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Abstract We study the Ξ−nn (S = −2, I = 3/2, JP = 1/2+) three-body system using low-energy effec-
tive field theory (EFT). Due to the acute inadequacy of empirical information in this sector, there exists
substantial degree of ambiguity in determining various few-body observables, some of which are expected
to yield vital clues to resolving longstanding contentious issues in hypernuclear physics. Moreover, in astro-
physical studies, a precise determination of neutron star equation of state (EoS) of putative hyperonic cores
relies on essential input from the S = −2 sector. In this obscure current scenario, a pionless EFT analysis
provides a systematic model-independent framework for assessing the feasibility of light three-particle-
stable bound states, utilizing low-energy universality. Here we take recourse to a simplistic speculation
of the three-body system by eliminating the repulsive spin-singlet Ξ−n sub-system, while retaining the
predominantly attractive (possibly bound) spin-triplet Ξ−n and the virtual bound spin-singlet nn sub-
systems. In particular, a qualitative leading order EFT investigation by introducing a sharp momentum
ultraviolet cut-off parameter Λreg into the coupled integral equations indicates a discrete scaling behavior
akin to a renormalization group limit cycle, thereby suggesting the formal existence of Efimov states in the
unitary limit, as Λreg → ∞. Our subsequent non-asymptotic analysis indicates that the three-body binding
energy B3 is sensitively dependent on the cut-off without the inclusion of three-body contact interactions.
Furthermore, our analysis reproduces several values of the binding energy B3 ∼ 3−4 MeV, predicted
in context of existing potential models, with the regulator Λreg in the range ∼ 350−460 MeV. Finally,
based on these model inputs for B3, a ballpark estimate of the three-body scattering length in the range
2.6−4.9 fm, is naively constrained by our EFT analysis. Despite approximations, the resulting Phillips
line is expected to yield a robust feature of the halo-bound Ξ−nn system. For pedagogical reasons, using
a simple toy model interacting three-bosons system, we highlight in the appendices the typical universal
features leading to emergence of RG limit cycle and Efimov states which are amenable to a low-energy
EFT formalism.

1 Introduction

The physics of hypernuclei has gained considerable
attention in the strangeness nuclear physics commu-
nity through numerous studies of exotic hypernuclei
(for recent reviews, see, e.g., Refs. [1–6]). Such stud-
ies have also proven to have important consequences
in the astrophysics of neutron stars where strange
matter is expected to appear at their cores (e.g., see
Refs. [7–9]). Especially, the strangeness S = −2 sector
has engendered for a long time a great deal of activ-
ity behind ideas, such as the existence of the puta-
tive H-dibaryon and other light Ξ-hypernuclei, or to
seek a resolution to the well-known hyperon puzzle
[10,11]. For instance, with regard to the feasibility of
the H-particle, as conjectured by Jaffe more than 40
years ago [12], no definite conclusion has been reached
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till date, despite the extensive theoretical [13–26] and
experimental investigations [27,28]. It has been recog-
nized that a thorough understanding of the role and
character of the underlying Y NN and Y Y N three-
body forces (3BFs) is vital towards resolving some of
these contentious issues. Especially, to stabilize neu-
tron stars with masses larger than twice the solar mass
(2M�) against gravitational collapse, the sole inclusion
of NN, Y N , and Y Y two-body interactions becomes
questionable, as they lead to considerable softening of
the equation-of-state (EoS) [29] of the dense baryonic
matter. The answer probably lies in the inclusion of
an admixture of NNN , ΛNN , ΛΛN and ΞNN 3BFs
that may be the key in estimating the correct stiffness
of the EoS governing the stability of the cores. Notably,
the Quantum Monte Carlo simulations by Lonardini et
al. [30,31] have already shown encouraging indication
that the inclusion of ΛNN 3BF compensates the exces-
sive overbinding due to the ΛN interactions, ostensibly
resolving the “BΛ-overbinding” problem. Further work
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in this direction is necessary for a comprehensive under-
standing of the 2017 observation of gravitational waves
from two-neutron star mergers by the LIGO Scientific
Collaboration [32].

In 2001, the NAGARA event [33] from the KEK
E373 emulsion experiment undoubtedly provided the
first evidence of the light double-Λ hypernuclei 6

ΛΛHe,
demonstrating that the S = −2 ΛΛ interactions are
less attractive than the S = −1 ΛN counterparts. On
the other hand, the feasibility of a light Ξ-hypernuclei
based on the state-of-the-art experimental [34–36] and
theoretical [37–45] studies remains largely equivocal
since they were first claimed in 1959 in the experi-
mental work of Wilkinson et al. [46]. This is primarily
due to the acute scarcity of S = −2 empirical infor-
mation1 needed to determine the underlying charac-
ter of the hypernuclear interactions. All that one finds
in the literature are a few scattered upper bounds for
Ξ−p → Ξ−p (elastic) and Ξ−p → ΛΛ (inelastic) cross
sections from emulsion experiments [49–51] for labo-
ratory frame momenta in the range 500−600 MeV.
Thus, it is no surprise that different existing model
analyses lead to substantially contrasting views regard-
ing the nature of the ΞN potentials, ranging from
moderately or weakly attractive [34,44,49–57], even
vanishing [58], to weakly repulsive [59]. In fact, the
KISO event [36] from the KEK E373 experiment in
2015, which undeniably confirmed the particle-stable
Ξ-hypernucleus 15

Ξ C (interpreted as the ground state
of a deeply bound Ξ−−14N cluster system with bind-
ing energy 4.38 ± 0.25 MeV), at the least corrobo-
rated that the constituent ΞN channels are attractive.
Specifically, the updated (Extended-soft-core ESC08c)
Nijmegen model G-matrix analyses [60,61] have pre-
dicted that the ΞN two-body system in the maximal
spin–isospin (i = 1, jp = 1+) channel is strongly attrac-
tive and forms a near-threshold bound state with large
positive 3S1 scattering length, namely, a

(j=1)
Ξn = 4.911

fm. On the contrary, the (i = 1, jp = 0+) channel was
predicted to be predominantly repulsive with small 1S0

scattering length, namely, a
(j=0)
Ξn = 0.579 fm. Using a

potential model involving Faddeev equations, the puta-
tive two-body bound state in the former attractive ΞN
channel, so-called the deuteron* (D∗), was estimated
to have a binding energy of 1.56 MeV (1.67 MeV) by
(without) taking into consideration the latter repul-
sive ΞN channel [42,43]. In a contrasting scenario, the
recent SU(3) chiral effective field theory (EFT) predic-
tions from the relativistic leading order (LO) analysis of
Ref. [56], as well as the non-relativistic next-to-leading
order (NLO) in-medium G-matrix analysis of Ref. [57],
have practically ruled out the possibility of a particle-
stable ΞN bound state in the (1,1) channel. It is note-

1 Due to the current impracticability of Ξ-hyperon scatter-
ing experiments, accurate data is difficult to procure. How-
ever, study of pertinent correlations in heavy-ion collisions
or highly energetic proton-proton scattering in future facil-
ities like ALICE and PANDA could certainly improve the
present scenario [47,48].

worthy that both EFT analyses were constrained by the
recent HAL QCD lattice results [62] and the aforemen-
tioned empirical upper bounds from Ξ−p cross sections
data [49–51,55]. Interestingly, the recent Faddeev cal-
culations [6,26,39,41–43] relying either on the updated
ΞN Nijmegen ESC08c potential model [60,61] as input
for the I = 3/2, JP = 1/2+ channel, or on the recent
HAL QCD-based ΛΛ−ΞN separable interaction poten-
tial [62] as input for the I = 1/2, JP = 1/2+ chan-
nel, have hinted at the feasibility of a deeply bound
ΞNN state in the former channel and a three-body
ΞNN − ΛΛN resonance state (i.e., either as a ΛΛN
resonance state or a ΞNN quasi-bound state) in the
latter.2 These facts ostensibly imply that the ΞN inter-
actions are predominantly attractive in nature.

2 Pionless EFT (π/EFT): a brief survey

Prompted by this unresolved scenario, we present in
this work an alternative qualitative assessment regard-
ing the viability of a putative Ξ−nn two-neutron halo-
bound state in the I = 3/2, JP = 1/2+ channel. In
particular, the reasons motivating our study of the
ΞNN system in this maximal spin–isospin channel are
as follows:

– First, the decoupling of this channel from the strong
decay into the ΛΛN channel is forbidden by isospin
conservation.3

2 Even a contrasting viewpoint is obtained in the ΞNN
system in the light of the more recent variational calculation
using Gaussian expansion method [44] with Nijmegen ΞN
potential [60,61]. Oddly enough, their findings indicate a
rather strongly attractive I = 1/2, JP = 1/2+ channel with
a three-body bound state with binding energy 7.20 MeV,
while the I = 3/2, JP = 1/2+ channel is less attractive
without a bound state.
3 The ΞNN system in the I = 1/2, JP = 1/2+ channel,
on the other hand, has profound astrophysical importance in
the context of EoS of neutron star matter. It has been recog-
nized that ΞNN → ΛΛN transmutations could contribute
to an intricate balance between the ordinary nucleonic and
hyperonic matter accumulating at the stellar cores, inducing
a natural “pressure control” mechanism for the build-up of
neutron and lepton Pauli pressures in high-density matter.
Moreover, the ΛNN and ΛΛN three-body observables can
additionally serve to fine-tune the stiffness of the EoS in a
controlled way. In this regard, a series of chiral constituent
quark model analyses by Garcilazo el al. [63–65] using Fad-
deev equations suggested the importance of ΞNN − ΛΛN
couplings in obtaining a three-body bound state, so-called
the S = −2 hypertriton (with binding energy ∼ 0.5 MeV),
given that the ΛΛN system is by and large unbound. How-
ever, such a bound state mechanism seems fundamentally at
odds with Efimov universality, since the feasibility of Efimov
states gets substantially weakened or disappears in prox-
imity to open decay or reaction channels [66,67]. Thus, it
seems rather unlikely that the above reported bound state is
manifestly Efimov-like in character. This calls for a rigorous
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– Second, Pauli principle works favorably in support-
ing stable ΞNN bound states.

– Third, the absence of Coulomb effects to a great
extent simplifies the EFT construction of the cou-
pled integral equations in the momentum-space [68],
the so-called STM or Skornyakov–Ter-Martirosyan
equations [69–71] (cf. Appendix A.2).

Our treatment is based on a low-energy pionless
EFT (π/EFT) [68,72–83] where explicit pion exchanges
are integrated out at scales much smaller than the
pion mass. A speciality of such an approach is that
the results are obtained following a general model-
independent perturbative scheme utilizing principles of
low-energy universality with controlled error estimates.
Observables are expressed as an expansion of a small
low-energy parameter ε = Q/ΛH ,with Q being the typ-
ical momentum scale of dynamics of the system in ques-
tion, and ΛH ∼ mπ is the hard or breakdown scale
of the theory which is identified with the pion mass
mπ. Such a methodology is complementary to ab ini-
tio approaches, where the universal phenomenological
couplings or low-energy constants (LECs) in the effec-
tive Lagrangian could be used to make predictions on
various few-body observables. Such universal aspects
of π/EFT have been successfully exploited to investi-
gate the dynamics of finely tuned systems of atoms and
light nuclei driven arbitrarily close to the unitary limit
of two-body short-distance interactions. This is either
achieved artificially, by tuning inter-atomic potentials
in selective open channels using varying electromag-
netic fields, as in Feshbach resonances [68] in ultra-cold
atoms, or even naturally, as in nuclear systems with
large two-body scattering lengths. This leads to for-
mation of threshold two-body bound states, such as
in the case of the deuteron (np bound state) or in
our context of the aforementioned putative bound D∗
state [60,61]. More interestingly, interacting three-body
S-wave systems when driven in proximity to the uni-
tary limit, lead to the well-known Efimov phenomenon
[68,84–90], associated with an infinite tower of arbi-
trarily shallow geometrically spaced three-body levels
accumulating to zero-energy, namely, the three-particle
or particle-dimer break-up threshold (see, e.g., [2,68,90]
and reference therein for a detailed review of Efimov
physics and its applications in atomic and nuclear
physics). In that case a modified π/EFT power count-
ing scheme was suggested by Bedaque et al. [72,73].
The power counting mandates non-derivative three-
body contact interaction couplings, which are otherwise
subleading in a naive dimensional analysis (NDA), to be
promoted to the LO whenever they exhibit renormal-
ization group (RG) limit cycle. For pedagogical pur-
pose, Appendix A highlights brief technical details of
the π/EFT formalism capturing the two- and three-
body universal physics relating to Efimov-like bound
states. A simple toy model analysis of a system of

Footnote 3 continued
model-independent assessment which is beyond the scope of
a simplistic qualitative treatment as pursued in this work.

three identical interacting bosons provides the essen-
tial background for the methodology adopted in this
paper.

