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Abstract The Nagel–Schreckenberg vehicular traffic model is extended to analyse a system of vehicles
moving on a scale-free network to study extreme events in them. The dependence of the free-flow and
congestion states on the density of vehicles is determined. In particular, a free-flow state at low vehicular
density is observed and it gradually transitions to a congested state at higher density. Using detrended
fluctuation analysis, it is shown that the flux of vehicles are long range correlated in a regime of low
density. At higher densities, the flux becomes uncorrelated. We study the recurrence interval distribution
for extreme events and the probability for its occurrence at low and high vehicular density regimes. It is
shown that the occurrence probability for extreme events is independent of the degree of the node or the
threshold used for defining extreme events

1 Introduction

The vehicular traffic flow in a network of roads is gen-
erally identified as an example of a complex system and
it has remained an active area of research since the last
four decades [1–5]. As a complex system, both inter-
acting random walk type models and realistic ab initio
traffic models have shown many symptoms of complex-
ity such as the occurrence of phase transitions upon
variation of some control parameter [6–8]. Most well-
studied phenomenon is that of jamming transition, in
which case, the free-flow state changes to a jammed
state. It occurs in several models of traffic flow though
there have been debates around the question if the
models display a smooth or an abrupt transition. Most
often, the control parameter is the density of vehicles,
a measure of number of vehicles in a given area. For
low-density values, free flow is observed and beyond a
critical value of density a dynamical phase transition
occurs to a jammed state. While many models cap-
ture this ingredient, in the last two decades experiments
have also revealed the existence of phase transitions in
observed traffic flow [9–12], including time-organisation
of traffic [13]. Recently, it was observed in real traf-
fic that the occurrence of these transitions and the
time interval between their occurrences is essentially
a random process [14]. However, recent trends towards
automated driving have inspired adaptive cruise control
models for understanding the features of traffic flow in
a regime in which both automated driving and human
drivers co-exist [15].
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Traffic flow is a practical example of an interacting
many-particle system that is typically out of equilib-
rium. Apart from the inherent academic interest in sta-
tistical physics of phase transitions in real traffic flows,
modelling traffic flows is an important tool in design-
ing new transport facilities, urban planning, prediction
and prevention of accidents, improving efficient mobil-
ity and in reducing congestion. The traffic models are
capable of displaying non-trivial emergent phenomena
such as congestion or extreme events. They also pro-
vide an algorithm to capture such complex and non-
linear dynamics of traffic systems that might not be
easily evident from field research or purely analytical
methods.

Congestion is one among the many emergent phe-
nomena in the case of dynamics of many agents (vehi-
cles) on complex networks [6]. Congestion leads to
huge delays and even cascading effects on road trans-
portation networks. Typically, congestion emerges in an
interacting system when a parameter controlling some
coarse-grained measure such as the density of vehicles is
varied. At a critical value of the parameter, flux of vehi-
cles through the network decays to zero and effectively
all the vehicles are stranded. A typical scenario could
be as follows: a large network is defined on which ran-
dom walkers execute dynamics. Rules of walking algo-
rithm could, in general, include birth and death proba-
bilities of walkers at every node, transition probability
from one node to another that could depend on existing
traffic at the destination node. Under such conditions,
congestion transition appears as one possible outcome.
In this scenario, if density of vehicles ρ is tuned, then
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the system displays free flow of vehicles for ρ < ρc,
but transitions to congestion (nearly all vehicles cease
to move) for ρ > ρc, where ρc is the critical parame-
ter. This is often called the congestion transition and
could be thought of as a grid failure in which network
effectively loses its primary functionality. As pointed
out before, the congestion aspect of traffic systems has
been widely investigated both in terms of models and,
less frequently, using field data.

