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Abstract By perturbation method, this article presents asymptotic analytical solutions for streaming potential and electrokinetic
energy conversion (EKEC) efficiency of two immiscible fluids between microparallel plates. The results show that the EKEC
efficiency can be enhanced obviously by the permittivity and viscosity ratios, the maximum efficiency is about 67% and 28%,
respectively, but shows a decreasing trend with the interface electric potential difference, the maximum efficiency is about 44%.
This indicates that the permittivity and viscosity ratios can improve the energy conversion efficiency. Furthermore, we company
the EKEC efficiency in two-layer and single-layer fluid. It is found that the conversion efficiency of two-layer fluid systems can be
higher than that of single-layer fluid systems by up to 50%. This work adds a quantitative dimension to the understanding of the
interplay between physical parameters, and manipulation of interfaces can effectively facilitate the separation of biological samples
and direct the flow direction of fluids in flow-switching devices.

List of symbols

l The length
W The width
H1 The height of the upper fluid
H2 The height of the bottom fluid
H The overall height of the microchannel
ψ i The electric potential
i The upper or bottom fluid layer
ρei The local volumetric net charge density for layer I and layer II, respectively
εi The permittivity of the electrolyte liquid for layer I and layer II, respectively
n0 The ion density of bulk solution
e The elementary charge
z The ion valence
kB The Boltzmann constant
Tav The absolute temperature
K The electrokinetic width
κ i The Debye-Hückel parameter
ζ 1 The zeta potential at the upper wall
ζ 2 The zeta potential at the bottom wall
Ki The electrokinetic width
ε* The ratio of the permittivity
ρi The fluid density
uj The flow velocity
P The pressure
j The upper or bottom fluid velocity and pressure symbol
η The dynamic viscosity
η0 The viscosity at the reference pressure P � 0
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β The constant pressure-viscosity coefficient
μi The fluid viscosity
Qi The constant volumetric flow rate
Ui The characteristic velocity
Pi* The characteristic pressure
E0 The characteristic electric field
εj The normalized pressure-viscosity coefficient
ur The ratio of electroosmotic velocity to the average velocity at the exit plane of the upper fluid
α The geometrical aspect ratio
U* The ratio of the characteristic velocity of the upper fluid and the bottom fluid
μ The ratio of fluid viscosity
u The advection velocity
f The ionic friction coefficient
Pin The input powers
Pout The output powers
Qin The input volume flow rate
up The purely pressure-driven flow velocity
ξ Efficiency of the electrokinetic energy conversion
Δϕ The interfacial electric potential difference
μ The viscosity ratio
qs The interface charge density jump

1 Introduction

Microfluidic has drawn millions of interests from scientists all over the world and will strictly run on, where microfluidic structures
and materials are a considerable research area in the field of microfluidic, which may still boost the application of microfluidic devices
in plentiful scientific fields. On the other hand, microfluidic furnishes a formidable and elastic platform for material manufacturing.
The design and development of productive microfluidic equipment is a hurried demand for the further development of technology.
The latest research on microfluidics involves drug screening, and drug delivery, single-cell analysis, 3D printed microfluidics
for bioanalysis, and nucleic acid detection with microfluidic chip [1–4]. Bhattacharya et al. [5] discuss the mixing performance of
micromixers by improving the passive T-shaped micromixer with a sinusoidal wavy wall. Gayen et al. [6] tried to use electrodynamic
effects (such as electroosmotic flow) to improve the mixing efficiency of two fluids of different concentrations in a micromixer. They
explored the combined effect of electroosmotic flow and rigid baffles. Kumar et al. [7] reported the design of a new electroosmotic
micromixer, which uses a square SSAR structure and microelectrodes. The effects of airflow (inlet velocity) and electric field
(electrode potential arrangement, voltage, AC frequency, and phase difference) parameters on the mixing performance of the new
microchannel mixer were studied in depth. Customarily, tiny fluids can be accurately coped with and manipulated by microfluidics
technology using pressure gradients, electric fields, magnetic fields, or suitable combinations [8–10]. Such as, Chu and Jian [11] took
the conjunct impact on the two kinds of forced time cyclical electric fields and the outer perpendicular magnetic fields into account,
and achieved the magnetohydrodynamic electroosmotic flow for Maxwell fluid via both microparallel plates with patterned charged
surfaces. Qi et al. [12] performed a comprehensive theoretical exploration of the electromagnetic fluid flow through rectangular
microchannels with the composite action of exterior electric and magnetic fields. The heat transfer attribute of incompressible
magnetohydrodynamic flow via two-dimensional rectangular microchannels was theoretically investigated by Yang et al. [13],
who added a transverse electric field and a perpendicular magnetic field to the existing axial electric field, taking into account the
electromagnetic effect under the combined action of electrodynamics.