An important variant of the standard π/EFT-based on
the generalization of nuclear cluster models is the so-
called halo/cluster π/EFT [91,92]. It was primarily intro-
duced for investigating the clustering and halo phe-
nomena in light nuclei with narrow resonances (often
in higher partial waves), characterized by multi-scale
threshold dynamics at energy scales often lower than
that in standard π/EFT. A heteronuclear subclass of sys-
tems often manifest themselves as exotic s-shell hyper-
nuclei which typically lie along the limits of nuclear sta-
bility (so-called the drip-lines). These modified π/EFTs
exploit the separation of scales between the hard scale
of the EFT and a hierarchy of dynamically generated
low-energy scales associated with the formation of one
or more shallow bound/resonance states. Such analysis
has been successfully applied to study light hypernu-
clei, since the very first of such EFT work by Hammer
[93] on the LO investigation of hypertriton (3ΛH), a Λnp
Efimov-like bound system in the I = 0, J = 1/2 chan-
nel. Subsequently, a number of similar LO halo/cluster
EFT works appeared in the literature, both in the
S = −1 [94,95] and S = −2 [96–98] strangeness sec-
tors, in the search for light exotic single and double
Λ-hypernuclear states, e.g., nnΛ,4 4

ΛΛHe, 5
ΛΛH, 5

ΛΛHe
and 6

ΛΛHe. It is worth mentioning here that a novel
ab initio LO π/EFT technique using few-body stochas-
tic variational method of calculation was suggested in

4 The π/EFT analysis by Ando et al. [94] attempted to inves-
tigate the feasibility of the putative nnΛ bound state, as
reported by the HypHI Collaboration [99] in 2013. In that
analysis a coupled system of integral equation was con-
structed in the physical basis involving only the spin pro-
jected couplings and excluding isospin projections for sim-
plicity. This, however, yielded the asymptotic RG limit cycle

scaling exponent as s
(nnΛ)
0 = 0.80339 . . . , which is inconsis-

tent with the expected universal scaling based on the the
relative three-particle mass ratios [68]. As recently eluci-
dated by Hildenbrand and Hammer [95], the correct scaling
could be achieved by a proper reformulation in the spin–

isospin basis leading to the value, s
(nnΛ)
0 = 1.0076 . . .. This

value is identical to that obtained in the study of hypertri-
ton, and also reproduces the well-known asymptotic scal-
ing s0 = 1.00624 . . ., for identical masses [68,90] (also see
Appendix A.3). Furthermore, in Ref. [95] a threshold ground
state appeared at the critical cut-off scale Λreg ∼ 600 MeV,
whereby the likelihood of a physically realizable Efimov-
bound/resonance Λnn state may not be excluded outright.
Notably, such a possibility had been completely ruled out
earlier in Ref. [94] with the critical cut-off obtained as
Λreg � 1.5 GeV. Besides, it deserves mentioning here that
nearly all potential model approaches till date have reported
negative results for the existence of the Λnn bound state (see
e.g., Refs. [100–103]). In particular, the Faddeev calculation
analysis of Ref. [103] demonstrated using a complex scaling
method that the strength of the Λn Yamaguchi-type (sep-
arable) potential is needed to be tuned ∼ 25% above the
realistic estimate in order for the Λnn system to emerge
into a three-body bound state.
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Refs. [104–107] for the study of ordinary nuclei on the
lattice, the so-called lattice nuclei, facilitating easy com-
parison with results of Lattice QCD simulations at
unphysical quark masses. Such a framework, which is
complimentary to the halo π/EFT approach, was later
extended by Contessi et al. [108] in the S = −1 sec-
tor to seek a solution to the BΛ-overbinding problem,
and more recently in the feasibility studies of several
light S = −2 double Λ-hypernuclei [109]. Here we re-
emphasize that the above literature survey relating to
studies on Λ-hypernuclei comprises only of noteworthy
π/EFT works motivated on the philosophy of few-body
universality, as adopted in this paper. Needless to say,
however, that the existing literature also includes an
entire gamut of well acclaimed works based on ab ini-
tio and cluster potential models involving three- and
four-body Faddeev–Yakubovsky and variational calcu-
lations (see, e.g., [3–6] and references therein). As these
methodologies do not come under the direct purview
of universal physics principles, a detailed discussion of
the models, especially in the context of Λ-hypernuclear
studies, is beyond the scope of this work.

3 Halo π/EFT of Ξ−nn

In this work, we use halo π/EFT at LO to assess the fea-
sibility of a Ξ−nn bound state in the I = 3/2, J = 1/2
channel primarily based of Efimov universality. This
may be reflected through a study of the EFT regu-
lator scale dependence of the RG limit cycle exhib-
ited by the three-body contact interaction coupling
(see Appendix A for basic details regarding few-body
universality, RG limit cycle and Efimov effect in the
context of EFT analysis). Despite existing uncertain-
ties regarding the exact nature of ΞN interactions,
we adopt a certain scenario motivated by the results
from a series of recent constituent quark cluster poten-
tial model (CQCM) analyses [39,41–43] based on Fad-
deev calculations. These analyses rely on the fact that
the 3S1 Ξ−n sub-system is dominantly attractive and
bound with large positive S-wave scattering length,
namely, a

(j=1)
Ξn = 4.911 fm, taken from the Nijmegen

ESC08c model [60,61]. It is especially noted in some of
these model studies that if one included the real bound
3S1 channel as the only Ξ−n sub-system channel, the
Ξ−nn system exhibited a three-body deeply bound
state. On the other hand, no bound state is obtained
with only the 1S0 Ξ−n sub-system channel included
with the Nijmegen model predicted small S-wave scat-
tering length, namely, a

(j=0)
Ξn = 0.579 fm [60,61].5 Here

we report analogous qualitative features arising in the
context of our EFT framework as well. This probably
hints at the consistency of our halo EFT results with
those reported earlier in the above mentioned model

5 It is notable that the 1S0 nn sub-system channel is virtual
bound with large negative S-wave scattering length, namely,
ann = −18.63 fm [110].

analyses. In particular, the Faddeev-type coupled inte-
gral equations in the momentum space are found not
to exhibit an RG limit cycle with only the repulsive
1S0 Ξ−n sub-system channel included, implying an
unbound Ξ−nn system. On the other hand, we find
that an asymptotic RG limit cycle (cf. Appendix A.3)
is always manifest in the presence of the Ξ−n triplet
channel, irrespective of the inclusion of the Ξ−n singlet
channel. However, a full-fledged numerical evaluation
of the integral equations using conventional auxiliary
fields, or the so-called dibaryon formalism [72,73,82]
(cf. Appendix A.1 for details), becomes a challenging
task, especially when dealing with the repulsive Ξ−n
sub-system with a small positive scattering length. The
problem is attributed to the presence of a unphysi-
cally deep pole in the 1S0 Ξ−n dibaryon propagator [cf.
Eq. (8)] corresponding to an unnaturally large binding
momentum, γ

(0)
Ξn ≈ 1/a

(0)
Ξn ≈ 340 MeV (estimated using

the the Nijmegen ESC08c model [60,61]). Since there is
no straightforward way of “renormalizing” the effect of
such a deep two-body pole, the EFT evidently breaks
down. Thus, in this work we take recourse to a sim-
plistic study of the Ξ−nn system to look for possible
emergence of physically realizable Efimov-like trimers
by completely excluding the repulsive 1S0 Ξ−n chan-
nel (as done in e.g., Ref. [39]). Notably, in our halo EFT
formalism, the triplet dibaryon pole position defines the
n + (Ξ−n)t particle-triplet-dimer break-up threshold,
beyond which the Ξ−nn trimer levels are expected to
emerge. The trimer binding energies correspond to the
eigensolutions to the coupled integral equations for a
given finite value of an ultraviolet (UV) sharp momen-
tum cut-off regulator [68] (cf. Appendix A.2).

In the ensuing EFT analysis, we present a quali-
tative investigation of the regulator scale dependence
of an a priori undetermined three-body contact inter-
action coupling introduced for the purpose of renor-
malization. Through this study, we hope to establish
a correspondence between our EFT results with those
obtained in the potential model analyses by Garcilazo
et al. [39,41–43]. Our analysis serves as a consistency
check between both types of approaches. In particular,
based on existing model estimates for the three-body
binding energy, we give a naive window of possible esti-
mates of the S-wave three-body scattering length asso-
ciated with the elastic n − (Ξ−n)t scattering process.
These predictions in turn induce a striking feature of
three-body universality, the so-called Phillips line [111],
namely, the fact that different model potentials tuned
to the same input two-body scattering data (i.e., a

(j=1)
Ξn

and ann) yield a highly correlation result for the Ξ−nn
binding energy and the corresponding three-body scat-
tering length. Albeit approximations considered in our
simplistic model-independent treatment, such univer-
sal correlations are expected to reflect robust features
of the thee-body system.
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3.1 Effective Lagrangian and formalism

In a simplified picture, the Ξ−nn system may be visu-
alized as a two-neutron halo with the two loosely bound
neutrons orbiting about the Ξ−-hyperon “elementary”
core, forming a shallow bound state with a diffuse struc-
ture. Such universal class of systems exploits the dis-
tinct separation of scale between the typical dynami-
cal scale, Q ∼ γ

(1)
Ξn ≈ 1/a

(1)
Ξn ∼ 40 MeV, associated

with the “attractive pole” momentum of the 3S1 Ξ−n
dibaryon propagator (ignoring possible artifact due to
the deep pole at γ

(0)
Ξn ≈ 1/a

(0)
Ξn ∼ 340 MeV associated

with the repulsive 1S0 Ξ−n sub-system), and the break-
down scale ΛH ∼ mπ of standard π/EFT [68,72–83].
This implies that ε ∼ Q/mπ ∼ 1/3 defines a reasonable
expansion parameter that is amenable to a EFT treat-
ment. A concise description on the general principles
and methodology of π/EFT framework used in the anal-
yses of two- and three-body universality is provided in
Appendix A. The effective Lagrangian is constructed on
the basis of all possible available low-energy symmetries
(P, C, T and Galilean invariance) and degrees of free-
dom. The interaction vertices are represented by local
contact interactions and the Lagrangian is expressed in
a derivative expansion of the fundamental fields. For
our system, the fundamental degrees of freedom consist
of the Ξ−-hyperon and neutron (n) fields. The LO non-
relativistic Lagrangian is free from derivative terms and
expressed as a sum of one-, two- and three-body parts,
namely,

Lπ/EFT = L1−body + L2−body + L3−body. (1)

Below we consider each of the components of the effec-
tive Lagrangian separately.
One-body part. The terms LΞ and Ln constitute the
one-body Lagrangian L1−body corresponding to the
kinetic part of the Ξ−-hyperon and neutron fields,
respectively, and are expressed in the physical basis as

L1−body = LΞ + Ln , (2)

where

LΞ = Ξ†
[
iv · ∂ +

(v · ∂)2 − ∂2

2MΞ

]
Ξ ,

Ln = n†
[
iv · ∂ +

(v · ∂)2 − ∂2

2Mn

]
n , (3)

where MΞ and Mn are the physical masses of the Ξ−-
hyperon and neutron fields respectively, as given in
Table 1, and vμ = (1,0) is the four-velocity vector
which is used to express the Lagrangian in a manifestly
covariant manner akin to the heavy-baryon formalism
[113]. It follows that the non-relativistic propagators
associated with these fundamental fields are given by

iSΞ(p0,p) =
i

p0 − p2

2MΞ
+ iη

,

Table 1 PDG [112] values of particle masses considered in
the analysis

Particle Mass symbol Numerical value (MeV)

Ξ-Hyperon MΞ 1321.710
Neutron (n) Mn 939.565

iSn(p0,p) =
i

p0 − p2

2Mn
+ iη

; η → 0 , (4)

where p0 and p are temporal and spatial parts of the
generic four-momentum pμ.
Two-body part. In π/EFT, to deal with the formation
of shallow S-wave bound states one needs to unita-
rize the two-body sector by employing the so-called
Kaplan-Savage-Wise (KSW) power counting rule [76–
80]. To efficiently capture such two-body physics in the
vicinity of a non-trivial fixed-point described by the
RG of the two-body contact interactions, it was sug-
gested to introduce auxiliary dimer fields in the effec-
tive Lagrangian [68,72,73,81,82] (also, see Appendix
A.1). Thus, for the heteronuclear Ξ−nn system we
need to introduce two types of dimer fields, namely, the
isospin-spin triplet (i = 1, j = 1) Ξ−n dibaryon field
u1 and the isospin-triplet spin-singlet (i = 1, j = 0)
nn dibaryon field u0. Here we re-emphasize that the
iso-triplet spin-singlet (i = 1, j = 0) Ξ−n sub-system
channel is considered decoupled from the picture as its
physics lies beyond the realm of our halo EFT formal-
ism. The corresponding two-body LO Lagrangian (writ-
ten in the physical basis) in terms of the dibaryon fields
is expressed as

L2−body = Lu0 + Lu1 , (5)

where

Lu0 = −(u0)a†
[
iv · ∂ +

(v · ∂)2 − ∂2

4Mn

]
(u0)a

−y0

[
(u0)a†

(
nT P̂

(1,0) a
(nn) n

)
+ h.c.