On the other hand, a most commonly encountered
situation is that of localized traffic snarls that does not
necessarily lead to grid or network failure in its entirety.
In a recent work, the recovery from such traffic snarls
on scale-free networks has been studied using real traffic
data showing the presence of three timescales in it [16].
In this work, the focus is on such localized snarls called
extreme events, due to the fact that such events are
typically associated with the tails of appropriate proba-
bility distribution functions. Extreme events have been
studied before using several variants of random walkers
as agents on complex networks [17]. In Refs. [17,18],
extreme events are defined as events whose magnitude
crosses a threshold. The threshold itself is defined in
terms of typical flux through a node of the network. It
turned out that, in such a setting of random walkers
on scale-free networks, probabilities for the occurrence
of extreme events are higher on small degree nodes
compared to hubs [17]. This counter-intuitive result
appears to be generic for uncorrelated random walkers
and is robust against changes to routing algorithms and
threshold used to classify extreme events. However, an
equivalent result for correlated walkers or agents is not
known yet. One of the motivations for this work is to
examine the extreme event properties for the dynam-
ics of interacting and correlated particles. It must be
pointed out that recently large deviation theory was
applied to study the extreme values of traffic flow in the
NS model and corresponding rate function was obtained
[19].

In the case of interacting particles, another ques-
tion of interest is the distribution of return intervals or
recurrence intervals τ between successive occurrences of
extreme events. If the successive intervals are uncorre-
lated, then the recurrence distribution is exponential,
exp(−τ/〈τ〉). However, for long range correlated time
series with auto-correlation exponent γ, the recurrence
distribution is a product of a power-law term and a
stretched exponential term [20]. Many naturally occur-
ring systems exhibit the property of long-term corre-
lations, as observed in several of hydrological, climate
and meteorological data, physiological and IP packet
transmission data [21–23]. Such correlations have been
argued to represent a natural mechanism for the clus-
tering of extreme events [24]. These statistical tech-
niques constitute a powerful set of tools to analyse
long-memory time series and understand patterns in
the occurrence of accidents, collisions and overload-
ing of infrastructure such as bridges. In time series for
which direct estimation of autocorrelation exponent is
ambiguous, probing extreme events is an indirect means
of inferring long range correlations. In this work, we

apply detrended fluctuation analysis to quantify long
range correlation exponent α, which is related to the
auto-correlation exponent γ (defined below in Eq. 2).
It is of interest to understand how recurrence distri-
butions depend on the coarse-grained parameters such
as the vehicular density ρ that control the dynamical
behaviour of the entire traffic system.

To understand the properties of extreme events of
correlated events on complex networks, we consider
a widely studied cellular automata based microscopic
model, namely, the Nagel–Schreckenberg (NS) model
[25] for vehicular traffic on roads. Along with the behav-
ior of vehicles, infrastructure such as interconnecting
roads and junctions play an important role in modelling
realistic traffic and congestion patterns. Over the last
2 decades, complex networks [26] has become the uni-
fying framework to understand the underlying network
induced effects on the dynamics of traffic flow. Hence,
in this work, NS model is implemented on a scale-
free network and the resultant dynamics of multiple
agents is simulated to study the properties of extreme
events, namely, the recurrence distribution and occur-
rence probability of extreme events.

In Sect. 2, the basic NS model structure and its imple-
mentation on a complex network is discussed, In Sects.
3 and 4, simulation results for the flux-density plot,
time series of flux flowing through a node, its autocor-
relations and DFA exponents are presented. The results
for extreme event recurrence distribution and probabil-
ity for the occurrence of extreme events are discussed
in Sect. 5. Finally, a summary is presented in Sect. 6.

2 Nagel–Schreckenberg model

The Nagel–Schreckenberg model is a well-known cellu-
lar automaton model for simulating freeway traffic [25].
It is a discrete-space, discrete-time stochastic model
and defines a set of rules for vehicle movement on a
one-dimensional array of L sites with periodic bound-
ary conditions. Each site contains either one or no vehi-
cle on it. The model is initialized with a fixed density
of vehicles, ρ = M/L, where M is the total number
of vehicles. Both M and ρ remain constant through-
out the simulation. Of the M vehicles on the lattice,
we frame rules for the dynamics of n-th vehicle as
follows: it moves with integer velocity vn, such that
0 ≤ vn < vmax, and it can occupy integer valued
position xn such that 1 ≤ xn ≤ L. As time changes
t −→ t + 1, the position of M vehicles on the lattice is
updated in parallel according to the following rules :
Acceleration—vn −→ vn + 1 if vn < vmax, i.e., vehicle

accelerates by one velocity unit until it reaches maxi-
mum velocity vmax.
Deceleration—Let dn be the distance between the

nth vehicle and the vehicle in front of it. If dn ≤ vn, the
vehicle reduces its speed to dn − 1 to prevent collision.
Random braking—If vn > 0, the nth vehicle decreases

its velocity by one, i.e., vn −→ vn − 1 with probabil-
ity p. This accounts for random fluctuations due to
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human behaviour or external conditions, and introduces
stochasticity in the model.
Vehicle movement—Each vehicle moves forward accord-

ing to the vn calculated using the above steps, i.e.,
xn −→ xn + vn.