Theoretically, most substances’ hand surface charges have been brought into contact with the water medium. The re-disposition
of charges both on the solid surface and in the liquid contributes to the composition of an electric double layer (EDL), which mostly
pushes to a nanometer thickness. Considering the pressure-driven transmission is triggered in the micro/nanochannels, the electric
charge of EDL is transferred downstream, resulting in the build-up of downstream charged particles. Thus, the potential difference
generated between upstream and downstream is called the SP. The above research on SP mainly concentrates on the transport of
electrolyte solutions with surface charge and electric potential [14–16]. The SP of the microparallel channel considering the rotation
effect under the low potential approximation is discussed by Chen et al. [17]. The results show that the SP decreases along with
the increase of the electrokinetic width. Zhang et al. [18] computed and compared the SP under different period functions, which
produced a result that the square waveform can effectively heighten the SP. In addition, besides SP, the emergence of mechanical
energy via pressure driving and the chemical energy generated by EDL will be transformed into electric energy. This transformation
is called electrokinetic energy conversion (EKEC) in academia. In some research articles, it is generally represented quantitatively
by EKEC efficiency. In some effective engineering problems, the magnitude of EKEC efficiency is specifically significant, thus
this kind of problem has been widely considered by scholars [19–21]. Xie and Jian [22] deliberated the EKEC of power-law fluids
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in slit nanochannels. The results express that the transformation efficiency of pseudoplastic fluid is topmost compared with that
of dilatant fluid and Newtonian fluid under the same physical parameters. Gao et al. [23] theoretically analyzed and compared the
EKEC efficiency of viscoelastic fluid using Maxwell as a model in a circular microchannel driven by a periodic pressure gradient.
The results declare that the EKEC efficiency of square wave periodic pressure gradient is the most significant in both low and high
frequencies. Ding et al. [24] researched the influence of curvature on EKEC in curved microtubules using perturbation solutions.
Research has found that the bent channel shape may be conducive to elevating the utmost efficiency of EKEC.

Evidence from early literature suggests that the viscosity of various liquids is a strong index of pressure, thus the linear correlation
between viscosity and pressure is also to be supposed to consider in the process of micro-electro-mechanical-systems (MEMS) design.
Experimental data on liquid flow in high-pressure (1-30Mpa)-driven microtubes suggest that the pressure gradient is changeable,
which is the result of the pressure dependence of viscosity [25]. The correlation-dependence of fluid viscosity respecting pressure
has been studied in several relevant research fields, such as metallic glasses, the development of heavy crudes, and the measurement
of ionic liquid [26–28]. Fluids of viscosity depending on the pressure at high-pressure techniques have received increasing attention
over the past few decades result of the mounting awareness in high-pressure engineering applications and techniques [29–31]. Chen
et al. [32] discussed flow driven by pressure in slippery nanochannels of an incompressible viscoelastic fluid, where related to
exponential pressure-dependent viscosity and relaxation time. The outcomes imply that in pace with the growth of the pressure
relaxation coefficient, the SP of the fluid reduces, and the fluid viscosity increases. When the slip length increases, the viscosity of
viscoelastic fluid weakens. Fetecau et al. [33] built an accurate and simple representation of the permanent solution corresponding
to the two oscillating motions of impressible convection Maxwell fluid for exponential viscosity and pressure among parallel plates.
Jian [34] has used the asymptotic solution to predict the EKEC efficiency well when the velocity and pressure are unknown. Research
has shown that pressure-dependent viscosity could slightly heighten the SP and EKEC efficiency. It was implied by added output
that electric energy could be utilized for external loads.

According to the above, the theoretical, numerical, and experimental research on the SP and the EKEC efficiency in single-layer
flow systems have been extensively studied. Two or more layers of unmixing liquid flow systems are the central issue respecting
research fields for manufacturing, mining process, and biochemical analysis. Based on the prosperous application of a monolayer
electroosmosis pump, the electroosmosis driving mechanism has been automatically expanded in double- or multilayer fluid systems.
Generally speaking, at two or more layers of unmixing liquids hand mutually, a laminar fluid interface is created, so precise control
of the fluid interface is required. On account of the triumphant application of the classical driving mechanism in the monolayer
flow system, the driving mechanism is straight copied in a doublelayer or multilayer flow system [35–37]. The entropy-produced
analytical research of dual-fluid drawing systems is discussed by Xie et al. [38]. In the case where the bottom fluid is assumed to
be an electrolyte solution affected by the magnetic field, and the upper fluid is assumed to be a nonconductive viscoelastic Phan-
Thien-Tanner fluid, the consequences demonstrate that the magnetic field could promote local entropy yield, while the viscoelastic
physical parameters could suppress local entropy yield. Under the stack effect of EDL, imposed electric field and pressure in the
vicinity of the solid interface and both liquid interface, Deng et al. [39] studied the electric osmosis and pressure-driven two-layer
combined flow of power-law fluid in the circular channel. Xie and Jian [40] analyzed the entropy generation of the two-layer MHD
electroosmotic flow via channel. The affection of the ratio of fluid physical parameters concerning the velocity and temperature
distribution of the two layers of fluid is discussed. The consequences reveal that the entropy production of fluid forcefully counts on
the velocity field and temperature field, and the local entropy production of both bottom fluid and upper fluid shows a diminishing
trend from the microchannel wall to the fluid interface.

Inspired by the abovementioned investigations, the SP and EKEC efficiency of two immiscible liquid layers of Newtonian fluid
with pressure-dependent viscosity via a microparallel channel will be studied. In addition, as far as authors know, meticulous
considerations have not been appreciated on the microfluidic flow mechanism of two immiscible liquid layers applied pressure
gradient. In this paper, interface electric potential difference, the ratio of the permittivity, the ratio of fluid viscosity, and dimensionless
electrokinetic width are considered, respectively. Meanwhile, many scholars [41, 42] used the PM to study the influence of the
abovementioned related parameters on the efficiency of EKEC, which shows that the asymptotic solution has become a usable
method to develop fluid flow in more complex situations. At the same time, the manipulation of the interface can effectively promote
the separation of biological samples, which effectively promotes the development of biomedicine and bioanalysis. Eventually, we
provide an intuitive comparison between the EKEC efficiency in two-layer fluid and that of single-layer fluid. The research shows
that the EKEC efficiency of the two-layer fluidic system emerges as a visible enhancement compared with the single-layer fluidic
system. Our findings hope to provide feasible and valuable theoretical guidance for considering two immiscible Newtonian fluids
to improve the efficiency of EKEC.

