories for ion-acoustic waves. In this case also we take
the initial value (5, −0.2, −1.5, 0.3). Figure 1d–f dis-
play phase spaces of the chaotic orbits for ion-acoustic
waves when M = 2.5001, M = 3 and M = 3.2 respec-
tively. Equilibrium points and their stabilities for the
cases M = 2.5001, M = 3 and M = 3.2 are discussed
below:

1. When M=2.5001: The system (7) has four equilib-
rium points when M = 2.5001: (3.98165, 0, −
1.7662661, 0), (3.98165, 0, 1.7662661, 0),
(−0.536106, 0, − 0.886563, 0) and (−0.536106, 0,
0.886563, 0). Eigenvalues at equilibrium points
(3.98165, 0, − 1.7662661, 0) and (3.98165, 0,
1.7662661, 0) are λ1,2 = ±1.05324i and λ3,4 =
±5.7028, while eigenvalues at equilibrium points
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Fig. 1 Phase spaces of chaotic trajectories of the system (7) for a H = 5.5, b H = 6.92, c H = 9.4 with M = 3 and d
M = 2.5001, e M = 3, f M = 3.2 with H = 7 while other values of parameters are fixed at σi = 0.08, σb = 0.1, μ = 1, χ =
1.3 and for the initial value (5, − 0.2, − 1.5, 0.3).
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Fig. 2 a LEs with respect to quantum diffraction parameter H with M = 3 and b LEs with respect to Mach number M
with H = 7 for the initial value (5, −0.2, −1.5, 0.3) with other values of the parameters fixed at σi = 0.08, σb = 0.1, μ =
1, χ = 1.3
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(−0.536106, 0, − 0.886563, 0) and (−0.536106, 0,
0.886563, 0) are λ1 = −1.00334, λ2 = 1.00334 and
λ3,4 = ±1.77861i. In this case we can see that some
eigenvalues corresponding to each of the four equi-
librium points do not have negative real parts which
clearly indicates that equilibrium points correspond-
ing to M = 2.5001 are unstable.

2. When M=3: The CDS (7) has four equilibrium
points for M = 3: (6.37846, 0, − 1.94959, 0),
(6.37846, 0, 1.94959, 0), (−0.523958, 0, −0.895155,
0) and (−0.523958, 0, 0.895155, 0). Eigenvalues
corresponding to equilibrium points (6.37846, 0, −
1.94959, 0) and (6.37846, 0, 1.94959, 0) are λ1,2 =
±1.08242i and λ3,4 = ±2.01231i, while eigenvalues
corresponding to equilibrium points (−0.523958, 0,
− 0.895155, 0) and (−0.523958, 0, 0.895155, 0)
are λ1 = −0.621482, λ2 = 0.621482 and λ3,4 =
±0.791605i. Like in the previous case we can see
that not all eigenvalues corresponding to each of
the four equilibrium points have negative real parts
which makes it obvious that equilibrium points cor-
responding to M = 3 are unstable.

3. When M=3.2: The system (7) has four equilibrium
points for M = 3.2: (7.52127, 0, − 2.02251, 0),
(7.52127, 0, 2.02251, 0), (−0.520469,
0, −0.8975766, 0) and (−0.520469, 0, 0.8975766, 0).
Eigenvalues corresponding to equilibrium points
(7.52127, 0, − 2.02251, 0) and (7.52127,
0, 2.02251, 0) are λ1,2 = ±1.123821i and λ3,4 =
7.4797i, while eigenvalues corresponding to equilib-
rium points (−0.520469, 0, − 0.8975766, 0) and
(−0.520469,
0, 0.8975766, 0) are λ1 = −1.01022, λ2 = 1.01022
and λ3,4 = ±1.80361i. Equilibrium points corre-
sponding to M = 3.2 are unstable just like in the
previous cases. Its is noteworthy that the system (7)
shows chaotic behaviour without the introduction of
any external force.

Keeping other values of parameters fixed at σi =
0.08, σb = 0.1, μ = 1, χ = 1.3, H = 7 and
M ∈ [2.45, 3.5], Fig. 2b shows the graph of LEs of
the system (7) versus Mach number M for the ini-
tial value (5, − 0.2, − 1.5, 0.3). Clearly, we can see
LE1 > 0 throughout the range of M therefore validat-
ing chaotic behaviour of the three trajectories for ion-
acoustic waves shown in Fig. 1d–f. Additionally, we can
see that the sum of all LEis is zero, i.e.