For the simulations presented in this paper, we use
vmax = 5, p = 0.3, and each time step corresponds
to 1 second of real time [25]. The Nagel–Schreckenberg
model replicates the main features of real traffic flow
at a global level [27], including the formation of spon-
taneous traffic jams due to the random braking step
which also makes the model stochastic.

2.1 NS model on a network

In reality, the topology of transportation systems is
much more complex than a regular lattice, and in gen-
eral includes multiple elements such as interconnected
roads, traffic lights and multiple lanes. Detailed mod-
els have been developed to mimic traffic on more real-
istic topologies such as two-dimensional lattices [28]
along with added features such as traffic lights and lane
changing [5]. Most methods to model traffic dynamics
on complex networks primarily employ a hopping mech-
anism, by which particles (vehicles) jump from one node
to any of its connected neighbour according to a set of
rules but do not have any dynamics on the edges. In
this work, we aim to combine the closer to real-life rep-
resentation of traffic networks on a complex network
topology with the ability of the Nagel–Schreckenberg
model to replicate characteristics of traffic flow using
simple rules. Hence, we consider a complex network
with E edges representing roads and N nodes represent-
ing junctions that connect these roads. The network is a
directed multi-graph (a graph with possibility of mul-
tiple edges connecting the same pair of nodes) where
each edge ei consists of li lanes in each of the two pos-
sible directions, i.e., a total of 2li lanes are present on
edge ei. Each lane, representing the basic unit of NS
model, corresponds to a one-dimensional lattice of L
sites. Figure 1 shows a snapshot of a small region of the
network at an arbitrary time. The red circles in this
figure indicates vehicle in that site.

3 Simulations

The simulation of NS model is performed as follows.
The network is initialized with M = ρL

∑E
i=1 2li

vehicles positioned randomly on the lanes, where the
parameter ρ is the density of vehicles on the network.
The total number of vehicles M remains constant for all
times. Each vehicle is initialized with vi = 0 and a des-
tination node. The vehicle follows a random walk until
it reaches its destination. For every time step t −→ t+1,
the arrangement of vehicles on each of these lanes is
updated independently using the update rules in 2. If a
vehicle reaches a junction, it turns onto a new randomly
selected lane. If the new lane cannot accommodate it,

Fig. 1 The figure shows a small section consisting of 4
nodes of the network at an arbitrary time. Nodes are con-
nected with a bi-directional edge consisting of one lane in
each direction. Each lane is a 1-D lattice of L sites (for rep-
resentational purposes, here L = 18). Red circles on a site
indicates the presence of a vehicle at that site

the vehicle waits at the junction until it can turn. If the
junction is its destination node, the vehicle is removed
from the network and a new vehicle is initialized at a
random location.

The Nagel–Schreckenberg model is simulated on a
scale-free network with N nodes for T discrete time
steps. A scale-free network is one whose degree distri-
bution follows a power law of the form P (k) ∼ k−β ,
where k is the degree and β is the exponent that might
typically, but not always, lie in the range 2 ≤ β ≤ 3.
Each edge is assumed to be equal in ’length’ and is taken
to have L = 30 lattice points in all the simulations.

A vehicle at any time step t can be in either of the two
states—moving or waiting. A waiting vehicle is stuck at
a junction since the lane it should turn on to next can-
not accommodate it. As a result, the vehicles lined up
behind this vehicle also enter the waiting state. Frac-
tion of waiting vehicles can determine if the traffic is in
free flow or congestion (jammed state).

In Fig. 2a, the fraction of waiting vehicles summed
over all the nodes, fw =

∑N
i=1 fi, is shown as a function

of density ρ of vehicles. In this, fi for node i is obtained
by averaging the fraction of waiting vehicles over all
time steps. If fw ∼ 1, then it suggests a jammed state
where most of the cars are not moving on the network,
and fw ∼ 0 suggests free-flow state on the network. As
observed in Fig. 2a, upon increasing the density of vehi-
cles, the fraction of waiting vehicles increases depicting
a transition from free-flow to congestion state.