]
,

Lu1 =−(u1)
a†
k

[
iv · ∂ +

(v · ∂)2 − ∂2

2(MΞ + Mn)

]
(u1)a

k

−y1

[
(u1)

a†
k

(
nT P̂

(1,1) a
(Ξn) k Ξ

)
+ h.c.

]
,

(6)

noting that the “wrong signs” in front of the respec-
tive kinetic terms suggest the non-dynamical or quasi-
particle nature of the dibaryon fields. Here, P̂(1,1) a

(Ξn) k =
1
2τ2τaσ2σk, and P̂

(1,0) a
(nn) = 1√

8
τ2τaσ2 are the spin–

isospin projection operators, with σk and τa (k, a =
1, 2, 3) being the Pauli matrices in the spin and isospin
spaces respectively. The two-body non-derivatively cou-
pled LO contact interactions or LECs y0,1 between the
respective dibaryons and their constituent elementary
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fields encode all UV physics that remain unresolved in
the EFT. These couplings are easily fixed by the pre-
scription given in Ref. [114]:

y1 =
√

2π

μ
, and y0 =

√
4π

Mn
, (7)

where μ = MnMΞ/(Mn + MΞ) = 549.174 MeV is
the reduced mass of Ξ−n two-body sub-system. Next,
we spell out the renormalized “dressed” (unitarized)
propagators for the nn and Ξ−n dibaryon fields (cf.
Fig. 1) consistent with the KSW power counting scheme
[76–80]:

iD0(p0,p) =
4π

y2
0Mn

i

γ
(0)
nn −

√
−Mn(p0 − p2

4Mn
) − iη − iη

,

iD1(p0,p) =
2π

y2
1μ

i

γ
(1)
Ξn −

√
−2μ(p0 − p2

2(Mn+MΞ )
) − iη − iη

;

η → 0 , (8)

where at the LO in π/EFT, we have γ
(0)
nn → 1/ann and

γ
(1)
Ξn → 1/a

(1)
Ξn, as the (1,0) nn and (1,1) Ξ−n dibaryon

(virtual or real bound) binding momenta, respectively.
It may be noted that the two scattering lengths are the
only two-body input parameters in our LO EFT. Other
parameters, such as S-wave effective range rnn and rΞn

formally contribute at NLO in the KSW power counting
scheme, which is beyond the scope of this work.
Three-body part. Formally the Ξ−nn three-body sys-
tem with a possible fine-tuned two-body sector exhibits
the well-known Efimov effect close to the unitary or
resonant limit of the two-body interactions. This is
reflected by the fact that the integral equations for
the system with only two-body contact interactions
become ill-defined in the asymptotic UV limit. The
inherent reason for this anomalous UV behavior is the
partial breakdown of the expected fixed-point scaling
invariance of the system in the vicinity of bound states
into the onset of a discrete scaling symmetry. A pos-
sible remedy to this problem, for instance, may be
obtained by including a sharp momentum UV cut-off
regulator Λreg in the integral equations, thereby, for-
mally introducing another free parameter in the LO
EFT (in addition to the two S-wave scattering lengths
in the two-body sector). This simultaneously necessi-
tates the introduction of LO three-body contact inter-
actions (3BFs) as counterterms with scale dependent
couplings, such as g3(Λreg), to renormalize the arti-
ficial cut-off dependence. The resulting atypical scal-
ing behavior gets reflected through the emergence of
a RG limit cycle behavior in the 3BF couplings (for
a pedagogical review on this topic, see Ref. [68]; also
see Appendices A.2 and A.3). Here we present a cer-
tain choice of the LO three-body Lagrangian consistent

with the reparametrization symmetries of the coupled
system of integral equation, and given by

L3−body = −g3(Λreg)

Λ2
reg

[
MΞy2

1

2

{
(u1)

a
l P̂ab

l n
}†

×
{
(u1)

c
k P̂cb

k n
}

−
√
3Mny0y1√

2

{
(u1)

a
l P̂ab

l n
}†{

uc
0 P̂cb Ξ

}
+ h.c.

]
,

(9)

where the spin–isospin projection operators have the
following forms:

[
P̂cb

k

]
αβ

=
1

3
√

3

[
(τ cτ b)αβ + δcbδαβ

]
σk ,

[
P̂cb

]
αβ

=
1
3

[
(τ cτ b)αβ + δcbδαβ

]
, (10)

with α, β = 1, 2 being the isospin-1/2 SU(2) indices
[115]. The cut-off dependence of g3 is a priori unde-
termined in the EFT and can be fixed only using a
three-body datum, e.g., the three-body binding energy
B3 or the corresponding scattering length a3.6 How-
ever, none of these empirical information is available
currently, either from experimental data or from ab ini-
tio lattice QCD simulations. Due to such acute paucity
of data, it becomes imperative to rely on some of the
erstwhile phenomenological models, before our LO EFT
analysis can be made viable to yield some qualitative
insight. Thus, for example, here we rely on the Ξ−nn
binding energy estimates from the Faddeev calcula-
tions provided by the potential model analyses of Refs.
[38,39,41–43].

3.2 Coupled STM integral equations

For the sake of theoretical analysis, we study the Ξ−nn
system in both the kinematical three-body bound and
scattering domains. For this purpose, we choose a repre-
sentative elastic reaction channel corresponding to the
low-energy 1 + 2 → 1 + 2 scattering process with dom-
inant S-wave contribution, namely,

n + (Ξ−n)t −→ n + (Ξ−n)t . (11)

Here we must emphasize that this “reference” scatter-
ing process is chosen solely for demonstrating our the-
oretical methodology, irrespective of the infeasibility of
performing such experiments at current facilities. The
chosen reaction channel yields a set of two coupled
Fredholm-type integral equations in the momentum
space. While their eigenvalues yield all possible allowed

6 The three-body datum in this case is analogous to the
information on parameters, such as Λ∗ or κ∗, in addition to
the two-body scattering length a0, necessary for the descrip-
tion of the Efimov spectrum, as detailed in Appendix A.3
for a three-boson system.
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Fig. 1 The renormalized dressed propagators for (upper panel) 3S1 nn, and (lower panel) 3S1 Ξ−n dibaryon fields. The
dashed lines represent the Ξ−-hyperon field propagator and the solid lines represent the neutron field propagator
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Fig. 2 Feynman diagrams for the representative coupled
channel elastic scattering process, n+(Ξ−n)t → n+(Ξ−n)t,
where “t” is used to denotes the 3S1 Ξ−n sub-system. The
solid (dash) line represents neutron (Ξ−-hyperon) prop-
agator. The off-shell double lines with insertions of the
small empty oval (square) blobs represent the renormalized

dressed 1S0 nn (u0) and 3S1 Ξ−n (u1) dibaryon field propa-
gators. The large blob tA (tB) denotes the elastic (inelastic)
half-off-shell scattering amplitude for the n + u1 → n + u1

(n + u1 → Ξ− + u0) scattering processes. The dark blobs
represent the insertion of leading order three-body contact
interactions

trimer binding energies (B3), the eigenvectors yield the
scattering amplitudes of the coupled elastic and inelas-
tic channels. In Fig. 2, we display the relevant Feynman
diagrams for the above mentioned scattering process
expressed in term of the two half-off-shell S-wave pro-
jected scattering amplitudes, namely, tA(k, p;E) repre-
senting the elastic process n+u1 → n+u1, and tB(k, p)
representing the inelastic process n + u1 → Ξ− + u0.
Here k = |k| (p = |p|) denotes the on-shell (off-shell)
incoming (outgoing) relative three-momentum in the
center-of-mass (CM) system, and E is the total CM
kinetic energy of the three-body system, given by

E = ± k2

2μn(nΞ)
− B2; B2 =

(
γ
(1)
Ξn

)2

2μ
= 1.47 MeV,

(12)

vspace*-8pt where the “−” sign is applicable for the
kinematical three-body bound state domain and the
“+” sign for the scattering domain. B2 is the CM
binding energy of a possible shallow-bound (Ξ−n)t

sub-system which also sets the scale for the particle-
triplet-dimer (n + u1) break-up threshold energy,7 and
μn(nΞ) = Mn(MΞ +Mn)/(2Mn +MΞ) = 663.768 MeV

7 In our halo EFT formalism B2 corresponds to the pole
position of the u1 dibaryon propagator. Its value may be
compared with the binding energy of the putative D∗ state
in the (1,1) ΞN channel, as predicted by the potential model
analyses of Refs. [42,43,60,61].

is the corresponding reduced mass of three-body (particle-
dimer) system. The construction methodology of the
integral equations is similar to those employed in several
earlier π/EFT works [67,94,96–98] (also see Appendix
B). The renormalized S-wave projected coupled (elas-
tic and inelastic channels) STM integral equations with
the introduced cut-off regulator Λreg are given as

t
(R)
A (p, k;E) = ZΞn

(
y2
1MΞ

)
2

[
K(a)(p, k;E) − g3(Λreg)

Λ2
reg

]

− MΞ

2πμ

∫ Λreg

0
dq q2

[
K(a)(p, q;E) − g3(Λreg)

Λ2
reg

]

×D1

(
E − q2

2Mn
,q

)
t
(R)
A (q, k;E)

+

√
6y1

πy0

∫ Λreg

0
dq q2

[
K(b2)(p, q;E) − g3(Λreg)

Λ2
reg

]

×D0

(
E − q2

2MΞ
,q

)
t
(R)
B (q, k;E) ,

(13)

and

t
(R)
B (p, k;E) = −ZΞn

√
3

2
(y1y0Mn)

[
K(b1)(p, k;E) − g3(Λreg)

Λ2
reg

]

+

√
3

2

Mny0

μπy1

∫ Λreg

0
dq q2

[
K(b1)(p, q;E) − g3(Λreg)

Λ2
reg

]

×D1

(
E − q2

2Mn
,q

)
t
(R)
A (q, k;E) , (14)
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where the term K(a) denotes the S-wave projected Ξ-
exchange interaction kernel, while K(b1,b2) are two vari-
ants of the n-exchange interaction kernel, namely,

K(a)(p, κ;E) =
1

2pκ
ln

(
p2 + κ2 + apκ − 2μE

p2 + κ2 − apκ − 2μE

)
,

K(b1)(p, κ;E) =
1

2pκ
ln

(
bp2 + κ2 + pκ − MnE

bp2 + κ2 − pκ − MnE

)
,

K(b2)(p, κ;E) =
1

2pκ
ln

(
p2 + bκ2 + pκ − MnE

p2 + bκ2 − pκ − MnE

)
.