∑4
i=1 LEi = 0,

as LE1 = −LE4 and LE2 = −LE3, evidently displaying
conservative nature of the dynamical system (7).

5 Coexisting features of quantum
ion-acoustic flow

Multistability basically means coexistence of various
solutions of a dynamical system for a predefined set
of parameters and separate initial conditions. The solu-
tion crucially depends on the initial states. To investi-

gate coexisting features for ion-acoustic waves, we set
the parameter values fixed at σi = 0.08, σb = 0.1, μ =
1, χ = 1.3, H = 7 and M = 3 and the phase spaces
of the system (7) for separate initial values are shown
in Fig. 3. This coexisting phase spaces are drawn for
a particular set of parameter values and different ini-
tial states. Here, a trajectory of one colour corresponds
to an initial state. Clearly, Fig. 3 depicts coexistence
of multiple chaotic trajectories for ion-acoustic waves
initiated by (5, − 0.2, − 1.5, 0.46) (red), (5, −
0.2, −1.59, 0.46) (blue), (5, −0.2, −1.5, 0.3) (cyan),
(5, −0.2, −2, 0.1) (green) and (5, −0.2, −1.65, 0.1)
(magenta). The system (7) is seen to achieve multi-
stability behaviour for ion-acoustic waves without the
introduction of any external force.

If the LLE is positive, it clearly ascertains chaos in
that dynamical system. Figure 4a and c display varia-
tion of LLEs w.r.t. quantum diffraction parameter (H)
and Mach number M , respectively. The set of other
parameters are kept same as Fig. 3. The colours of
LLEs correspond to the same coloured initial states
shown in Fig. 3. From Fig. 4a and c, it can be observed
that the values of all LLEs initiated by these five ini-
tial states are greater than zero for all H ∈ [6, 8] and
M ∈ [2.55, 3.5]. Hence, we can say that the trajectories
for ion-acoustic waves shown in Fig. 3 initiated by these
initial values are indeed chaotic in nature.

Initial values for multistability can be chosen by
drawing basins of attraction. However, one can draw
the basins of attraction for all possible choice of the
initial values. Further, it is possible to obtain all possi-
ble multistability behaviours in a system using basins
of attraction. Therefore, basins of attraction is drawn
to chose initial values and to validate multistability.
Basins of attraction for our dynamical system are four
dimensional regions but we will plot cross-section in
two-dimension. To compute cross section of basins of
attraction for multistability behaviour, we keep x1 and
x2 as fixed (x1 = 5, x2 = −0.2) and we obtain all
possible values of x3 and x4 for the different qualita-
tive features at different initial condition values keep-
ing fixed values of physical parameters. In Fig. 4b,
we present cross section of the basins of attraction
of the CDS (7) on x3 − x4 plane with x1 = 5 and
x2 = −0.2 where the system is seen to exhibit mul-
tiple chaotic trajectories (red, blue, cyan, green and
magenta). Figure 5a–e show bifurcation diagrams w.r.t.
H initiated by initial states (5, − 0.2, − 1.5, 0.46),
(5, − 0.2, − 1.59, 0.46), (5, − 0.2, − 1.5, 0.3),
(5, − 0.2, − 2, 0.1) and (5, − 0.2, − 1.65, 0.1),
respectively, with σi = 0.08, σb = 0.1, μ = 1, χ = 1.3
and M = 3. Different types of chaotic features for dif-
ferent initial states can be observed at H = 7.