2 Theoretical derivation

2.1 Mathematical model

Figure 1 describes the physical model of the electrokinetic flow behavior of two immiscible liquid layers with Newtonian fluid
possessing the characteristic of pressure-dependent viscosity through the microparallel plate channel in the process of imposed
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Fig. 1 Schematic diagram of in
two-layer Newtonian fluids
through a parallel microchannel

pressure gradient. In a parallel plate channel of length l, width W , height of the upper fluid H1, the height of the bottom fluid H2,
and the overall height of the microchannel H, that is, H � H1 + H2. Assuming that the length is much greater than the height, that
is, l»H . Besides, the interface between the two immiscible fluids is a plane. The Cartesian coordinate system is founded at the fluid
interface.

2.2 EDL potential distribution

Due to the electrochemical interaction between the Newtonian fluid and the channel wall, the EDL appeared near the channel wall.
The relationship between local volumetric net charge density and the electrical potential of the first and second layers could be
portrayed by the subsequent Poisson-Boltzmann equation:

d2ψi

dy2 � −ρei

εi
i � 1, 2 (1)

where ψi is the electric potential and i denotes the upper or bottom fluid layer. ρei is the local volumetric net charge density for layer
I and layer II respectively and εi is the permittivity of the electrolyte liquid for layer I and layer II, respectively. Assuming that the
ions are point charges, the variation of local volumetric net charge density follows Boltzmann distribution, as follow:

ρei � −2n0ez sinh

(
ezψi

kBTav

)
i � 1, 2 (2)

where n0 is ion density of bulk solution, e is the elementary charge and z is the ion valence, as well as kB is the Boltzmann constant
and Tav is the absolute temperature. Combining Eqs. (1) and (2), we obtained:

d2ψi

dy2 � 2n0ez

εi
sinh

(
ezψi

kBTav

)
i � 1, 2 (3)

For smaller value of electrical potential, the Debye–Hückel linearization principle for the sine hyperbolic function at the right

side of Eq. (3) can be used, namely, sinh
(

ezψi
kBTav

)
≈ ezψi

kBTav
yields,

d2ψ1

dy2 � κ2
1 ψ1 0 ≤ y ≤ H1 (4)

d2ψ2

dy2 � κ2
2 ψ2 − H2 ≤ y ≤ 0 (5)

where κi � (2e2z2n0
/

εi kBTav

)1/ 2
is the Debye-Hückel parameter and 1

/
κi indicates the characteristic thickness of the EDL.

Suppose the microchannel surface supports a zeta potential ζ1 at the upper wall and ζ2 at the bottom wall, respectively. We
introduce Gauss’s law into the electrical displacement and the zeta potential difference at the interface (y � 0) between layer I and
layer II [37], [43]. Thus, the boundary conditions can be simplified to:

ψ1
∣∣y�H1 � ζ1 , ψ2

∣∣y�−H2 � ζ2 , (ψ1 − ψ2)
∣∣y�0 � ψ ,

(
ε1

dψ1

dy
− ε2

dψ2

dy

)∣∣y�0 � −qs (6)

Next, we introduce some nondimensional variables.

y � y

H
,
[
ψ1, ψ2, ζ 1, ζ 2, ψ

] � ez

kBTav

[ψ1, ψ2, ζ1, ζ2, ψ] (7)
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Substituting in the above nondimensional variables into Eqs. (4)–(6), the governing equation and boundary conditions turn into,

d2ψ1

dy2 � K 2
1 ψ1 0 ≤ y ≤ h1 (8)

d2ψ2

dy2 � K 2
2 ψ2 − h2 ≤ y ≤ 0 (9)

ψ1

∣∣y�h1 � ζ 1 , ψ2

∣∣y�−h2 � ζ 2 ,
(
ψ1 − ψ2

)∣∣y�0 � ψ ,

(
ε∗ dψ1

dy
− dψ2

dy

)∣∣y�0 � −Q (10)

where hi � Hi
/
H , Ki � κi H , ε∗ � ε1

/
ε2, Q � (qsezH)

/
(ε2kBTav). Significantly, the electrokinetic width Ki of the two layers

of fluid is identical in the current study, namely K1 � K2 � K . ε∗ is the ratio of the permittivity. Equations (8) and (9) have general
solutions below,

ψ1 � A1 cosh(K1y) + B1 sinh(K1y) (11)

ψ2 � A2 cosh(K2y) + B2 sinh(K2y) (12)

Operating the boundary condition (10) will get A1, B1, A2 and B2, where,

B2 � ζ 1ε
∗K1 cosh(K2h2) + Q sinh(K1h1) cosh(K2h2) − (ζ 2ε

∗K1 + ψε∗K1 cosh(K2h2)
)

cosh(K1h1)

ε∗K1 cosh(K2h2)

ε∗K1

K2 sinh(K1h1) − ε∗K1 tanh(K2h2) cosh(K1h1)

B1 � B2K2 − Q

ε∗K1

A2 � ζ 2 + B2 sinh(K2h2)

cosh(K2h2)

A1 � A2 + ψ

2.3 Two-layer fluid velocity distribution

Consider a pressure-driven electrokinetic flow in a two-layer incompressible Newtonian fluid with pressure dependence on viscosity.
The corresponding equation in continuity and Navier–Stokes equation [34] are as follows:

∇u j � 0 (13)