(15)

The generic momentum κ denotes either the incoming
on-shell relative momentum (k) or the loop momentum
(q). Also, a = 2μ/MΞ and b = Mn/(2μ) are two mass-
dependent parameters. The above half-off-shell renor-
malized amplitudes are related to the corresponding
unrenormalized amplitudes tA,B(p, k;E) by

t
(R)
A,B(p, k;E) =

√
ZΞn tA,B(p, k;E)

√
ZΞn , (16)

where

Z−1
Ξn =

y2
1μ

2

2πγ
(1)
Ξn

, (17)

is the wavefunction renormalization associated with the
possible bound (Ξ−n)t sub-system. Finally, the renor-
malized elastic amplitude is used to obtain the S-wave
n−(Ξ−n)t three-body scattering length by considering
the threshold limit of the on-shell momentum k → 0,
namely,

a3 = − lim
k→0

μn(nΞ)

2π
t
(R)
A (k, k) . (18)

3.3 Asymptotic analysis

To assess that the coupled STM integral equations
indeed have the potentiality to yield three-body bound
state solutions, one needs to check for possible mani-
festation of Efimov effect at the asymptotic UV limit
as Λreg → ∞ [68] (cf. Appendix A.3). In this case,
all other low-energy/momentum scales in the problem,
e.g., E, γ

(1)
Ξn, γ

(0)
nn , k � p, q ∼ Λreg � ∞, become irrel-

evant, and the integral equations can be well approxi-
mated by considering only the homogeneous parts (i.e.,
excluding the tree diagram contributions in Fig. 2) and
dropping all the k dependence and three-body interac-
tions (g3) terms. Thus, with no other relevant scales in
the theory, the STM equations become dilation invari-
ant and symmetric under the inversion transformation
q → 1/q. Consequently, the half-off-shell channel ampli-
tudes exhibit a power-law scaling, namely, tA,B(κ) ∼
κs−1, with κ ∼ Λreg and a complex-valued exponent s,
an undetermined three-body parameter. By perform-
ing a sequence of Mellin transformations the integral

equations can be converted into a single transcendental
equation which solves for the exponent s, namely,

1 =
MΞ

2μC1

[
sin[s sin−1(a/2)]

s cos(πs/2)

]

+
3Mn

μC1C2

[
sin[s cot−1

√
4b − 1]

s cos(πs/2)

]2

,

(19)

where

C1 =
√

μ

μn(nΞ)
, and C2 =

√
Mn

2μΞ(nn)
, (20)

and μΞ(nn) = 2MnMΞ/(2Mn +MΞ) = 775.942 MeV is
the reduced mass of the Ξ− + u0 particle-dimer sys-
tem. Solving Eq. (19) yields an imaginary solution,
i.e., s = ±is∞

0 = ±i0.803391 . . .. The solution imme-
diately suggests the existence of an asymptotic UV RG
limit cycle with a discrete scaling symmetry associated
with the scale factor, λ∞ = eπ/s∞

0 = 49.919712 . . ..
This formally implies that our LO EFT manifests
Efimov effect in the unitary limit of the Ξ−nn sys-
tem. Consequently, it becomes imperative to include
scale-dependent 3BF as counterterms in the effective
Lagrangian to renormalize the ill-defined asymptotic
limit of the STM equations with two-body interac-
tion. As elucidated by power counting arguments in
the Appendix A.2, such non-derivative 3BF terms are
naturally enhanced to get promoted to LO for con-
sistency of the renormalization scheme [72,73]. Here
we must, however, mention that the asymptotic scal-
ing exponent s∞

0 = 0.803391 . . . considerably differs
from the expected value, (s∞

0 )expect ∼ 1.01, based on
the universal RG limit cycle scaling depending on the
relative three-particle mass ratios [68]. This difference
is attributed to the effect of excluding the isospin-
triplet spin-singlet (1,0) Ξ−n sub-system channel from
the STM equations whose dynamics are not directly
amenable to our low-energy EFT description.

4 Results and discussion

In this section, we present the results of our prelimi-
nary investigation of the sharp cut-off regulator (Λreg)
dependence of the Faddeev-type STM integral Eqs. (13)
and (14), at non-asymptotic low-energy scales. For
the sake of numerical evaluations, we use the particle
masses as presented in Table 1, while the S-wave scat-
tering lengths ann = −18.63 fm [110] and a

(j=1)
Ξn =

4.911 fm [60,61] constitute the principal input two-
body parameters in our LO EFT framework. In the
last section, our asymptotic analysis demonstrated the
evidence of Efimov effect at the unitary limit of the
Ξ−nn system with an RG limit cycle discrete scal-
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Fig. 3 The approximate RG limit cycle behavior of the
three-body coupling g3 for the Ξ−nn (I = 3/2, J = 1/2)
system as a function of the cut-off scale Λreg. The results are
obtained by numerically solving the STM integral Eqs. (13)
and (14). The input three-body binding energies B3 =
2.886, 4.06 MeV, are predictions from the Faddeev calcula-
tion based potential models [39,43]. The input S-wave spin–

isospin triplet Ξ−n scattering length a
(j=1)
Ξn = 4.911 fm is

provided by the recently updated ESC08c Nijmegen poten-
tial model analyses [60,61]

ing symmetry determined by the multiplicative factor
λ∞ = eπ/s∞

0 ∼ 50. With κ(1) ≡ γ
(1)
Ξn ∼ 40 MeV as the

typical momentum scale of the problem, it is natural to
expect that the next higher momentum scale appears
at κ(2) ≡ λ∞γ

(1)
Ξn ∼ 2 GeV 	 ΛH ∼ mπ, which is well

beyond the accessibility of our low-energy EFT descrip-
tion. Hence, it is likely that at the most one Efimov-
like state emerges as a plausible bound Ξ−nn hypernu-
cleus, if at all. Figure 3 shows the cut-off dependence
of the three-body contact interaction coupling g3(Λreg).
In the absence of datum to constrain the unknown cou-
pling g3, our strategy is to hypothetically assume at
the very outset that the Ξ−nn system is bound, with
ground state eigenenergy (E = −B3) coinciding with
the existing (Faddeev calculations) model predictions of
Refs. [39,41–43]. We thereby fix our benchmark range
of input values of the Ξ−nn binding energy, namely,
between B3 = 2.886 MeV taken from Ref. [43] and
B3 = 4.06 MeV taken from Ref. [39]. Notably, both
predictions rely on the same two-body input param-
eters (e.g., a

(1)
Ξn = 4.911 fm) provided by the recent

ESC08c Nijmegen model analyses [60,61].8 The figure
displays the typical quasi-periodic log-singularities of
approximate RG limit cycles for the two aforementioned

8 The predicted value B3 = 2.886 MeV obtained in Faddeev
calculation analysis of Ref. [43] resulted from considering
both the repulsive (1,0) and attractive (1,1) ΞN channels,
whereas the value B3 = 4.06 MeV obtained in the Fad-
deev analysis of Ref. [39] resulted from considering only the
latter attractive channel. Nevertheless, irrespective of these
details, we consider these predicted values as given three-
body inputs to our EFT analysis.

limiting B3 inputs. The corresponding non-asymptotic
scale factor, λn � λ∞, may be obtained by considering
the ratio of two successive cut-offs where the three-body
coupling vanishes, i.e., if g3

(
Λ
(n)
reg

)
= g3

(
Λ
(n+1)
reg

)
= 0,

then

λn =
Λ
(n+1)
reg

Λ
(n)
reg

; n = 1, 2, . . . ,∞ , (21)

where Λ
(n)
reg is the cut-off corresponding to nth zero of g3.

Table 2 displays some of the estimated non-asymptotic
scale factors λn corresponding to successive pairs of
zeros of each RG limit cycle obtained for the two lim-
iting input B3 values. In each case, the scale factor λn

is obtained close to yet less than the asymptotic value
λ∞. By progressively choosing larger pairs of the suc-
cessive zeros of g3, i.e., with n → ∞, λn is found to
converge rapidly to λ∞.

Next, in Fig. 4 we display the cut-off variation of the
binding energy B3 excluding the 3BF terms, i.e., with
g3 = 0 in the STM equations. In particular, due to the
ambiguities concerning the precise nature of the (1,1)
ΞN sub-system interactions between different existing
phenomenological analyses [34,44,49–61], we consider
here two representative scenarios with contrasting per-
spectives as elucidated below (both cases can formally
lead to the emergence of Efimov-like states):

– First, the scenario with the input positive (Ξ−n)t

scattering length, e.g., a
(j=1)
Ξn = 4.911 fm, as pre-

dicted by the updated ESC08c Nijmegen potential
model analyses of Refs. [60,61], suggests a strongly
attractive 3S1 Ξ−n sub-system commensurate with
the likely existence of a threshold bound state (D∗)
[42,43]. Consequently, in the three-body sector with
a pair of likely bound (Ξ−n)t sub-systems and a
virtual bound nn sub-system, the Ξ−nn system
assumes a halo-bound samba-configuration [116]
structure emerging from the particle-triplet-dimer
(n + (Ξ−n)t) break-up threshold at the CM energy
E = −B2. This corresponds to the solid (red) line
curve in the left panel of Fig. 4, representing the
regulator dependence of the relative binding energy
Bd = B3 − B2, for the ground (n = 0) Efimov-
like state which appears at the critical cut-off scale
Λ
(0)
crit ≈ 80 MeV.

– Second, the scenario with the input negative (Ξ−n)t

scattering length, e.g., as predicted by the two
recent SU(3) chiral EFT analyses, namely, a

(j=1)
Ξn =

−0.09 fm [56] and −1.17 fm [57], suggests a weakly
attractive 3S1 Ξ−n sub-system that is unlikely to
exhibit any two-body bound state. Consequently,
in the three-body sector with no bound two-body
sub-systems, the Ξ−nn system assumes a bound
Borromean-configuration [116] structure emerging
from the three-particle break-up threshold E = 0.
This corresponds to the two broken line curves in
the right panel of Fig. 4, representing the regulator
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Table 2 The approximate RG limit cycle behavior with the discrete scaling symmetry factor λn → λ∞, obtained by
solving the integral Eqs. (13) and (14) for the Ξ−nn (I = 3/2, J = 1/2) system

Binding energy B3 (MeV) n ∈ Z+ nth zero of g3
Λ

(n)
reg (MeV)

(n + 1)th zero of g3

Λ
(n+1)
reg (MeV)

Scale factor
λn = Λ(n+1)/Λ(n)

2.886 [43] 1 334.283 16344.134 48.893105 . . .
2 16344.134 815412.631 49.890232 . . .
3 815412.631 40704680.527 49.919119 . . .

4 40704680.527 2031965537.021 49.919702 . . .
4.06 [39] 1 465.937 22919.007 49.189069 . . .

2 22919.007 1143628.429 49.898690 . . .
3 1143628.429 57089119.370 49.919290 . . .
4 57089119.370 2849872042.899 49.919706 . . .

Here, results for n ≤ 4 display a rapid convergence of the scale parameter toward the asymptotic limit, λ∞ = 49.919712 . . ..
The input three-body binding energies B3 = 2.886, 4.06 MeV are predictions from the Faddeev calculation-based potential

models [39,43] with input S-wave Ξ−n 3S1 scattering length a
(1)
Ξn = 4.911 fm, provided by the ESC08c Nijmegen potential

model analyses [60,61]
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Fig. 4 Cut-off regulator (Λreg) dependence of the three-
body binding energy of the Ξ−nn (I = 3/2, J = 1/2)
system, obtained by solving the coupled integral Eqs. (13)
and (14), excluding the three-body contact interactions
[i.e., g3(Λreg) = 0]. Left panel: Three-body binding energy
Bd = B3 − B2, relative to the n + (Ξ−n)t particle-dimer
threshold −E = B2 = 1.47 MeV, with the input S-wave
3S1 Ξ−n scattering length a

(1)
Ξn = 4.911 fm, as predicted

by the recently updated ESC08c Nijmegen potential model
analyses [60,61]. The regulator independent predictions,
namely, B3 = 2.886 MeV and 4.06 MeV, from the Faddeev
calculation-based potential model analyses [39,43] for the

same a
(j=1)
Ξn input are displayed for comparison. Right panel:

Three-body binding energy B3 relative to the three-particle

threshold with input a
(j=1)
Ξn = −0.09 , −1.17 fm, as predicted

by the two recent SU(3) chiral EFT analyses [56,57]

dependence of B3 for the respective ground Efimov-
like states which appear above the threshold at the
critical values, Λ

(0)
crit ≈ 1940 MeV for Ref. [57] and

22470 MeV for Ref. [56].

Evidently, with such large critical cut-offs, the lat-
ter scenario most likely not be supported in our
low-energy EFT framework, vis-a-vis, the Efimov-like
ground state does not physically manifest as a bound
Ξ-hypernucleus. In contrast, the small critical cut-off
in the former scenario lies well within the EFT validity
domain, indicating an encouraging prospect for a poten-

tially feasible Ξ−nn Efimov state. In what follows, we
shall only discuss our results pertaining to the former
choice of the Ξ−nn scenario.