Coexistence of a chaotic, quasiperiodic and multiperi-
odic trajectories for ion-acoustic waves is displayed in
Fig. 6. For this purpose, we have fixed values of param-
eters at σi = 0.08, σb = 0.1, μ = 1, χ = 1.3, H = 9
and M = 3. Here, chaotic trajectory is initiated by
(8.5, 0, − 1.94959, 0) (magenta), quasiperiodic tra-
jectories are initiated by (5, 0, − 1.94959, 0) (cyan),
(5.38, 0, −1.94959, 0) (red) and (5.65, 0, −1.94959, 0)
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Fig. 3 Coexistence of chaotic trajectories for ion-acoustic waves with different initial values: (5, −0.2, −1.5, 0.46) (red),
(5, − 0.2, − 1.59, 0.46) (blue), (5, − 0.2, − 1.5, 0.3) (cyan), (5, − 0.2, − 2, 0.1) (green) and (5, − 0.2, − 1.65, 0.1)
(magenta) with parameter values fixed at σi = 0.08, σb = 0.1, μ = 1, χ = 1.3, H = 7 and M = 3 in a x1 − x4 plane, b
x2 − x3 plane and c x3 − x4 plane
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Fig. 4 a Spectrums of LLEs with respect to H for M = 3, b cross section of basins of attraction in x3 − x4 plane with
x1 = 5 and x2 = −0.2 where green, blue, magenta, cyan and red colours represent chaotic trajectories of the system
(7) with M = 3 and H = 7, and c spectrums of LLEs with respect to M for H = 7. The other parameter values are
taken as σi = 0.08, σb = 0.1, μ = 1 and χ = 1.3. In a and c LLEs are initiated by (5, − 0.2, − 1.5, 0.46) (red),
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Fig. 5 Bifurcation diagram w.r.t. H for initial states a (5, − 0.2, − 1.5, 0.46), b (5, − 0.2, − 1.59, 0.46), c (5, − 0.2, −
1.5, 0.3), d (5, − 0.2, − 2, 0.1) and e (5, − 0.2, − 1.65, 0.1) with σi = 0.08, σb = 0.1, μ = 1, χ = 1.3 and M = 3
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Fig. 6 a–c Phase space showing coexistence of chaotic trajectory initiated by (8.5, 0, −1.94959, 0) (magenta), quasiperi-
odic trajectories initiated by (5, 0, − 1.94959, 0) (cyan), (5.38, 0, − 1.94959, 0) (red) and (5.65, 0, − 1.94959, 0)
(green) and multiperiodic trajectories initiated by (6, 0, − 1.94959, 0) (blue) and (6.5, − 0.1, − 1.94959, 0) (yellow) for
ion-acoustic waves with values of parameters fixed at σi = 0.08, σb = 0.1, μ = 1, χ = 1.3, H = 9 and M = 3, d–f enlarged
view of multiperiodic trajectories initiated by (6, 0, − 1.94959, 0) (blue) and (6.5, − 0.1, − 1.94959, 0) (yellow)
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0, where system (7) shows chaotic trajectories (blue and cyan), quasiperiodic trajectories (red and green) and periodic
trajectory (yellow) with H = 9 and M = 3, and c spectrums of LLEs w.r.t. M with H = 9. The other parameters are
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Fig. 9 a Spectrums of LLEs w.r.t. H for M = 3.2, b cross-section of basins of attraction with x3 = −1.95 and x4 = 0,
where system exhibits chaotic trajectories (blue and cyan), quasiperiodic trajectories (red and green) and periodic trajectory
(yellow) with H = 7 and M = 3.2 and c spectrums of LLEs w.r.t. M for H = 7. The other parameter values are taken as
σi = 0.08, σb = 0.1, μ = 1 and χ = 1.3. In Fig. 7a and c LLEs are initiated by (7.52,−1.5,−1.95, 0) (blue) and (6, 0,−1.95, 0)
(cyan), (6.5, 0,−1.95, 0) (red), (7, 0,−1.95, 0) (green) and (7.52, 0,−1.95, 0) (yellow)

(green) and multiperiodic trajectories are initiated by
(6, 0, −1.94959, 0) (blue) and (6.5, −0.1, −1.94959, 0)
(yellow). Coexisting phase spaces in x1 − x4, x2 − x3

and x3 − x4 planes for the six initial values mentioned
above are shown in Fig. 6a–c respectively. The multi-
periodic trajectories (initiated by (6, 0, − 1.94959, 0)
(blue) and (6.5, − 0.1, − 1.94959, 0) (yellow)) are
inconspicuous in the phase spaces Fig. 6a–c, so we have
shown them separately in Fig. 6d–f.