ρi

[
∂u j

∂t
+
(
u j · ∇)u j

]
� −∇Pj + ∇τi + ρei Es , j � I, � (14)

where ρi is the fluid density, u j is the flow velocity, P is the pressure, �Es � (Es , 0, 0) is the induced electric field vector due to
the SP, and ∇τi is the Cauchy stress tensor. j stands for upper or bottom fluid velocity and pressure symbol. Here, suppose dynamic
viscosity η has a linear relationship with pressure P, as follows:

η(P) � η0(1 + βP) (15)

here, η0 is the viscosity at the reference pressure P � 0, β is the constant pressure-viscosity coefficient. Hence, the momentum
equation for Newtonian fluids in the two-layer fluids could change into,

−∂PI

∂x
+ η0(1 + βPI)

d2uI

dy2 + η2
0β

2 ∂PI

∂x

(
duI

dy

)2

+ ρe1 Es � 0 (16)

−∂P�

∂x
+ η0(1 + βP�)

d2u�

dy2 + η2
0β

2 ∂P�

∂x

(
du�

dy

)2

+ ρe2 Es � 0 (17)

To resolve the reduced governing equations, it is necessary to give appropriate boundary conditions. Firstly, the no-slip boundary
condition requests that the velocity must disappear at the microchannel wall. Secondly, the velocity is assured of continuity at
the interface of two immiscible fluids. Eventually, the balance condition of total stress is deployed at the fluid interface analog to
the understanding in Ref. [40]. Moreover, different from the invariant pressure gradient-driven flow, the pressure in the immediate
problem is an unidentified function that depends on x and y , and must be bound to dispose contemporaneously with the flow
velocity. Therefore, set the pressure at the outlet of the parallel plate and specify a constant volume flow in advance. At the interface,

123



  788 Page 6 of 19 Eur. Phys. J. Plus         (2024) 139:788 

the velocities of the two fluids should be the same and the total stress between the two layers should be the same. Different from
the traditional pressure-driven mechanism, when considering the pressure-related electroviscous effect, the pressure is an unknown
quantity, so it is necessary to solve the pressure and velocity simultaneously under given boundary conditions. These boundary
conditions could be portrayed mathematically,

uI
∣∣y�H1 � 0, u�

∣∣y�−H2 � 0, uI
∣∣y�0 � u�

∣∣y�0 , μ1
duI

dy

∣∣y�0 � μ2
du�

dy

∣∣y�0

PI(l, 0) � 0, P�(l, 0) � 0,
∫ H1

0
uIdy � Q1

W
,
∫ 0

−H2

u�dy � Q2

W
(18)

where μi is the fluid viscosity, Qi is a constant volumetric flow rate. Dimensionless variables and parameters are regulated below,

x � x

l
, u j � u j

Ui
,Ui � Qi

HW
, P j � P

P∗
i

, P∗
i � 12η0lUi

H2 , Es � Es

E0
, ε j � βP∗

i ,

ur � −ε1ψ0E0

η0U1
, α � H

l
, ψ0 � kBTav

ez
,U∗ � U1

U2
, μ � μ1

μ2
.

(19)

where l is the length of the microplate, Ui is the characteristic velocity, and P∗
i is the characteristic pressure. E0 is the characteristic

electric field, and ε j is the normalized pressure-viscosity coefficient. Fundamentally, ur stands for the ratio of electroosmotic velocity
to the average velocity at the exit plane of the upper fluid. α is the geometrical aspect ratio. U∗ is the ratio of the characteristic
velocity of the upper fluid and the bottom fluid, which is set as 1 and μ is the ratio of fluid viscosity.

Substitute the mentioned dimensionless variables into Eqs. (16) and (17), the dimensionless governing equations and related
boundary conditions become,

−12
∂P I

∂x
+
(
1 + εIP I

)d2uI

dy2 +
ε2

I α2

12

∂P I

∂x2

(
duI

dy

)2

+ ur K
2
1 ψ1Es � 0 (20)

−12
∂P�

∂x
+
(
1 + ε�P�

)d2u�

dy2 +
ε2
�α2

12

∂P�

∂x2

(
du�

dy

)2

+
ur K 2

2 ψ2EsU∗

ε∗ � 0 (21)

uI
∣∣y�h1 � 0, u�

∣∣y�−h2 � 0, uI
∣∣y�0 � u�

∣∣y�0 , μ
duI

dy

∣∣y�0 � du�

dy

∣∣y�0

P I(1, 0) � 0, P�(1, 0) � 0,
∫ h1

0
uIdy � 1,

∫ 0

−h2

u�dy � 1 (22)

The nonlinear control equation has now been reduced to a partial differential equation, but Eqs. (20) and (21) still contain two
unknowns, respectively; (namely, the pressure P j and the velocity u j ). To obtain the distribution of velocity and pressure, the
perturbation method is utilized and the dimensionless pressure-viscosity coefficient ε j is the perturbation parameter. In performing
the present analyses, the typical flow parameters will be specified as follows: half-height and length of the channels are H

/
2 �

10 − 100nm and l � 10 − 100μm, individually. Fluid density ρi � 103kgm−3, dynamic viscosity η0 � 10−3 − 10−2kg(ms)−1,
pressure-viscosity coefficient β � 10 − 70 GPa−1, average velocity at the exit plane Ui � 10−3ms−1. Consequently, the extent of
the parameter εj in Eqs. (20) and (21) turn from 0.001 to 0.2. Developing the axial velocity uj and pressure Pj treat as a perturbation
series with εj as little parameter,

uI(y) � u0(y) + εIu1(y) + ε2
I u2(y) + · · · (23)

P I(x , y) � P0(x , y) + εIP1(x , y) + ε2
I P2(x , y) + · · · (24)

u�(y) � u3(y) + ε�u4(y) + ε2
�u5(y) + · · · (25)

P�(x , y) � P3(x , y) + ε�P4(x , y) + ε2
�P5(x , y) + · · · (26)

The above series expansion is substituted into Eqs. (20) and (21), and the coefficients of the same power of ε j on both sides are
equal to acquire the zero-order, first-order, and second-order control equations and relevant boundary conditions.