Another quantifier of traffic is the flux rate J , i.e., the
number of vehicles passing through junctions (nodes)
per unit time. Figure 2b shows the flux of vehicles tran-
siting through the nodes per unit time, averaged over
all the N nodes, varying with density ρ. The average
flux peaks at ρ = 0.4 indicating the optimal density at
which the flux of vehicles is maximum. However, any
inference about the free flow of traffic must be drawn
by considering not only the average flux, but also the
fraction of cars in waiting state. A higher density would
implicitly suggest more flux due to the larger number of
vehicles on the move. However, a large fraction of wait-
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(a) (b)

Fig. 2 a The fraction of vehicles fw waiting on all nodes
averaged over all T time steps plotted as a function of
ρ, b Flux J , i.e., the number of vehicles passing through

nodes per unit time, averaged over all N nodes plotted as
a function of ρ. Data are obtained from simulations with
T = 50000, N = 200

ing vehicles suggests an increasingly congestive state.
Thus, taken together, Fig. 2a, b present a global view
of the NS model dynamics on a network. It is relevant to
point out that mean flux as shown in Fig. 2b has some
support from the empirical measurements of traffic as
well [29–31].

4 Long range correlations and DFA

In the last ten years, there is an increasing interest in
the long range dependence in traffic flow [32–36]. The
number of vehicles flowing through junctions (nodes) is
an important quantity of interest in road traffic anal-
ysis. A surge in the flux of vehicles through junctions
can point to an upcoming traffic jam. In this section,
the time series of the flux of vehicles flowing through
nodes is analysed. It is interesting to question whether
successive values of flux are positively or negatively cor-
related or uncorrelated. A positive correlation would
imply that large flux tends to be followed by larger val-
ues of flux (increasing trend) or small values followed
by even smaller values (decreasing trend). For a sample
time series data xt, t = 1, . . . , T , the auto-correlation is
defined by,

Cx(s) =
1
σ2

x

〈(xt − x̄)(xt+s − x̄)〉, (1)

where x̄ is the mean of the time series, σx is the stan-
dard deviation and 〈...〉 represents the average taken
over time steps t = 1, . . . , T − s as T → ∞. For a time
series with long term correlation, the auto-correlation
function generally follows a power law decay of the
form

Cx(s) ∼ s−γ , 0 < γ < 1, (2)

where γ is the auto-correlation exponent. The corre-
lation integral diverges in this range of γ leading to
diverging moments. In contrast to the power-law of
Eq. 2, for short range correlated time series the auto-
correlation function is well approximated by an expo-
nential decay of the form exp(−s/〈s〉).

In the original Nagel–Schreckenberg model, one time
step corresponds to one unit of time [25]. In this work,
sampling flux values at every time step leads to sparse
auto-correlation values and hence, to analyse the auto-
correlations, the value of flux is integrated over ten
time steps, i.e., the values of flux at any instant of
time t represents the sum of flux in the previous ten
time steps. Furthermore, summing up the values every
10 time steps mimics a sampling rate closer to real-
world traffic measurements. Direct estimation of γ using
Eq. 2 can be ambiguous and unreliable due to non-
stationarities in the data. Hence, the Detrended Fluc-
tuation Analysis (DFA) [37,38] is used to reliably esti-
mate the DFA exponent α, and γ is obtained using the
relation γ = 2 − 2α [38]. Note that the regime of long
range correlation with 0 < γ < 1 maps to 0.5 < α < 1.
DFA has been extensively studied and reported in the
literature [38,39], and hence, we recall only its basic
steps here.

Given a time series x(t), to perform DFA, the first
step is to create its cumulative sum given by

y(t) =
t∑

t′=1

(x(t′) − 〈x〉), (3)

where 〈.〉 is the mean. The profile y(t) is divided into
windows of length L. In each window, a polynomial
function yL,d of order d is used for removing the trend.
The case of d = 1 corresponds to DFA(1). Then, the
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(a) (b)