In the absence of the three-body contact interactions
for renormalization, our results for the three-body bind-
ing energy exhibit considerable sensitivity to the cut-
off variations. Figure 4 also compares our results with
the regulator independent predictions for the Ξ−nn
binding energy from the potential models [39,43] which
also rely on the two-body inputs from the Nijmegen
ESC08c model analyses [60,61]. We find that our scale-
dependent eigenenergies from the STM equations repro-
duce the model predictions, namely, B3 = 2.886 MeV
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Fig. 5 Variation of the three-body binding energy B3 of
the Ξ−nn (I = 3/2, J = 1/2) system as a function of input
positive values of the S-wave 3S1 Ξ−n scattering length

a
(1)
Ξn for fixed cut-offs Λreg excluding three-body interac-

tions. The horizontal shaded band represents our bench-
mark range of values of B3 considered between the limits,
B3 = 2.886 MeV and 4.06 MeV, predicted by the Faddeev
calculation based potential model analyses [39,43]. The ver-
tical dotted line represents our choice of the input scattering

length a
(1)
Ξn = 4.911 fm, as predicted by the recently updated

ESC08c Nijmegen potential model analyses [60,61]

of Ref. [43] and B3 = 4.06 MeV of Ref. [39] at the
cut-off scales Λreg ≈ 334 MeV and Λreg ≈ 465 MeV
respectively. The same result is demonstrated more con-
spicuously in Fig. 5 where we plot the variation of the
eigenenergy B3 by (hypothetically) varying the scat-
tering length a

(1)
Ξn > 0 for several fixed cut-offs Λreg

excluding 3BF terms. The chosen potential model pre-
dicted range, 2.886 MeV � B3 � 4.06 MeV, as demar-
cated by the horizontal band in the figure, is well con-
strained within our regulator range, 334 MeV � Λreg �
465 MeV. In particular, our summary Table 3 dis-
plays the Λreg values at which our EFT solutions repro-
duce several more of the existing Faddeev calculation
based model predictions for the Ξ−nn binding energy
[39,41–43]. Although the above regulator range appar-
ently seems well beyond the expected π/EFT hard scale
ΛH ∼ mπ, the model results may still be accommo-
dated within the framework of a modified EFT having
an extended domain of validity. Consequently, such a
modified halo π/EFT should have a larger breakdown
scale, say, Λ̃H � 500 MeV, where interactions between
the Ξ-hyperon and neutron are possibly dominated by
two-pion (ππ) or σ-meson exchange mechanisms. We
note that one-pion-exchanges are typically ruled out by
isospin invariance in strong processes.

Finally, we give a simple demonstration of pre-
dictability of our EFT framework. To this end, we
attempt a naive estimation of the Ξ−nn (I = 3/2, J =
1/2) three-body scattering length, or more precisely the
n − (Ξ−n)t elastic S-wave scattering length a3, by uti-
lizing the potential model predicted three-body binding
energy information from Refs. [39,41–43]. Here we need

to solve our coupled STM integral Eqs. (13) and (14)
in the kinematical scattering domain. Subsequently, the
three-body scattering length is obtained by considering
the on-shell threshold limit of the renormalized elas-
tic scattering amplitude t

(R)
A [cf. Eq. (18)]. Solving the

STM equations with the 3BF terms excluded (i.e., with
g3 = 0) leads to strong regulator dependence with the
resulting amplitude displaying quasi-periodic singular-
ities akin to the limit cycle behavior (cf. left panel of
Fig. 6). Such divergences are renormalized by introduc-
ing the 3BF counterterms with the running coupling
g3(Λreg) already fixed using the RG limit cycles corre-
sponding to model predicted B3 inputs (cf. Fig. 3).

Figure 6 (right panel) depicts the regulator depen-
dence of the three-body scattering length a3(Λreg)
renormalized by the 3BF terms. As mentioned, the
scale dependence of the 3BF coupling g3(Λreg) is fixed
using the RG limit cycles corresponding to the poten-
tial model inputs for B3 [39,43]. The renormalized
plots still exhibit a residual regulator dependence stem-
ming from the low cut-off scale sensitivity of the coun-
terterms owing to the decoupling of most underly-
ing physics. However, for sufficiently large cut-off, say
Λreg � 400 MeV, most of the underlying low-energy
three-body dynamics are well captured in our solutions
to the integral equations. Consequently, renormalizing
a3 using the counterterms becomes more effective at
large Λreg leading to a well-defined asymptotic limit:

a∞
3 = lim

Λreg→∞
a3(Λreg) . (22)

Hence, for each B3 input a constant value a∞
3 is

obtained, as demanded by renormalization invariance,
representing our predicted three-body scattering length.
In particular, our limiting benchmark inputs, B3 =
2.886 MeV and 4.06 MeV, lead to a∞

3 = 4.860 fm
and 2.573 fm respectively. In addition, our summary
Table 3 displays some intermediate results correspond-
ing to two other existing model predictions, namely,
B3 = 3.89 MeV and 3.00 MeV, from the Faddeev cal-
culations analyses of Refs. [41,42]. Here we point out
that for possible negative choice of the 3S1 Ξ−n scat-
tering length, such as the two recent SU(3) chiral EFT
predictions, namely, a

(1)
Ξn = −0.09, −1.17 fm [56,57],

the (Ξ−n)t sub-system is unbound with no kinemati-
cal particle-dimer scattering domain below the three-
particle break-up threshold, i.e., E < 0.

Our predicted range of three-body scattering lengths
represents a naive ballpark estimate based on the
induced universal correlations which are expected to
manifest in a halo-bound Ξ−nn system, albeit approx-
imations considered in the analysis. To elucidate one
of the inherent universal features, it is worth demon-
strating the B3 versus a∞

3 correlations corresponding
to our preferred choice of the input Ξ−n scattering
length, namely, a

(1)
Ξn = 4.911 fm [60,61]. This yields the

well-known Phillips line correlation plot for the Ξ−nn
system, as depicted in Fig. 7. The curve diverges as
B3 → B2 = 1.47 MeV, the n + (Ξ−n)t particle-triplet-
dimer threshold, whenever an Efimov-like bound state
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Table 3 Summary of our EFT results with three different input S-wave 3S1 Ξ−n scattering lengths, namely, a
(1)
Ξn =

4.911 fm, taken from the updated ESC08c Nijmegen model analyses [60,61], a
(1)
Ξn = −0.09 fm, taken from the relativistic

LO chiral EFT analysis [56], and a
(1)
Ξn = −1.17 fm, taken from the NLO chiral EFT-based non-relativistic G-matrix analysis

[57]

Scattering length

a
(1)
Ξn(fm)

Binding energy
B3 (MeV)

Cut-off
Λ

(g3=0)
reg (MeV)

Scattering length
a∞
3 (fm)

4.911 (Nijmegen model) [60,61] 2.886 [43] 334 4.860
2.89 [41] 335 4.849
3.00 [42] 348 4.562
4.06 [39] 465 2.573

−0.09 (Relativistic Chiral EFT) [56] 2.886 [43] 22590 –
2.89 [41] 22591 –
3.00 [42] 22595 –
4.06 [39] 22633 –

−1.17 (G-matrix Chiral EFT) [57] 2.886 [43] 2333 –
2.89 [41] 2334 –
3.00 [42] 2345 –
4.06 [39] 2440 –

Displayed are the regulator scales Λ
(g3=0)
reg at which the Efimov ground state eigenenergy (by excluding g3) reproduces each

of several existing potential model predictions on the three-body binding energies B3 of the Ξ−nn system [39,41–43]. Also
summarized are our predicted three-body scattering length (a∞

3 ) values corresponding to each model input for B3, with

the three-body coupling g3(Λreg) determined by the respective RG limit cycles. The results corresponding to the a
(1)
Ξn < 0

scenario have no kinematical particle-dimer scattering domain for E < 0 and the three-body system is likely to remain

unbound. In contrast, the a
(1)
Ξn > 0 scenario shows encouraging prospect for a physically realizable Ξ−nn Efimov state
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Fig. 6 Regulator (Λreg) dependence of the n − (Ξ−n)t

elastic S-wave three-body scattering length a3, obtained by
solving the coupled integral Eqs. (13) and (14) with input
S-wave scattering length aΞn = 4.911 fm, taken from the
updated Nijmegen model analyses [60,61]. Left panel: The
unrenormalized scattering length a3 → a0

3 excluding the
three-body coupling, i.e., g3 = 0. Right panel: The renor-

malized scattering length including the three-body coupling
g3 �= 0. The scale dependence of g3(Λreg) is determined using
the respective RG limit cycles (cf. Fig. 3) corresponding to
the two three-body inputs, B3 = 2.886 MeV and 4.06 MeV,
taken from the Faddeev calculation model analyses [39,43].
Our predictions, namely, a∞

3 = 4.860 fm and 2.573 fm, cor-
respond to the respective asymptotic limits

emerges at zero-energy threshold (i.e., with Bd = B3 −
B2 = 0). A second virtual bound three-body state with
large negative value of a∞

3 is expected to emerge around
B

(virt)
3 = eπ/s0B2 ≈ 70 MeV, where the Phillips line

diverges again. However, the latter state lies outside the

domain of validity of standard π/EFT with an estimated
breakdown energy scale −Ebreak ∼ 14 MeV, as deter-
mined by the three-body binding momentum of the
order of the pion mass, i.e., γ3 =

√
−2μn(nΞ)Ebreak ∼

mπ. The four data points displayed in the figure corre-
spond to the B3 predictions from the potential model
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Fig. 7 Phillips line correlation for the (I = 3/2, J = 1/2)
Ξ−nn system corresponding to the input 3S1 Ξ−n scatter-

ing length a
(1)
Ξn = 4.911 fm, as predicted by the updated

ESC08c Nijmegen model analyses [60,61]. The data points
correspond to the input values of the three-body bind-
ing energy B3 = 2.886 MeV, 2.89 MeV, 3.00 MeV and
4.06 MeV, predicted by the potential model analyses [39,41–
43]. The vertical dotted line on the left represents the n +
(Ξ−n)t particle-dimer threshold at B3 = B2 = 1.47 MeV,
while the hashed region, B3 � 14 MeV, represents the
expected breakdown region of our halo EFT description

analyses [39,41–43], all of which rely on the same two-
body input from the Nijmegen model analyses, namely,
a
(1)
Ξn = 4.911 fm [60,61] (cf. Table 3). The fact that

the Phillips plot evidently reflects certain degree of
compatibility of the potential model inputs with our
EFT description is an important qualitative finding of
this work. In the event of possible future availability
of phenomenological three-body data, a more rigorous
NLO EFT analysis (explicitly including effective range
terms) may be helpful to substantiate such connections
on a better footing.

5 Summary and conclusions

A knowledge of few-body dynamics in light (S = −2)
Ξ-hypernuclei can serve as an essential input to the
neutron star EoS for possible explanation of their sta-
bilities with masses � 2M�. In this regard, the Ξ−nn

(I = 3/2, JP = 1/2+) three-body system is one of the
simplest systems to investigate the nature of the under-
lying 3BF. The reason being the stability of this channel
against strong decays and the absence of Coulomb inter-
actions. However, the impracticability of performing Ξ-
hyperon scattering experiments and the lack of empiri-
cal data thereof have so far eluded rigorous determina-
tion of essential few-body observables. Thus, a general
qualitative insight relying solely on low-energy univer-
sality is needed to illuminate specific characteristics of
the underlying interactions that may reflect the emer-
gence of exotic halo-bound states.