In Fig. 7a, we show variation of LLEs wr.t. quan-
tum diffraction parameter H for other parameter val-
ues same as Fig. 6. Each colour of LLE correspond
to respective coloured initial state displayed in Fig.
6. Vividly, one can observe that the LLE initiated by
(8.5, 0, − 1.94959, 0) (magenta) is positive through-
out H ∈ [5, 10]. This clearly supports random irregu-
lar nature of the trajectory initiated by the same ini-
tial value displayed in phase spaces (Fig. 6). On the
other hand, LLE initiated by (5, 0, − 1.94959, 0)
(cyan) attains positive value when H ∈ [5, 8.92] and
zero value when H ∈ (8.92, 10]. Hence, the system

shows chaotic phenomenon when H ∈ [5, 8.92] and
non chaotic phenomenon when H ∈ (8.92, 10] for
this initial state. Similarly, LLE initiated by (5.38, 0,
− 1.94959, 0) (red) attains positive values when H ∈
[5, 5.83), H ∈ (6.12, 6.18) and H ∈ (6.4, 6.79) and zero
in other regions of H. For this initial state also, the sys-
tem shows both chaotic and non chaotic phenomenon.
Finally, LLEs initiated by (5.65, 0, − 1.94959, 0)
(green), (6.5, − 0.1, − 1.94959, 0) (yellow) and
(6, 0, − 1.94959, 0) (blue) coincides with one another
and have zero value throughout H ∈ [5, 10] indicating
non-chaotic phenomena for H ∈ [5, 10].

Figure 7b depicts cross section of basins of attraction
for chaotic trajectory (magenta), quasiperiodic trajec-
tory (cyan, red and green) and multiperiodic trajec-
tories (yellow and blue) for the CDS (7) with x3 =
−1.94959 and x4 = 0. Values of parameters are kept
same as Fig. 6. In Fig. 7c, we present spectrums of
LLEs wr.t. Mach number M for values of other param-
eters same as Fig. 6. At M = 3, one can clearly observe
a positive LLE (magenta), while other LLEs (cyan, red,
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Fig. 10 Bifurcation diagrams with respect to quantum diffraction parameter H initiated by initial values a
(8.5, 0,−1.94959, 0), b (5, 0,−1.94959, 0), c (5.38, 0,−1.94959, 0), d (5.65, 0,−1.94959, 0), e (6, 0,−1.94959, 0) and f
(6.5,−0.1,−1.94959, 0) with σi = 0.08, σb = 0.1, μ = 1, χ = 1.3 and M = 3

Fig. 11 Bifurcation diagrams w.r.t. quantum diffraction parameter H initiated by initial values a (7.52, −1.5, −1.95, 0), b
(6, 0, −1.95, 0), c (6.5, 0, −1.95, 0), d (7, 0, −1.95, 0) and e (7.52, 0, −1.95, 0) with σi = 0.08, σb = 0.1, μ = 1, χ = 1.3
and M = 3.2
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green, blue and yellow) have zero values. Therefore, one
can deduce that the magenta trajectory shown in Fig.
6 shows chaotic phenomenon, while other trajectories
(cyan, red, green, blue and yellow) show non chaotic
phenomena.

In Fig. 10, we display six bifurcation diagrams w.r.t.
quantum diffraction parameter H for parameters same
as Fig. 6. Initial states for Fig. 10a–f are, respectively,
(8.5, 0, −1.94959, 0), (5, 0, −1.94959, 0), (5.38, 0, −
1.94959, 0), (5.65, 0, −1.94959, 0), (6, 0, −1.94959, 0)
and (6.5, − 0.1, − 1.94959, 0). Here, Fig. 10a–e show
chaotic and non chaotic regions throughout the range
of H, while Fig. 10f shows only chaotic regions for all
values of H.

By setting parameters fixed at σi = 0.08, σb =
0.1, μ = 1, χ = 1.3, H = 7 and M = 3.2, we
vary only the initial values. Two types of aperiodic
and irregular trajectories for ion-acoustic waves are
observed at initial states (7.52, − 1.5, − 1.95, 0)
(blue) and (6, 0, − 1.95, 0) (cyan). Again, two kinds
of irregular periodic orbits for ion-acoustic waves are
perceived at initial values (6.5, 0, − 1.95, 0) (red)
and (7, 0, − 1.95, 0) (green) and a closed single-
periodic orbit for ion-acoustic waves is observed at ini-
tial state (7.52, 0, −1.95, 0) (yellow). It is remarkable
to note that chaotic, quasiperiodic and periodic tra-
jectories coexist for a fixed parameter set and separate
initial values and their coexistence is depicted in Fig. 8.