Fig. 3 Time series of flux (J) through the node with high-
est degree, and sampled for, a 200 time steps (equivalent
to 2000 time steps originally, integrated over intervals of 10
time steps), and b 2000 time steps (equivalent to 20,000

time steps originally, integrated over intervals of 10 time
steps). Data taken from simulations with T = 50, 000 time
steps on a scale-free network with N = 200 nodes, averaged
over 30 realisations

fluctuation function F (L) is defined as,

F (L) =

〈√
√
√
√ 1

L

L∑

n=0

(y(n) − yL,1)
2

〉

, (4)

where < . > represents averaging taken with respect to
windows of identical length L. For long range correlated
time series, it is expected that F (L) ∼ Lα, where α is
the DFA exponent. If α = 0.5, then it implies absence
of correlations in the data. For α < 0.5, the time series
is said to display anti-persistence or anti-correlation.
When 0.5 < α < 1, then it indicates presence of mem-
ory effect, often termed persistence or long range cor-
relation. In the present problem, DFA is performed on
the time series data of the number of vehicles passing
through the node with highest degree. We focus on five
values of density ρ for our analysis: ρ = 0.06, 0.2, 0.4, 0.6
and 0.8. This choice corresponds to free-flow state at
ρ = 0.06, while ρ = 0.2, 0.4, 0.6 and 0.8 correspond to
increasing proportions of waiting vehicles. At ρ = 0.4,
only about 40% of the vehicles are in free-flow state. As
ρ → 1, the system is dominated by a large fraction of
waiting vehicles and for ρ ∼ 1 extreme event analysis
may not yield any useful results due to negligible flux
of vehicles.

In Fig. 3a, a short time series of the flux passing
through the highest degree node is shown for three dif-
ferent density values. To get a broader picture, a longer
time series is displayed in Fig. 3b. To determine the
autocorrelation exponent, we apply DFA technique to
this time series. Figure 4 shows the DFA fluctuation
function on log–log plot with a linear fit for the same
set of density values as in Fig. 3a, along with ρ = 0.6
and 0.8. It is observed that the flux corresponding to
densities ρ = 0.06 and 0.2 displays long range correla-
tion, while that for ρ = 0.4 displays nearly uncorrelated
behaviour. Note that ρ = 0.4 is the density at which flux

Fig. 4 Detrended fluctuation function F (L) of the time
series data of flux xt through the node with highest degree.
The fluctuation function is plotted against the window size
L on a log–log scale. The red straight lines (with slopes
annotated) are obtained from regression. Data are from sim-
ulations with T = 50, 000 time steps on a scale-free network
with N = 200 nodes, averaged over 30 simulations

is maximum, as seen in Fig. 2b. Thus, using the relation
between α and γ, we get γ = 0.66 (ρ = 0.06), γ = 0.82
(ρ = 0.2), γ = 1.04 (ρ = 0.4), γ = 0.99 (ρ = 0.6)
and γ = 1.02 (ρ = 0.8). Presence of long-term correla-
tion for ρ < 0.4 indicates that the process exhibits long
memory, i.e., the number of vehicles passing through a
node are correlated in time. For positive correlations,
surges in flux will most likely be followed by surges in
flux, and declines in flux will likely be followed declines
in flux. Essentially, highs and lows in the flux are clus-
tered together in time, and are not random. For the
uncorrelated case at ρ � 0.4, we can see that the surges
in flux will be uncorrelated as well.
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5 Extreme events on nodes

5.1 Return interval distributions

A surge in the number of vehicles passing through a
junction might be an indicator of impending traffic jams
and even potential accidents. In this section, we exam-
ine the occurrence of extreme events in the flux of vehi-
cles passing through nodes, specifically the return time
interval distribution of extreme events. Given that for
small values density, ρ < 0.4, long range correlation
was observed in the flux through a node (see Fig. 4), it
can be anticipated that the recurrence interval distribu-
tion will show an enhanced weight at returns intervals
r ≈ 0, when compared with the case when the flux is
uncorrelated.

For time series of flux denoted by xt, an event at time
t = τ is called an extreme event (EE) if

xτ > φ = (x̄ + μ σx) (5)

where μ ≥ 0 determines the threshold φ to identify
extreme events. In this, x̄ is the mean flux and σx is
the standard deviation in the flux. The return inter-
val r is defined as the time interval between successive
occurrences of extreme events. It is often convenient to
change to scaled return interval defined as R = r/〈r〉,
where 〈r〉 is the mean return interval and will depend
on μ. However, for the present purposes, we suppress
the dependence on μ. It is known that for a long range
correlated time series with autocorrelation exponent γ,
the recurrence distribution in the limit of R >> 1 is a
stretched exponential distribution given by [40],

P (R) = A e−( R
B )γ

, (6)

where A and B are constants. In contrast to this, for
an uncorrelated time series, the recurrence distribution
is an exponential distribution given by

P (R) = Ce− R
D (7)

In essence, for long-term correlated time series, the
probability P (R) behaves differently from the case of
uncorrelated time series, especially as R → 0.