Here we used the framework of leading order halo
π/EFT in a speculative study to explore the feasibil-
ity that the Ξ−nn system is Efimov-bound. Notably,
the presence of the predominantly repulsive 1S0 Ξ−n
sub-system channel potentially leads to the generation
of anomalously deep two- and three-body unphysical
bound states beyond the breakdown scale of the theory.
In our current simplistic approach, as a first approxima-
tion, such unphysical contributions are avoided on an
ad hoc basis by explicitly decoupling this channel in the
construction of our integral equations. Our asymptotic
analysis of the Ξ−nn integral equations revealed the
formal appearance of Efimov states in the unitary limit
associated with an RG limit cycle with a discrete scal-
ing factor, s∞

0 = 0.803391 . . .. The factor, however, dif-
fers from the expected value (s∞

0 )expect ≈ 1.01, as gov-
erned by the universality of three-particle mass ratios
[68], owing to the decoupling of the 1S0 Ξ−n channel.
Such scaling differences can certainly influence various
numerical estimates in the low-energy non-asymptotic
domain, but the general qualitative features are likely
to remain unchanged with the inclusion of both the spin
channels.9

Evidently, the unavailability of empirical three-body
datum to fix the scale dependence of the three-body
coupling g3(Λreg) is a major drawback of our approach
which prevents robust predictions. Thus, we relied
on several existing Faddeev calculation based poten-
tial model analyses [39,41–43] for the input three-
body binding energy B3 in the reasonable benchmark
range, 2.886−4.06 MeV. Moreover, the π/EFT formal-
ism requires the two-body inputs, namely, the 1S0 nn
scattering length ann = −18.63 [112], and the 3S1 Ξ−n

scattering length a
(1)
Ξn. For the choice of the latter, we

considered two contrasting scenarios, given the cur-
rent ambiguities in regard to the underlying nature of
the interactions in spin–isospin triplet (1,1) Ξ−n chan-
nel. In the first scenario we considered the prediction,
a
(1)
Ξn = 4.911 fm, from the recently updated Nijmegen

model analyses [60,61], which is based on the notion of
a strongly attractive likely bound (Ξ−n)t sub-system.
In the second scenario we considered the predictions of
two contemporary SU(3) chiral EFT analyses, namely,
a
(1)
Ξn = −0.09 fm [56], based on a relativistic calculation,

and a
(1)
Ξn = −1.17 fm [57], based on a non-relativistic

in-medium G-matrix calculation, both concurring on a
moderately attractive nature of the (Ξ−n)t sub-system
channel. With both the chiral EFT inputs, our investi-
gations hinted at a predominantly unbound Ξ−nn sys-
tem. In contrast with the input, a

(1)
Ξn = 4.911 fm, the

first scenario indicated favourable prospects for a phys-
ically realizable Ξ−nn Efimov-like ground, with the
proviso that our π/EFT formalism could be extended
(with Λ̃H � 500 MeV) to accommodate interactions

9 In either cases we expect to find robust three-body uni-
versal features, such as the quasi-periodic RG limit cycle
behavior of the three-body coupling and the induced Phillips
line correlations.
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mediated by ππ or σ-meson exchanges. Specifically, our
eigensolutions (B3) to the integral equations (excluding
the 3BF terms) could reproduce the benchmark range
of model inputs for the cut-off regulator values in the
range Λreg ≈ 335−464 MeV.

Finally, as a simple demonstration of the predictive
power of our EFT formalism we evaluated the three-
body S-wave n − (Ξ−n)t scattering length to lie in the
range, a∞

3 ≈ 2.6−4.9 fm, corresponding to the same
aforementioned benchmark range of model inputs for
B3. Given the very speculatory nature of the present
study and the indeterminable three-body scattering
length from present day experiments, the numerical
figures for a∞

3 are by all means naive ballpark esti-
mates. Nevertheless, they are indicative of the emer-
gent universal features of a prospective Efimov-bound
Ξ−nn system which induce three-body correlations like
the Phillips line. Such universal three-body features are
robust against ambiguities in the two-body description
given that the three-body datum is reliable. Conse-
quently, our obtained results reasonably guesstimate
similar qualitative results expected from more rigor-
ous π/EFT-based future investigations with systematic
inclusion of both Ξ−n sub-system spin channels. Need-
less to emphasize that our conclusions tacitly relied on
the presumed halo-bound structure of the Ξ−nn sys-
tem, viz. a strongly attractive and bound 3S1 Ξ−n sub-
system and a predominantly weak (attractive or repul-
sive) 1S0 Ξ−n sub-system with small scattering length.

A more systematic (realistic) approach requires a
modification of the dibaryon formalism of the π/EFT
power counting, as well as including subleading order
range effects. However, such a modified EFT analysis
is beyond the scope of the present work and must be
certainly explored as a possible future endeavor when
more data will become available from upcoming exper-
iments, such as ALICE [47] and FAIR [48]. Moreover, a
next-to-leading order analysis would involve additional
unknown three-body parameters in the theory thereby
requiring more empirical inputs which are currently
unprocurable.
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A Efimov physics in low-energy EFT

For the sake of pedagogical completeness, we highlight
aspects of the halo EFT analysis of two- and three-body
universality responsible for formation of exotic Efimov-
like states in fine-tuned three-body systems. Universal-
ity in this context refers to the property of distinct sepa-
ration of scales, namely, similarities in long-range (low-
energy) characteristics of a large class of multi-particle
systems which are insensitive to the short-distance
(high-energy) details. The halo-bound systems typi-

cally satisfying this property are naturally suited for
a low-energy EFT description. We elucidate the perti-
nent EFT framework using the simplest system of three
identical interacting spinless bosons (B−B−B), where
additional involvement of spin and isospin degrees of
freedom are absent. In particular, we consider a zero-
range “toy-model” (ZRM) scenario (i.e., with two-body
interaction range r0 → 0) which motivates the general
formalism of a leading order EFT analysis implemented
in this paper. The foundations to this framework have
been extensively discussed in the context of a large col-
lection of pionless EFT (π/EFT) works in the literature
(see, e.g., [2,68,72–83] and references therein). For the
ensuing discussions below, we closely follow the reviews
works [68,83,117].

A.1 Two-body sector

The two-body dynamics stems from the most gen-
eral non-relativistic effective Lagrangian constituting
all possible local short-range S-wave two-body interac-
tions of the generic form [75–79]

L
(KSW)
2 = B†

[
i∂t +

∇2

2mB

]
B − C0

4
(
B†B

)2

−C2

4
[
∇(B†B)

]2
+ · · · , (23)

where the ellipses denote higher order derivative terms
and C0,2,... are two-body coupling constants. These
couplings may be fixed from the empirical knowledge
of the two-body parameters, such as those occurring
in the well-known Bethe’s Effective Range Expansion
(ERE) formula for the S-wave scattering phase-shift δ0,
namely,

k cot δ0 = − 1
a0

+
r0
2

k2 + O(k4) , (24)

with k being the center-of-mass scattering momentum
of the two-boson (B − B) system. Especially, in the
vicinity of shallow two-body (real or virtual) bound
states these couplings are subject to an unnatural scal-
ing with the magnitude of the S-wave scattering length
(a0) becoming unusually large in comparison to the
short-distance effective range (r0) of the interactions.
In this case the theory becomes approximately confor-
mally invariant, leading to a peculiar EFT governed
by a non-trivial RG fixed point of the scale-dependent
couplings [82].

Consider Q to be a generic small momentum asso-
ciated with a certain emergent low-energy scale γ0 of
the two-body system, and Mhi as the UV cut-off or
the breakdown scale of the theory associated with the
unresolved “heavy” pion mass mπ. Then, the unnatu-
ral scaling scenario implies k ∼ Q ∼ γ0 ∼ 1/|a0| �
Mhi ∼ 1/r0. This is distinguished from the natural
scenario where the interaction range r0 ∼ 1/mπ solely
accounts for all relevant scales such that k ∼ Q ∼ γ0 ∼
1/|a0| ∼ Mhi ∼ 1/r0. Such unnatural two-body systems

123



Eur. Phys. J. Spec. Top. (2021) 230:579–601 593

+++ · · ·=

= +

T
(0)
2

T
(0)
2

B

B B

B

Fig. 8 The leading order two-body S-wave scattering amplitude T
(0)
2 , obtained by resumming of the “bubble” graphs

containing the C0 interaction. It is compactly represented as a Lippmann–Schwinger integral equation, T̂
(0)
2 = V̂2+V̂2Ĝ0T̂

(0)
2

are ubiquitous in nuclear physics, say, in the case of two
neutrons, ann = −18.63 fm 	 rnn ∼ 1/mπ ∼ 0.5 fm. In
all these manifestly fine-tuned scenarios near-threshold
(shallow) bound dimer states emerge by critically tun-
ing the couplings according to

C2r ∼ 1
2μBMr

hiQ
r+1

∀ r ∈ Z+ (25)

with μB = mB/2 being the reduced mass of the two-
boson (B − B) system. This kind of two-body contact
interactions scaling rule is termed as the Q-counting
[76–80]. Based on the Q-counting different components
of Feynman amplitudes scale as follows:

– the non-relativistic boson propagator, namely,

iSB(p) =
i

p0 − p2

2mB
+ iη

, (26)

scales as ∼ mB/Q2 ∼ O(Q−2),
– the loop integral scales as ∼ O(Q5), 10

– the interaction vertices C2r∇2r scale as ∼ O(Qr−1).

Accordingly, all two-body Feynman graphs contribut-
ing up to a fixed order in the counting, say O(QN ), with
L loops and V2r interaction vertices with 2r derivatives
scale as [117]

T
(N)
2 =

N∑
ν=−1

T
(ν)
2 , T

(ν)
2 ∼ O(Qν) ;

ν = 3L + 2 +
∑
r=0

(r − 3)V2r ≥ −1 . (27)

Thus, for example, at low energies E ∼ 1/a2
0, restrict-

ing to leading order in Q-counting (i.e., for N = −1),
an infinite number of loops with only C0 interactions
are needed to be non-perturbatively resummed. Such an
infinite sequence of “bubble diagrams”, all contributing

10 This is easily seen as follows:

∫
d4q ∼

∫
dq0

∫
d3q ∼ Q2

2μB
· Q3 =

Q5

2μB
.

at the same order in the Q-counting (cf. Fig. 8), yields
a shallow two-body bound state. However, at the next
order (i.e., for N = 0) the C2 interactions contribute
to the dynamics. Being 1/Mhi suppressed compared to
the leading C0 interactions, the C2 constitutes a pertur-
bative correction. Such a “bubble resummation” with
only the C0 interaction leads to a Lippmann–Schwinger
series for the two-body scattering amplitude T

(0)
2 which

may be expressed as an integral equation:

T
(0)
2 (E) = −C0 − 1

2
C0

∫
d4q

(2π)4i
i

q0 − q2/2mB + iη

× i

E − q0 − q2/2mB + iη
T

(0)
2 (E) , (28)

where q0, q are temporal and spatial parts of loop four-
momentum q. The integral equation may be regularized
using a sharp momentum cut-off Λreg and subsequently
solving to obtain

T
(0)
2 (E, Λreg) = −C0

[
1 +

μBC0

2π2

(
Λreg − π

2

√
−2μBE − iη

)]−1

.

(29)

The renormalization of the amplitude T
(0)
2 (E) can be

implemented by matching to the two-body S-wave scat-
tering length using the relation

a0 = −μB

4π
lim
k→0

T
(0)
2 (E = k2/2μB) , (30)

leading to the regulator-dependent result for the cou-
pling C0, namely,

C0(Λreg) =
4πa0

μB

(
1 − 2a0Λreg

π

)−1

, (31)

such that the renormalized scattering amplitude is
given by

T2(E) =
4π

μB

1
−1/a0 +

√
−2μBE − iη

. (32)

Auxiliary field formalism In the context of studying
three-body dynamics with two-body bound subsystems
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with large scattering lengths, it is convenient to intro-
duce auxiliary dimer fields or dimerons (d). Ideally, the
bare auxiliary fields do not propagate and even have a
“wrong sign” in the kinetic terms (see following two-
body Lagrangian). Hence, the content of the original
theory remains unchanged by the addition of such ghost
fields “by hand”. For the present case of the spinless
three-boson system (B − B − B), an alternative two-
body Lagrangian in terms of the dimeron fields can be
constructed as [72–74],

L
(BHvK)
2 = B†

[
i∂t +

∇2

2mB

]
B − d†

[
i∂t +

∇2

4mB
− Δd

]
d

−y0

(
d†B2 + B†2d

)
+ · · · . (33)

In effect, the dimerons are essentially employed to can-
cel the quadratic terms such as (B†B)2 in Eq. (23),
so that all interactions between the B fields are now
mediated via the dimer exchange process, with y0 as
the corresponding interaction coupling. The quantity
Δd is a free parameter related to the binding energy
of the dimeron d such that the bare or tree-level
dimeron propagator is the simple non-dynamical term
i/Δd. Quantum loop corrections, however, allow the
dimerons to propagator. It is notable that by virtue of
reparametrization invariance of the theory, the above
Lagrangian can be shown to be equivalent to the origi-
nal two-body Lagrangian, Eq. (23).

In the context of halo EFT where the dimeron formal-
ism has been extensively used, the Q-counting scheme
has been extended to include the scaling,

y2
0 ∼ Mhi

4μ2
B

∼ O(1) and Δd ∼ MhiQ

2μB
∼ O(Q).