2.3.1 Zero-order solution

To start with, zero-order governing equation and boundary conditions are acquired by calculation, which reads,

12
∂P0

∂x
� d2u0

dy2 + ur K
2
1 ψ1Es (27)
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12
∂P3

∂x
� d2u3

dy2 +
ur K 2

2 ψ2EsU∗

ε∗ (28)

u0
∣∣y�h1 � 0, u3

∣∣y�−h2 � 0, u0
∣∣y�0 � u3

∣∣y�0 , μ
du0

dy

∣∣y�0 � du3

dy

∣∣y�0

P0(1, 0) � 0, P3(1, 0) � 0,
∫ h1

0
u0dy � 1,

∫ 0

−h2

u3dy � 1 (29)

Obviously, on the left of Eqs. (27) and (28) is a function of x and y, and on the right is a function decided by y. Hence, if Eqs. (27)
and (28) have solutions, both sides are equal to the same constant value. Let this constant value be C0 and D0 to give,

12
∂P0

∂x
� C0 (30)

d2u0

dy2 + ur K
2
1 ψ1Es � C0 (31)

12
∂P3

∂x
� D0 (32)

d2u3

dy2 +
ur K 2

2 ψ2EsU∗

ε∗ � D0 (33)

Integrating twice Eqs. (31) and (33) about y, the general solution of zero-order velocity reads,

u0(y) � −ur Esψ1 +
1

2
C0y

2 + a1y + a2 (34)

u3(y) � −ur Esψ2U
∗

ε∗ +
1

2
D0y

2 + b1y + b2 (35)

Substituting the first four boundary conditions in Eq. (29), we can get,

b1 � − μur Ēs A1

(μh2 + h1)
+
ur Ēsμ(A1 cosh(K1h1) + B1 sinh(K1h1))

(μh2 + h1)
− C0h2

1μ

2(μh2 + h1)
+
ur ĒsU∗B2K2h1

ε∗(μh2 + h1)

− ur Ēs B1K1h1μ

(μh2 + h1)
+
ur Ēs A2U∗μ
ε∗(μh2 + h1)

− ur ĒsU∗μ(A2 cosh(K2h2) − B2 sinh(K2h2))

ε∗(μh2 + h1)
+

D0h2
2μ

2(μh2 + h1)
(36)

a1 � −ur EsU∗B2K2

ε∗μ
+
b1

μ
+ ur Es B1K1 (37)

a2 � ur Es(A1 cosh(K1h1) + B1 sinh(K1h1)) − 1

2
C0h

2
1 − a1h1 (38)

b2 � ur Es A2U∗

ε∗ − ur Es A1 + a2 (39)

Make use of the last two kings of flow rate condition of Eq. (29), the constant C0 and D0 could be identified by,

C0 � 6ur Es

h3
1

(
A1 sinh(K1h1)

K1
+
B1 cosh(K1h1)

K1

)
− 3a1

h1
− 6a2

h2
1

− 6ur Es B1

h3
1K1

+
6

h3
1

(40)

D0 � −6ur EsU∗

h3
2ε

∗

(
B2 cosh(K2h2)

K2
− A2 sinh(K2h2)

K2

)
+

3b1

h2
− 6b2

h2
2

+
6ur Es B2U∗

h3
2K2ε∗ +

6

h3
2

(41)

Afterward, the zero-order pressure field P0 and P3 could be achieved by integrating Eqs. (30) and (32),

P0(x , y) � 1

12
C0x + G0(y) (42)

P3(x , y) � 1

12
D0x + G3(y) (43)

where G0(y) and G3(y) are a function of y and supposing it is a constant. Take advantage of the condition involving exit edge
pressure in Eq. (29), we discover the zero-order pressure turns into,

P0(x , y) � 1

12
C0(x − 1) (44)

123



  788 Page 8 of 19 Eur. Phys. J. Plus         (2024) 139:788 

P3(x , y) � 1

12
D0(x − 1) (45)

2.3.2 First-order solution

Since, the first-order governing equation and boundary conditions are,

12
∂P1

∂x
− P0

d2u0

dy2 � d2u1

dy2 (46)

12
∂P4

∂x
− P3

d2u3

dy2 � d2u4

dy2 (47)

u1
∣∣y�h1 � 0, u4

∣∣y�−h2 � 0, u1
∣∣y�0 � u4

∣∣y�0 , μ
du1

dy

∣∣y�0 � du4

dy

∣∣y�0

P1(1, 0) � 0, P4(1, 0) � 0,
∫ h1

0
u1dy � 0,

∫ 0

−h2

u4dy � 0 (48)

Analog to the zero-order issue, placing both sides of Eqs. (46) and (47) to be the equivalent constant C1 and D1, written by,

12
∂P1

∂x
− P0

d2u0

dy2 � C1 (49)

d2u1

dy2 � C1 (50)

12
∂P4

∂x
− P3

d2u3

dy2 � D1 (51)

d2u4

dy2 � D1 (52)

Integrating twice of Eqs. (50) and (52) concerning y, the solution of first-order velocity u1(y) and u4(y) yield,

u1(y) � 1

2
C1y

2 + d1y + d2 (53)

u4(y) � 1

2
D1y

2 + e1y + e2 (54)