The return interval distributions obtained from sim-
ulations are compared with the analytical predictions
given by Eqs. 6 and 7, for which the parameters A,B
and γ are obtained through a regression procedure.
For ρ = 0.06 in Fig. 5a, the stretched exponential fits
the probability of return intervals better than the pure
exponential, and the estimated value of exponent is
γ = 0.70. This value of autocorrelation exponent agrees
with γ = 2 − 2α = 0.66 found through the DFA tech-
nique. A similar agreement is observed for ρ = 0.2 in
Fig. 5b with γ estimated through Eq. 6 is γ = 0.79 and
from DFA technique is γ = 0.82. However, for ρ = 0.4
and ρ = 0.6 displayed in Fig. 5c, the simulation data
are consistent with an exponential distribution rather

than with stretched exponential distribution. The same
was observed for ρ = 0.8.

A stretched exponential probability distribution for
the return time intervals suggests that very short and
very long return intervals are more frequent than they
would be in uncorrelated data (in which case, the proba-
bility distribution would be purely exponential). Hence,
it is evident that there is a bunching effect of extreme
events for lower densities of vehicles. Remarkably, for
ρ � 0.4, the extreme events in flux become uncorre-
lated. In Fig. 2b, a specific value of flux f0 corresponds
to two different values of density, say, ρ = ρ1 and ρ = ρ2
such that ρ2 > ρ1. Though the flux is identical at ρ1 and
ρ2, the fraction of waiting cars is higher at ρ2 than at
ρ1 (see Fig. 2a). Thus, any correlation built up by the
vehicular flux is nullified by large fraction of vehicles
that are not flowing. Hence, as the fraction of waiting
vehicles increases, the temporal ordering of the corre-
lated flux is disturbed leading to effectively uncorre-
lated behaviour as ρ → 1.

5.2 Probability for occurrence of extreme events

In this section, extreme events in time series data of
number vehicles flowing through a node are analysed,
with the definition of an extreme event given in Eq. 5.
The probability of EE occurrence is easily computed as
the ratio of total number of extreme events on a given
node to the number of discrete time steps. As in previ-
ous sections, we focus on densities ρ = 0.06, 0.2, 0.4 and
0.6 to calculate the probability of an extreme event gk

on a node with degree k as the average of the probabil-
ity of extreme events on all nodes with degree k.

Figures 6, 7 and 8 show the probability for the occur-
rence of EE (for several values of extreme event thresh-
olds) against the degree of nodes for ρ = 0.06, 0.2 and
0.6, respectively. In all cases, the occurrence probabil-
ity for EE is approximately uniform over the nodes, and
no significant trend can be observed. Though not shown
here, the occurrence probability for ρ = 0.6 also shows
a similar behaviour. These are in contrast to the case
of extreme events on a scale-free network with uncor-
related random walkers [17], in which case the extreme
event probability has a strong dependence on the degree
of the nodes. Hence, the property of uniform occurrence
probability over all the nodes can be thought of as one
possible signature of interactions among the vehicles.
This would also imply that small degree nodes and hubs
on the network have the same likelihood of encounter-
ing extreme events. It is also understandable that as
threshold μ increases, the EE probability is lower but
not zero. The EE probability, for a fixed threshold φ,
does not display pronounced dependence on density ρ
as well.