Spectrums of LLEs w.r.t. H are presented in Fig. 9a
for values of other parameters same as Fig. 8. Two LLEs
initiated by (7.52, −1.5, −1.95, 0) (blue) and (6, 0, −
1.95, 0) (cyan) in Fig. 9a are clearly positive while other
LLEs for initial values (6.5, 0, −1.95, 0) (red), (7, 0, −
1.95, 0) (green) and (7.52, 0, − 1.95, 0) (yellow) are
almost zero and overlapping with each other for H ∈
[6, 8]. Variation of LLEs w.r.t. M is presented in Fig.
9c for values of other parameters same as Fig. 8. At
M = 3.2, LLEs initiated by (7.52, − 1.5, − 1.95, 0)
(blue) and (6, 0, − 1.95, 0) (cyan) are positive, while
LLEs initiated by (6.5, 0, − 1.95, 0) (red), (7, 0, −
1.95, 0) (green) and (7.52, 0, − 1.95, 0) (yellow) have
zero value. This proves that trajectories for ion-acoustic
waves initiated by (7.52, − 1.5, − 1.95, 0) (blue) and
(6, 0, − 1.95, 0) (cyan) (phase spaces shown in Fig.
8) are indeed chaotic in nature while other trajectories
are non chaotic.

For parameter values same as Fig. 8, cross section
of basins of attraction of the CDS (7) is given in
Fig. 9b with x3 = −1.95 and x4 = 0 and the sys-
tem (7) is seen to exhibit chaotic trajectories (blue
and cyan), quasiperiodic trajectories (red and green)
and periodic trajectory (yellow). Bifurcation diagram
w.r.t. diffraction parameter H for the same parameter
set as Fig. 10 initiated by (7.52, − 1.5, − 1.95, 0),
(6, 0, −1.95, 0), (6.5, 0, −1.95, 0), (7, 0, −1.95, 0)
and (7.52, 0, −1.95, 0) are given in Fig. 11a–e, respec-
tively. We can observe that the dynamics of ion-acoustic
waves remain chaotic throughout in Fig. 11a and non
chaotic throughout H ∈ [6, 8] in Fig. 11e. On the other
hand, Fig. 11b–d clearly show that the dynamics of
quantum ion-acoustic waves fluctuates from chaotic to

non chaotic and back to chaotic state throughout the
range of H.

6 Conclusion

Arbitrary amplitude quantum ion-acoustic wave flow
has been analyzed for a dense quantum plasma contain-
ing positive beam ions, positive ions and electrons in
the framework of four-dimensional conservative dynam-
ical system. The conservative nature of the system has
been confirmed by zero divergence of vector field and
zero sum of LEs. We have examined effects of quan-
tum diffraction parameter H and Mach number M on
chaotic features for ion-acoustic waves in an ion-beam
quantum plasma. Qualitatively different phase spaces
of chaotic trajectories for ion-acoustic waves have been
observed for each case indicating significant impact
of H and M . Equilibrium points calculated for each
parameter set have been found to be unstable. Aperi-
odic and irregular nature of trajectories in phase spaces
have been supported by a positive Lyapunov exponent
in the graphs of LEs. We have shown coexistence of mul-
tiple chaotic trajectories for one parameter set, chaotic,
quasiperiodic and multiperiodic trajectories for second
parameter set and chaotic, quasiperiodic and periodic
trajectories for third parameter set for ion-acoustic
waves in our plasma system. Phase spaces, graphs of
maximum Lyapunov exponents, basins of attraction
and bifurcation diagrams have supported the coexist-
ing features for ion-acoustic waves. It has been observed
that electrostatic potential of our quantum plasma sys-
tem is sensitive to initial conditions and qualitatively
different features: periodic, multiperiodic, quasiperiodic
and chaotic were seen at different initial conditions with
fixed values of physical parameters. The results are suit-
able for comprehending the beam-plasma interaction
and analyzing dynamics of coexisting features for ion-
acoustic waves in extreme astrophysical plasmas, such
as, neutron stars.
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