(34)

Consequently, using field re-definitions in trading away
the time derivatives in favor of space derivatives, the
kinetic term becomes sub-leading compared to term
proportional to Δd. In that case the Q-counting leads to
an infinite sequence of Feynman graphs (similar to the
ones displayed in Fig. 1), each contributing at the same
order as the static dimeron propagator iΔ−1

d ∼ O(Q−1).
Consequently, they must all be resummed at the lead-
ing order to yield the full dynamical “dressed” dimeron
propagator:

iΔ(0)(p0,p) =
iπ

y2
0μB

[
πΔd

y2
0μB

+
2
π

Λreg

−
√

−2μBp0 + p2/4 − iη
]−1

. (35)

We note its similarity to the resummed two-body scat-
tering amplitude, Eq. (29), with the two-body center-
of-mass kinetic energy E → p0 − p2/(8μB), where
p0(p) is kinetic energy (momentum) of the dimeron.
Upon renormalization using Eq. (31) and the leading
order relation among the two-body parameters, namely,

C0 → 4y2
0/Δd, the renormalized dressed dimeron prop-

agator becomes

iΔ(p0,p) = − iπ

y20μB

[
− 1

a0
+

√
−2μBp0 + p2/4 − iη

]−1

.

(36)

If scattering length a0 > 0, then the above dimeron
propagator has a pole at p0 = −1/(2μBa2

0)+p2/(8μB).
For low-energy threshold processes, p → 0 and p0 →
−B2 = −1/(2μBa2

0), in which case the renormalized
dimeron propagator has a residue (wave function renor-
malization constant) at the pole given by

Zd =
[
dΔ−1

d (p0,0)
dp0

]−1

p0=−B2

=
2π

y2
0μ

2
Ba0

. (37)

A.2 Three-body sector

Here we describe the dynamics associated with S-wave
scattering of the three-boson system depicted in Fig. 9.
Excluding the genuine three-body interaction (3BF)
diagrams shown in the second row, the scattering dia-
grams in the first row constitute only the two-body
interaction y0, and thus described by same leading
order EFT Lagrangian, Eq. (33). Under the Q-counting
scheme, a simple investigation shows that these dia-
grams contribute at the same order. For example, the
tree level diagram in first row can be considered as a
one-boson (B) exchange process between the incom-
ing and outgoing dimerons (d). Since the tree diagram
containing two dBB vertices (y2

0 ∼ Mhi/4μ2
B) and

one B propagator (iSB ∼ mB/Q2), this amounts to
a net contribution of order ∼ Mhi/(2μBQ2). The adja-
cent one-loop re-scattering diagram contains two addi-
tional dBB vertices, two additional B propagators, a
dimeron propagator (iΔ ∼ 2μB/MhiQ), and a loop
integral (∼ Q5/2μB). This implies that the one-loop
diagram also scales as ∼ Mhi/(2μBQ2), like the tree
graph. In fact, inspection shows that every re-scattering
graph in the first row precisely contributes at the same
leading order, necessitating a resummation of all such
graphs. Besides, one also requires the infinite sequence
of 3BF diagrams (second row) which may be shown
to contribute at the leading order, and hence needed
to be resummed as well. The power counting for such
graphs is described later in this section. However, unlike
the resummation in the two-body sector [cf. Eq. (28)]
which amounts to a simple summation of a geomet-
ric series, the same is impracticable in the three-body
sector. In contrast, here we must incorporate a non-
perturbative resummation in the form of a “one-loop”
Fredholm integral equation (third row of Fig. 9) which
is solved self-consistently for the scattering ampli-
tude T

(0)
3 using numerical methods. It is notable that
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T
(0)
3

T
(0)
3 T

(0)
3

=

=

+

+

+

+ +

+ · · ·

+ + + + · · ·

d d

B B

Fig. 9 Diagrammatic representation of the three-body
integral equation for the spinless three-boson S-wave scat-

tering amplitude T
(0)
3 . In the Q-counting scheme, all graphs

in the first line contribute as ∼ Mhi/(2μBQ2), while those
in the second line with three-body contact interactions con-
tribute as ∼ 1/(2μBQ4). The single line denotes a boson
(B) propagator, the double line denotes a static dimeron (d)

propagator, and the double line with an oval blob represents
a fully dressed (dynamical) renormalized dimeron propaga-
tor. Finally, the dark filled circle represents an insertion of
a leading order three-body contact interaction

the standard Faddeev equations11are a set of coupled
integro–differential equations in the co-ordinate rep-
resentation. They are numerically solved using finite
range model potentials with well-defined kernels in the
Hilbert-Schmidt class. Our ZRM integral equations in
contrast have an ill-defined kernel stemming from the
non-self-adjoint character of the underlying three-body
Hamiltonian [84,85,119,120]. Such “Faddeev-like” zero
range three-body integral equations in the momen-
tum representation are termed as the STM or the so-
called Skornyakov–Ter–Martirosyan equations [69–71].
Despite the ambiguities in their solution, the STM

11 The Faddeev equations, as distinct from the three-
particle Schrödinger equation, is a set of three coupled
channel equations tailor-made to exploit configurations con-
sisting of a two-body cluster that is well-separated from
the third particle, leading to considerable simplifications in
the solution. Moreover, at low-energies ignoring the sub-
system angular momentum follows more naturally than in
Schrödiger equation. With considerable simplifications they
reduce to a single integro-differential equation for the three-
boson wavefunction ψ(R, α), with hyperradius R and generic
Delves’ hyperangle α ≡ αk , defined by R = 1

2
r2ij+

2
3
r2k,ij and

αk = arctan
(√

3rij/2rk,ij

)
respectively, in Jacobi coordi-

nates, where (i, j, k) is a cyclic permutation of (1, 2, 3). This
leads to the so-called low-energy Faddeev equation [68,118]:

(TR + Tα − E)ψ(R, α) = −V (
√

2R sinα)

[
ψ(R, α)

+
4√
3

∫ π
2 −| π

6 −α|

| π
3 −α|

sin(2α′)
sin(2α)

ψ(R, α′)dα′
]

,

with TR = − 1

4μB

[
∂2

∂R2
+

5

R

∂

∂R

]
,

Tα = − 1

4μBR2

[
∂2

∂α2
+ 4cot(2α)

∂

∂α

]
.

equations have the primary advantage of fitting natu-
rally into an EFT framework based on a diagrammatic
or Lagrangian-based approach. This contrasts with the
inherently non-perturbative Hamiltonian-based poten-
tial model approach for solving three-body Faddeev
equations.

The biggest advantage, however, lies in the manner
of introducing 3BF which is quite naturally achieved in
the STM framework without the requirement of ad hoc
three-body potentials. The ambiguity in the Hamilto-
nian is solved by cutting off the effective interactions
at short-distances. This is accomplished in the EFT
by introducing, e.g., a sharp momentum cut-off Λreg

in the integral equations which becomes a free param-
eter of the theory. This regularization method implic-
itly necessitates the introduction of cut-off-dependent
three-body couplings needed to renormalize the artifi-
cial cut-off dependence of the STM equations. To this
end, we introduce additional non-derivatively coupled
three-body interactions in the effective Lagrangian, for
instance,

L
(KSW)
3 =

D0(Λreg)

36
(B†B)3 + · · · , (standard form)

L
(BHvK)
3 = − d0(Λreg)

(
d†d

) (
B†B

)
+ · · · , (dimerized form)

(38)

with the contact interaction couplings scaling unnat-
urally at the leading order, namely, D0 ∼ d0 ∼
1/(2μBQ4). In this case the B −B −B system exhibits
three-body (Efimov) universality.12 The values of the
3BF couplings can be fixed using additional three-body

12 For “natural” systems without three-body universality,
the scaling of the 3BF couplings are instead governed by
naive dimensional analysis (NDA), D0 ∼ d0 ∼ 1/(2μBM4

hi).
Thus, the corresponding 3BF terms are considered sublead-
ing in the EFT Lagrangian.
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datum (e.g., three-body binding energy) in realistic sit-
uations. The ellipses denote derivative 3BF terms which
are naturally subleading. Figure 9 (second row) dis-
plays all re-scattering diagrams with insertions of lead-
ing order three-body contact interactions. These graphs
are similarly resummed into an integral equation that
yields contributions of order ∼ 1/(2μBQ4), and hence
equally important as the set of graphs in the first row
with two-body interactions only. Together they consti-
tute all possible non-perturbative contributions to the
scattering amplitude at leading order.

Assuming the manifestation of Efimov universality,
the natural choice of the reference frame is the boson-
dimeron (B −d) center-of-mass (CM), with the relative
external momenta being −k,k (−p,p) for the incoming
(outgoing) boson and dimeron respectively. With the
total three-body CM kinetic energy as E, their ener-
gies are taken as EA, E − EA (E′

A, E − E′
A) for the

incoming (outgoing) particles. Using standard Feynman
rules which follow from the EFT Lagrangians, Eqs. (33)
and (38), we easily obtain the following Faddeev-like
STM integral equation for the unrenormalized scatter-
ing amplitude T

(0)
3 corresponding to the second line of

Fig. 9, namely,

T
(0)
3 (p,k;E) = −

[
4y2

0

E − E′
A − EA − (p+ k)2/2mB + iη

+d0(Λreg)

]

+
iπ

μBy2
0

∫ Λreg d4q

(2π)4

[
4y2

0

E − E′
A − q0 − (p+ q)2/2mB + iη

+d0(Λreg)

]

× 1

q0 − q2/2mB + iη

T
(0)
3 (q,k;E)

1/a0 −
√

−2μB(E − q0) + q2/4 − iη
,

(39)

where q0(q) is the temporal (spatial) part of loop
momentum with the three-momentum integral cut-off
in the UV region at |q| = Λreg. Using Cauchy’s residue
theorem, the integral over q0 can be evaluated by choos-
ing the pole, q0 = q2/2mB , making one of the boson
propagators inside the loop integration on-shell. Fur-
ther simplifications is achieved by choosing either one
or both the initial and final states on-shell. For instance,
with the full on-shell choice EA = k2/2mB and E′

A =
p2/2mB , we obtain

T
(0)
3 (p,k;E) = −4mBy

2
0

[
1

mBE − (p2 + p · k + k2) + iη

+
d0(Λreg)

4mBy2
0

]

− 8π

∫ Λreg d3q

(2π)3

[
1

mBE − (p2 + p · q + q2) + iη

+
d0(Λreg)

4mBy2
0

]

× T
(0)
3 (q,k;E)

−1/a0 +
√

−2μBE + 3q2/4 − iη
. (40)

Especially in the context of S-wave scattering process,
we consider the projection of the unrenormalized ampli-
tude onto the l = 0 partial wave renormalized ampli-
tude given by

T3 (p, k;E) ≡ Zd

2

∫ 1

−1

d (cos θp̂·q̂) T
(0)
3 (p,k;E) ,

(41)

such that boson-dimeron elastic scattering amplitude
is obtained by evaluating the renormalized scattering
amplitude at the on-shell point, p = |p| = k = |k|
and E = −B2 +3k2/(4mB), with dimer binding energy
B2 = 1/(2μBa2

0). Furthermore, in the threshold limit
one obtains the three-body scattering length as

a
(Bd)
3 = −mB

3π
lim
k→0

T
(0)
3

(
k, k;

3k2

4mB
− B2

)
. (42)

It is conventional to re-define the dimension-full three-
body coupling d0(Λreg) in terms of a dimensionless cou-
pling H(Λreg) such that T

(0)
3 (p, k;E) has a well-defined

asymptotic behavior as Λreg → ∞, namely,

d0(Λreg) = −4mBy2
0

Λ2
reg

H(Λreg) . (43)

This leads to the 3BF renormalized STM integral equa-
tion for the three-boson system, originally derived in
Ref. [74]:

T3(p, k;E) =
8π

μBa0

[
1

2pk
ln

(
p2 + k2 + pk − mBE − iη

p2 + k2 − pk − mBE − iη

)

+
H(Λreg)

Λ2

]

+
4

π

∫ Λreg

0
dq q

2
[

1

2pq
ln

(
p2 + q2 + pq − mBE − iη

p2 + q2 − pq − mBE − iη

)

+
H(Λreg)

Λ2

]

× T3(q, k;E)

−1/a0 +
√

3q2/4 − μBE − iη
. (44)

The above equation must be numerically solved to
obtain the three-body eigenenergies and scattering
lengths in the respective kinematical domains.13 In
this case the STM equation is one-dimensional in the
sense that B − d scattering involves a single chan-
nel elastic process B + d → B + d. In realistic situ-
ations with non-zero spin–isospin degrees of freedom,

13 It must be understood that the three-body bound states
are obtained in the negative energy kinematical region,
E < Ed, namely below the boson-dimeron breakup thresh-
old Ed ∼ −B2. While, the B − d scattering solutions cor-
respond to energies, Ed ≤ E < 0, namely, the kinemati-
cal region in between the boson-dimeron and three-boson
breakup thresholds.
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the processes involve coupled elastic and inelastic chan-
nels, thereby requiring multi-dimensional representa-
tions. For instance, the Ξ−nn (I = 3/2, JP = 1/2+)
system dealt in this paper involves a system of three
coupled-channel scattering processes: the elastic chan-
nel n + (Ξ−n)t → n + (Ξ−n)t, and the two inelastic
channels n+(Ξ−n)t → n+(Ξ−n)s and n+(Ξ−n)t →
Ξ− + (nn)s, where the subscripts represent the sub-
system spins. However, for the sake of simplicity the
former inelastic channel involving the spin-singlet dimer
(Ξ−n)s is assumed to be decoupled (see text). Conse-
quently, we deal with a reduced system of two coupled-
channel integral equation in terms of the half-on-shell
amplitudes t

(R)
A,B (cf. Appendix B). Moreover, additional

re-coupling coefficients are necessary for projecting each
of the scattering diagrams onto the correct spin–isospin
channels.