Substituting the first four boundary conditions in Eq. (48), we can get,

d1 � D1h2
2 − C1h2

1

2(μh2 + h1)
(55)

e1 � μd1 (56)

d2 � e2 � μh2
(
D1h2

2 − C1h2
1

)
2(μh2 + h1)

− 1

2
D1h

2
2 (57)

Reusing the last two flow rate conditions of Eq. (48), we realize C1 � D1 � 0,d1, d2, e1, e2 � 0, and so u1(y) � u4(y) � 0.
Integrating Eqs. (49) and (51) on x change,

P1(x , y) � C0

144

(
1

2
x2 − x

)(
C0 − ur K

2
1 ψ1Es

)
+ G1(y) (58)

P4(x , y) � D0

144

(
1

2
x2 − x

)(
D0 − ur K 2

2 ψ2EsU∗

ε∗

)
+ G4(y) (59)

where G1(y) and G4(y) are the function of y and supposing it is a constant. TakingC1 � 0 and D1 � 0 into account and substituting
the boundary condition of Eq. (48), the first-order pressure field is calculated as,

P1(x , y) � C2
0

288
(x − 1)2 − C0ur K 2

1 Es

288

[(
x2 − 2x

)
ψ1 + A1

]
(60)

P4(x , y) � D2
0

288
(x − 1)2 − D0ur K 2

2 EsU∗

288ε∗
[(
x2 − 2x

)
ψ2 + A2

]
(61)
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2.3.3 Second-order solution

Finally, the second-order governing equation and boundary conditions are,

12
∂P2

∂x
− P0

d2u1

dy2 − P1
d2u0

dy2 � d2u2

dy2 +
α2

12

∂P0

∂x

(
du0

dy

)2

(62)

12
∂P5

∂x
− P3

d2u4

dy2 − P4
d2u3

dy2 � d2u5

dy2 +
α2

12

∂P3

∂x

(
du3

dy

)2

(63)

u2
∣∣y�h1 � 0, u5

∣∣y�−h2 � 0, u2
∣∣y�0 � u5

∣∣y�0 , μ
du2

dy

∣∣y�0 � du5

dy

∣∣y�0

P2(1, 0) � 0, P5(1, 0) � 0,
∫ h1

0
u2dy � 0,

∫ 0

−h2

u5dy � 0 (64)

Similarly, setting both sides of Eqs. (62) and (63) to be the same constant C2 and D2, we get,

12
∂P2

∂x
− P0

d2u1

dy2 − P1
d2u0

dy2 � C2 (65)

d2u2

dy2 +
α2

12

∂P0

∂x

(
du0

dy

)2

� C2 (66)

12
∂P5

∂x
− P3

d2u4

dy2 − P4
d2u3

dy2 � D2 (67)

d2u5

dy2 +
α2

12

∂P3

∂x

(
du3

dy

)2

� D2 (68)

Integrating twice of Eqs. (66) and (68) concerning y, the solution of second-order velocity u2(y) and u5(y) response as,

ū2(ȳ) � 1

2
C2y

2 + m1 ȳ + m2 − α2C0

144

⎧⎪⎨
⎪⎩

C2
0

12
ȳ4 +

a2
1

2
ȳ2 +

C0a1

3
ȳ3 − 2a1ur Ēs

(
A1 sinh(K1 ȳ)

K1
+
B1 cosh(K1 ȳ)

K1

)

+
u2
r Ē

2
s

[
A2

1K
2
1

(
e2K1 ȳ − 4K 2

1 ȳ
2 + e−2K1 ȳ

)
+ 4A1B1K 2

1 sinh(2K1 ȳ) + B2
1 K

2
1

(
e2K1 ȳ + 4K 2

1 ȳ
2 + e−2K1 ȳ

)]
16K 2

1

− 2C0ur K1 Ēs
[
A1
(
K1 ȳ

(
eK1 ȳ − e−K1 ȳ

)− 2eK1 ȳ − 2e−K1 ȳ
)

+ B1
(
K1 ȳ

(
eK1 ȳ + e−K1 ȳ

)− 2eK1 ȳ + 2e−K1 ȳ
)]

2K 3
1

⎫⎪⎬
⎪⎭ (69)

ū5(ȳ) � 1

2
D2y

2 + n1 ȳ + n2 − α2D0

144

⎧⎪⎨
⎪⎩

D2
0

12
ȳ4 +

b2
1

2
ȳ2 +

D0b1

3
ȳ3 − 2b1ur ĒsU∗

ε∗

(
A2 sinh(K2 ȳ)

K2
+
B2 cosh(K2 ȳ)

K2

)

+
u2
r Ē

2
s U

∗2[
A2

2K
2
2

(
e2K2 ȳ − 4K 2

2 ȳ
2 + e−2K2 ȳ

)
+ 4A2B2K 2

2 sinh(2K2 ȳ) + B2
2 K

2
2

(
e2K2 ȳ + 4K 2

2 ȳ
2 + e−2K2 ȳ

)]
16ε∗2 K 2

2

− 2ur ĒsU∗D0K2

ε∗

[
A2
(
K2 ȳ

(
eK2 ȳ − e−K2 ȳ

)− 2eK2 ȳ − 2e−K2 ȳ
)

+ B2
(
K2 ȳ

(
eK2 ȳ + e−K2 ȳ

)− 2eK2 ȳ + 2e−K2 ȳ
)]

2K 3
2

⎫⎪⎬
⎪⎭
(70)

The process of solving is similar to that of solving the zero-order solution, and the corresponding parameters m1, m2, n1, n2, C2

and D2 are given in Appendix A. Regarding the second-order pressure field, integrating Eqs. (65) and (67) to read,