All these observations lead us to the following broad
result—that for NS model of traffic flow on a scale-
free network, the extreme events on nodes, defined
with respect to a specific threshold, are approximately
equiprobable irrespective of the nodal degree. However,
even if equiprobable on nodes, the return interval dis-
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(a) ρ = 0.06 (b) ρ = 0.2

(c) ρ = 0.4 (d) ρ = 0.6
Fig. 5 Probability distribution of return intervals for
threshold μ = 1 on the log–log scale, fit to Eq. (6) (red
curve) with parameters A, B, γ, and Eq. (7) (blue curve)
with parameters C, D. For (a) A = 0.18, B = 0.58, γ =
0.70, C = 0.09, D = 1.13, (b) A = 0.3, B = 0.58, γ =

0.79, C = 0.19, D = 0.91, (c) A = 0.15, B = 1.2, γ =
1.24, C = 0.20, D = 0.91, (d) A = 0.13, B = 1.43, γ =
1.58, C = 0.22, D = 0.89. Data taken from simulations with
T = 50, 000 time steps on a scale-free network with N = 200
nodes, averaged over 30 realisations

tribution reveals that for ρ < 0.4, extreme events can
be clustered together while for ρ > 0.4 they are uncor-
related. Hence, this can be thought of as a transition
from correlated to uncorrelated dynamics as density of
vehicles increases.

6 Summary and conclusions

In summary, the celluar automata based rules of
the Nagel–Schreckenberg model of traffic flow were
extended to model traffic flow on a scale-free network.
The observables such as the vehicular flux and the num-
ber of waiting cars were analysed to detect the extent of
congestion or free flow in the traffic. On the network, we
observe that a plot of flux against density (fundamental
diagram) is qualitatively similar to the case of traffic
flow on a simpler linear lattice. The vehicular flow is
maximum at a special value of density, ρ = ρs = 0.4 in
the case reported here. In this work, the focus is on the

Fig. 6 For ρ = 0.06, the probability of EE gk in vehicle
flux through nodes with degree k, for threshold φ indexed
by μ = 1, 2, 3, 4, 5. Data taken from simulations with T =
50, 000 time steps on a scale-free network with N = 200
nodes, averaged over 30 realisations
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Fig. 7 For ρ = 0.2, the probability of EE gk in vehicle
flux through nodes with degree k, for threshold φ indexed
by μ = 1, 2, 3, 4, 5. Data taken from simulations with T =
50, 000 time steps on a scale-free network with N = 200
nodes, averaged over 30 realisations

Fig. 8 For ρ = 0.4, the probability of EE gk in vehicle
flux through nodes with degree k, for threshold φ indexed
by μ = 1, 2, 3, 4, 5. Data taken from simulations with T =
50, 000 time steps on a scale-free network with N = 200
nodes, averaged over 30 realisations

extreme events in this interacting many-particle sys-
tem. The interactions arise due to finite capacity of the
nodes (road junctions) to service the vehicles. Hence, a
queue gets built up impeding free flow of traffic.

First, using the detrended fluctuation analysis tech-
nique, we have shown that the time series of flux for
ρ < ρs is long range correlated, and at ρ > ρs is uncor-
related. Hence, at the density at which flux is maximum
on the network, the flux is temporally uncorrelated.
Indeed, for ρ > ρs, flux continues to remain uncorre-
lated. Furthermore, we define extreme events on any
specific node as an exceedence over the typical size of
flux passing through that node. Based on this crite-
ria, it is shown that the return interval distribution for
extreme events agree with analytical results obtained
earlier for long range correlated time series in the regime
when ρ < ρs. As anticipated based on DFA exponents,
at ρ > ρs, the return interval distribution reduces to
pure exponential form corresponding to an uncorrelated
process. Finally, the probabilities for the occurrence of

extreme events on nodes are computed. Remarkably, it
is observed that the occurrence probability is indepen-
dent of the density of vehicles ρ and also the threshold
used to determine extreme events. The extreme event
probability is approximately uniform over the nodes of
the network and does not depend on their degree. In
this work, we have used a fixed value of the probabil-
ity of random braking in the NS model, i.e., p = 0.3.
While auto-correlations can change quantitatively as a
function of p, we do not expect any qualitative change
in the results due to changes in p except close to deter-
ministic limits of p = 0 and p = 1. This can be explored
in an extensive work on this problem.

It would be interesting to extend this work in several
directions, in particular, examining the role of network
topology in developing correlations among extreme
events, and also if extreme events can disable the net-
work functionality as a whole through appropriate mod-
elling efforts. This work has provided initial pointers
to the properties of extreme events in a traffic model.
This line of study must be taken up using more refined
Nagel–Schreckenberg class of models to examine the
properties of extreme events in greater detail. Finally,
results coming out of such extreme events study must
also be compared with real traffic data.
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