A.3 RG limit cycle

With sufficiently large B − B scattering length, i.e.,
a0 → ∞, and very short range two-body interactions,
r0 → 0, three-body or Efimov universality implies the
existence of a tower of arbitrarily-shallow three-body
bound states close to the unitary or resonant limit
as Λreg → ∞. This remarkable discovery is credited
to Vitaly Efimov [86–88], who in 1970 demonstrated
that the system of three identical bosons interacting
via attractive (i.e, with a0 > 0) inverse square channel
potential V ∼ −

(
s20 + 1/4

)
/μBR2 becomes resonant.

By solving the Faddeev equations using the well-known
hyperspherical representation in coordinate space with
suitable short-distance adiabatic boundary conditions,
a geometric sequence of three-particle level states (Efi-
mov states) was obtained. The corresponding binding
energies B

(n)
3 were found to lie approximately within

the interval,

1
2μBa2

0

� B
(n)
3

n→∞−→ κ2
∗

2μB

(
e−2π/s0

)(n−n∗)
� 1

2μBr20
,

(45)

where n = n∗ is some integer labeling for a reference
level with binding momentum κ∗, determined by the
Efimov spectrum in the (asymptotic) unitary limit. The
multiplicative factor λ0 ≡ eπ/s0 is an universal param-
eter which depends only on the gross features of the
three-body system, such as the mass ratios of the bound
particles and the overall quantum statistics of the sys-
tem, irrespective of the fine details such as the nature
of the individual bound particles and the short-distance
interaction potentials. In this case, s0 = 1.00624 . . . is
obtained as a solution to the transcendental equation

s0 cosh
πs0
2

=
8√
3

sinh
πs0
6

. (46)

It is notable that mass ratios play the most crucial
role in deciding the typical estimate for s0. However,

the spin, isospin and other possible internal quantum
numbers of the gross three-body system can fine-tune
its precise value. Moreover, away from unitarity in
the non-resonant domain as a0 ∼ r0, the value of
s0 is likely to change from its asymptotic value due
to cut-off and other low-energy parametric dependen-
cies thereby becoming non-universal. For instance, the
three-nucleon (N −N −N) iso-doublet S-wave systems
of triton and helion (3H, 3He) in the I = J = 1/2 chan-
nel, are probably the best known examples of realistic
Efimov-bound states in nuclear physics having identi-
cal asymptotic scale parameter s0 and Efimov spectrum
(neglecting Coulomb interactions) as in the case of the
B − B − B system.

The above-mentioned behavior of the three-body sys-
tem in the so-called scaling limit (r0 → 0) is an indi-
cation that the familiar continuous scaling symmetry
(conformal invariance) under the scale transformation

a0 → λa0 and E2−body → λ−2E2−body,

(47)

where λ ∈ R+ is an arbitrary constant, gets evidently
broken in the three-body sector into the discrete scaling
subgroup of scale transformations given by

κ∗ → κ∗ a0 → λn
0a0 , E → λ−2n

0 E,

where λ0 = eπ/s0 ≈ 22.7 . (48)

This feature can be attributed to the introduction of
the parameter κ∗ which sets a new relevant scale in the
three-body system, in addition to the only existing rel-
evant scale set by the two-body parameter a0 → ∞
close to the unitary limit. This leads to logarithmic
scaling violation of low-energy observables which must
scale as some log-periodic function ∼ f [s0 ln(κ∗|a0|)]
. In other words, the expected non-trivial RG fixed
point scaling of the 3BF couplings breaks down into
that of an UV RG limit cycle discrete scaling charac-
terized by the parameter λ0. This unusual type of RG
arises in other branches of physics as well, such as in
condensed matter (see, e.g., Refs. [121–125]), or in the
study of turbulence and complex systems (see e.g., Ref.
[126]). Curiously enough, such a discrete scaling behav-
ior bears close resemblance to the well-known Russian
Matryoshka dolls, as displayed in Fig. 10. They consist
of an assembly of hollow wooden dolls of decreasing
size nested one within the other such that the ratio of
the sizes of successive dolls remains approximately con-
stant, for instance, as shown in the figure, the discrete
scaling factor is given by

e2π/s
(doll)
0 ≈ doll(n)

doll(n+1)
≈ 1.5 . (49)

Likewise, in proximity to the unitary limit, the ratio
of the successive binding energies of the of B − B − B

Efimov trimer levels scale as B
(n)
3 /B

(n+1)
3 ≈e2π/s0 ≈515.
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Fig. 10 Demonstration of RG limit cycle. Left panel: Dis-
crete scaling behavior found in Russian nesting dolls with
sizes of successive dolls decreasing by a constant factor
∼ 1.5. Right panel: The regulator scale Λreg dependence
of the three-body coupling H(Λreg) for the B − B − B sys-

tem. The input three-body datum is the scattering length

a
(Bd)
3 = 1.56a0. The parameters, Λ∗ and Λ0, are obtained

by fitting Eq. (52) (solid curve) to the data points obtained
by numerically solving the STM Eq. (44), reproducing the
result of Ref. [74]

The approximate relation becomes an exact one only in
the unitary limit with a0 = ∞.

The RG limit cycle features associated with Efi-
mov spectrum are deduced quite naturally in low-
energy EFT by studying the cut-off regulator depen-
dence of the 3BF coupling H(Λreg) via the STM inte-
gral Eq. (44). The introduction of UV regulator Λreg

repairs the non-self-adjoint pathology associated with
the STM equation making the scattering amplitude T3

well-behaved asymptotically. But this comes at a cost:
the continuous scaling symmetry gets partially broken,
leading to the emergence of an RG limit cycle. This
feature can be checked analytically by investigating the
asymptotic nature of the integral equation in the uni-
tary and scaling limits. In other words, with p taken
as the off-shell (outgoing) momentum having the same
order of magnitude as the loop momenta q, we examine
the integral equations in the limit E, 1/|a0|, k � p ∼
q ∼ Λreg � ∞, whereby the 3BF terms ∝ H(Λreg)/Λ2

reg
may be dropped. To that effect, the asymptotic solu-
tion for T3 scales as a pure power-law with an unde-
termined exponent, T3(p) ∼ ps−1. Thus, the resulting
STM Eq. (44) becomes

ps−1 =
4√
3πp

∫ ∞

0

dq qs−1 ln
p2 + pq + q2

p2 − pq + q2
, (50)

which after a change of variable, q = xp, becomes

1 =
4√
3π

∫ ∞

0

dx xs−1 ln
1 + x + x2

1 − x + x2
. (51)

A Mellin transformation finally reduces the STM equa-
tion to the very aforementioned transcendental relation,
Eq. (46), obtained by solving the low-energy Faddeev
equation, albeit with a complex exponent s = ±is0,
where s0 = 1.00624 . . . is obtained in this case. The
asymptotic value s0 parametrizes the exact discrete
scaling behavior at the unitary limit, formally indicat-
ing the manifestation of Efimov effect. Furthermore,
Bedaque et al. [74] deduced an approximate analyti-
cal expression for the typical log-periodic running of

dimensionless three-body coupling H(Λreg), given by

H(Λreg) = − sin [s0 ln(Λreg/Λ∗) − arctan(1/s0)]
sin [s0 ln(Λreg/Λ∗) + arctan(1/s0)]

.

(52)

Such an RG orbit for the coupling constant with
a periodic dependence on the cut-off parameter when
the latter increases to infinity is termed as a limit
cycle. The underlying principle ensures that the fam-
ily of effective theories with finite cut-offs yields pre-
dictions which are guaranteed to remain independent
of the respective cut-offs. In the above expression Λ∗,
in analogy to κ∗, is an emergent three-body dynamical
parameter which results from the logarithmic scaling
violation ∼ ln(Λ∗|a0|). This parameter is likewise fixed
using a three-body datum, such as the trimer binding
energy B3 or the B−d scattering length a

(Bd)
3 . Alterna-

tively, the scale dependence of H(Λreg) may be deter-
mined by numerically solving the STM Eq. (44) at non-
asymptotic scales for a given two-body input a0 and
three-body datum (e.g., B3, a

(Bd)
3 , etc.). In Fig. 10, we

reproduce the result of Ref. [74], displaying the approx-
imate RG limit cycle with quasi-periodic singularities
associated with the successive formation of new Efimov
states as Λreg → ∞. The data points correspond to our
numerical evaluations, while the solid curve is the fit to
these data using the analytical formula of Bedaque et
al., Eq. (52). To this end, one may extract the three-
body parameters, such as Λ∗ and s0, using the momen-
tum scaling relations,

Λn =
(
eπ/s0

)n

Λ0 as n → ∞ ,

and

Λ0 = exp
[
arctan(1/s0)

s0

]
Λ∗ , (53)
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where Λreg = Λn represents the nth zero of the three-
body coupling H(Λn). The typical non-asymptotic val-
ues of s0 expected in this case depend on Λn, and hence
differ from the cutoff-independent asymptotic value,
s0 → 1.00624 . . ., which restores the exact scaling sym-
metry of the STM equation as Λn → ∞.

B Integral equation for Ξ−nn
(I = 3/2, JP = 1/2+) system

The Faddeev-like three-body coupled integral equation
for the n + (Ξ−n)t → n + (Ξ−n)t elastic scattering
amplitude tA (cf. Fig. 2) (excluding the (Ξ−n)s singlet
subsystem channel) can be easily obtained via Feynman
rules from the non-relativistic effective Lagrangian, and
is given as

tA (p,k;E) = (−y2
1)

[
C(11)
2 SΞ

(
E − p2

2Mn
− k2

2Mn
,p+ k

)

+C(11)
3

MΞ

2

g3(Λreg)

Λ2
reg

]

− C(11)
2 (−y2

1)

∫ Λreg d3q

(2π)3
tA (q,k;E) SΞ

×
(

E − p2

2Mn
− q2

2Mn
,p+ q

)

×D1

(
E − q2

2Mn
,q

)

− C(11)
3 (−y2

1)
MΞ

2

∫ Λreg d3q

(2π)3
tA (q,k;E)D1

×
(

E − q2

2Mn
,q

)
g3(Λreg)

Λ2
reg

− C(10)
2 (−y0y1)

∫ Λreg d3q

(2π)3
tB (q,k;E)Sn

×
(

E − p2

2Mn
− q2

2MΞ
,p+ q

)

×D0

(
E − q2

2MΞ
,q

)
+ C(10)

3 (−y0y1)

√
3

2
Mn

×
∫ Λreg d3q

(2π)3
tB (q,k;E)

g3(Λreg)

Λ2
reg

×D0

(
E − q2

2MΞ
,q

)
, (54)

and

tB (p,k;E) = (−y0y1)

[
C(10)
2 Sn

(
E − k2

2Mn
− p2

2MΞ
,p+ k

)

−C(10)
3

√
3

2
Mn

g3(Λreg)

Λ2
reg

]

− C(10)
2 (−y0y1)

∫ Λreg d3q

(2π)3
tA (q,k;E)Sn

(
E − p2

2MΞ
− q2

2Mn
,p+ q

)

×D1

(
E − q2

2Mn
,q

)
+ C(10)

3 (−y0y1)

√
3

2
Mn

×
∫ Λreg d3q

(2π)3
tA (q,k;E)

g3(Λreg)

Λ2
reg

×D1

(
E − q2

2Mn
,q

)
. (55)

Here, C(11)
2 = 1/2, C(10)

2 = −
√

3/2 are spin–isospin re-
coupling coefficients for diagrams with two-body inter-
action only, and C(11)

3 = C(10)
3 = 1 are those with the

three-body contact interaction. Upon renormalization
using the wavefunction renormalization constant ZΞn

(cf. Eq. (17)), and projecting on to the S-wave, the
above amplitudes lead to Eqs. (13) and (14).
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