P2(x , y) � C0 − ur K 2
1 ψ1Es

12

{
C2

0

864
(x − 1)3 − C0ur K 2

1 Es

288

[(
1

3
x3 − x2

)
ψ1 + A1x

]}
+
C2

12
x + G2(y) (71)

P5(x , y) � D0ε
∗ − ur K 2

2 ψ2EsU∗

12ε∗

{
D2

0

864
(x − 1)3 − D0ur K 2

2 EsU∗

288ε∗

[(
1

3
x3 − x2

)
ψ2 + A2x

]}
+
D2

12
x + G5(y) (72)
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The boundary condition of Eq. (64) is used, and P2(x , y) and P5(x , y) can be finally given as

P̄2(x̄ , ȳ) � C0 − ur K 2
1 ψ̄1 Ēs

12

{
C2

0

864
(x̄ − 1)3 − C0ur K 2

1 Ēs

288

[(
1

3
x̄3 − x̄2

)
ψ̄1 + A1 x̄

]}
+
C2

12
(x̄ − 1)

+
C0 − ur K 2

1 A1 Ēs

12

(
C0ur K 2

1 Ēs A1

864

)
(73)

P̄5(x̄ , ȳ) � D0ε
∗ − ur K 2

2 ψ̄2 ĒsU∗

12ε∗

{
D2

0

864
(x̄ − 1)3 − D0ur K 2

2 ĒsU∗

288ε∗

[(
1

3
x̄3 − x̄2

)
ψ̄2 + A2 x̄

]}
+
D2

12
(x̄ − 1)

+
D0ε

∗ − ur K 2
2 A2 ĒsU∗

12ε∗

(
D0ur K 2

2U
∗ Ēs A2

864ε∗

)
(74)

So far, up to second-order velocity and pressure distributions have been received, but the SPEs in the velocity and pressure fields
is unidentified. Next, it could be obtained by installing the neutral condition in the subsequent section.

2.4 Streaming potential

To calculate the SP Es , the electro-neutrality condition is put to use, which can be written mathematically by,

I � 2ez
∫ H1

−H2

(n+u+ − n−u−)dy � 0 (75)

where

u± � u ± ezEs

f
(76)

above u is the advection velocity, ±ezEs
/
f is the electromigration velocity, and f is the ionic friction coefficient.

Exercising linearized Boltzmann distribution n± � n0 exp
[∓(ezψi )

/
(kBTav)

] ≈ n0
[
1 ∓ (ezψi )

/
(kBTav)

]
and Eq. (76), the

net ionic current Eq. (75) could be reduced as

U1

∫ h1

0
ψ1uIdy + U2

∫ 0

−h2

ψ2u�dy � ezEs E0(h1 + h2)

f
(77)

Bedding the zero-, first-, second-order velocities and electrical potential into Eq. (77), the analytical expression of the cubic

equation about the SP E
3
s is written by

T0 + T1Es + T2E
2
s + T3E

3
s � 0 (78)

here, T0, T1, T2, and T3 are constants.
Moreover, Eq. (78) has a real root and a pair of imaginary roots. The real root is picked for the SP Es

Es � − T2

3T3
− 21/ 3

(−T 2
2 + 3T3T1

)

3T3

(
−2T 3

2 + 9T3T2T1 − 27T 2
3 T

2
2 +

√
4
(−T 2

2 + 3T3T1
)3

+
(−2T 3

2 + 9T3T2T1 − 27T 2
3 T

2
2

)2)1/ 3

+

(
−2T 3

2 + 9T3T2T1 − 27T 2
3 T0 +

√
4
(−T 2

2 + 3T3T1
)3

+
(−2T 3

2 + 9T3T2T1 − 27T 2
3 T

2
2

)2)1/ 3

321/ 3T3

(79)

2.5 Electric energy conversion efficiency

The mechanical energy yielded in time of pressure driving and the chemical energy produced by EDL would transform into electrical
energy in time of fluid flow. This proceeding is called EKEC. Taking account of the pressure-dependent viscosity, the SP plays a
significant role in examining the efficiency of EKEC. Therefore, the expression of EKEC efficiency is defined as

ξ � Pout
Pin

(80)

where Pin and Pout in several denote the input and output powers, which have the form

Pin �
∣∣∣∣
(

−dP

dx

)
m
Qin

∣∣∣∣ (81)
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Pout � |Is Es |
4

(82)

where
(− dP

dx

)
m stands for pure average pressure gradient in x axial direction a lack of the effect of SP Es . Given by(

−dP

dx

)
m

� 1

l

∫ l

0
−dP

dx

∣∣Es�0 dx (83)

Additionally, the input volume flow rate Qin , such that

Qin �
∫ H1

−H2

u pdy �
∫ H1

−H2

u
∣∣Es�0dy � U1H

∫ h1

0
uI

∣∣∣∣Es�0dy + U2H
∫ 0

−h2

u�

∣∣∣Es�0dy (84)

which ought to be calculated employing purely pressure-driven flow velocity up when the SP is equivalent to zero, i.e.u p � u
∣∣Es�0 .

The streaming current turns into

Is � 2ez
∫ H1

−H2

u(n+ − n−)dy (85)

In reality, electro-neutrality conditions of Eqs. (75) and (76) have that

I � 2ez
∫ H1

−H2

u(n+ − n−)dy +
2e2z2Es

f

∫ H1

−H2

(n+ + n−)dy � Is + Ic � 0 (86)

Thus, we get ξ from Eqs. (80) to (86) as

ξ � e2z2n0E
2
s E

2
0 H(h1 + h2)∣∣∣∣

{
12η0U1−H1

(
F2
12 − εI

F2
2

288 + ε2
I

(
F8
12 +

F3
2

10368

))
+ 12η0U2−H2

(
F4
12 − ε�

F2
4

288 + ε2
�

(
F12
12 +

F3
4

10368

))}
Qin

∣∣∣∣
(87)

where F2, F4, F8, and F12 are constants and expressions are shown in Appendix B.

3 Results and discussion

In the prior sections, the asymptotic solutions of dimensionless velocity and pressure of two immiscible Newtonian fluids with
viscosity depending on pressure in parallel microchannels by PM have been derived. On this basis, the SP and EKEC are further
come by computation. Before analyzing the characteristics of electrodynamic flow, it is necessary to discuss the allowable range
of relational flow parameters as well as the ratio of physical parameters of the upper fluid to the lower fluid. Absolute temperature
Tav � 298K, Boltzmann constant kB � 1.381 × 10−23J · K−1, Electronic charge e � 1.6 × 10−19C, the ion valence z � 1,
ion density of the bulk solution n0 � 10−5m−3, induced electric field E0 � 0 − 105V

/
m, the bottom layer liquid viscosity is

μ2 � 10−3kg
/

(ms). ψ0 � −0.025V, the value of 10−12N · s · m−1 is suggested on f . Additionally, the ratio of electroosmotic
velocity to the average velocity at the exit plane (ur ) is hardened to 1. In addition, we pick the extent of K transforms from 1 to 5
by reason of K � κH . Other parameters are set into h1 � h2 � 0.5, ζ 1 � ζ 2 � 1, Q � 0.001 − 0.05.

In order to validate the applicability of the present model, we compare the prediction of EKEC efficiency with the result of Xie
et al. [44], who investigated the EKEC efficiency of two immiscible fluids in a nanochannel. When the pressure-viscosity coefficient
is ignored, the present model can be viewed as that of Xie et al. [44]. Figure 2 shows an excellent agreement, implying that the
performance of our model is satisfactory.

Figure 3 shows the variation of SP with electrokinetic width for various interface electric potential differences values through
two-layer immiscible Newtonian fluids. It is seen that the SP increases with the electrokinetic width and decreases with the interface
electric potential difference. This implies that such interface electric potential differences should be selected to obtain more SP from
the present two-layer fluid system for other given flow parameters. Moreover, it reveals that the interface electric potential differences
promote the potential to arrest the velocity gradient in the fluid–fluid interfacial region. The velocity encourages the transport of
mobile ions in the EDL. The reasons for this phenomenon include the following two aspects. Firstly, with the enhancement of the
positive value of interface potential difference, the upper fluid potential is greater than the bottom fluid potential at the liquid–liquid
interface. In other words, the electric potential of the upper fluid is greater than that of the lower fluid in y � 0. Thus, the upper
fluid velocity is greater than the bottom fluid. The SP is equivalent to the reverse electric field of the entire two-layer fluid system of
immiscibility, which has an inhibited effect on the flow velocity of the system’s entirety. Therefore, the larger the electric potential
difference is, the weaker the ion transport capacity will be, leading to a reduction in the SP.

Figure 4 shows the variation of SP with electrokinetic width for various ratios of fluid viscosity values through two-layer
immiscible Newtonian fluids. Figure 4a shows that K � 3 is the cut-off point of SP change, where the two sides show different
trends with the rising viscosity ratio. It is seen that SP decreases with fluid viscosity ratio initially, after attaining the median, and
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Fig. 2 Comparisons of the EKEC
efficiency between the present
result and that of Xie et al. [44]
when the pressure-viscosity
coefficient approaches zero

Fig. 3 The variations of SP with electrokinetic width K for different the interface electric potential difference ψ , when ε∗ � 0.008, μ � 2.0. a two-
dimensional graph, b contour plot

then increases gradually. A high viscosity ratio produces a high flow resistance for the moving liquid, resulting in a smaller velocity
amplitude. This is because the SP determined by the electrical potential is mainly concentrated at the EDL. On the one hand, when
the viscosity of the lower fluid remains unchanged, as the viscosity ratio increases, the viscosity of the upper fluid increases. The
increase in fluid viscosity hinders the movement of excess ions in the electrolyte solution, that is, the resistance generated by the
fluid viscosity increases, and fewer excess ions gather downstream, causing a smaller SP (K<3); when K>3, the opposite is true.

Figure 5 represents the variation of EKEC efficiency for different values of the interface electric potential difference ψ in a
two-layer immiscible Newtonian fluid. It can be observed that the magnitude of EKEC efficiency shows a decreasing trend with the
increase of interface electric potential difference. It is well known that the EKEC efficiency is the ratio of output power to input
power. This implies that the mechanical energy generated by the pressure drive and the chemical energy generated by the EDL
are greater than the generated electrical energy (here considered as SP). The electrokinetic width affects the electrical potential
distribution of EDL, which in turn affects the distribution of electroosmotic force and, in turn, the flow. Therefore, it is clear that
less energy is produced in the microchannel by the interface electric potential difference.

Figure 6 exhibits the EKEC efficiency for different ratios of permittivity, which tend to increase the EKEC efficiency in the
microchannel. The increase of the EKEC efficiency for the effect of the permittivity ratio is significant. When the permitting ratio
increases, the permittivity of upper fluid can be increased, resulting in the enhancement of upper fluid conductivity. This will cause
the enhancement of electroosmotic force. Thus, the velocity of the upper fluid can be enhanced, resulting in a large EKEC efficiency.
On the other hand, the increase in the permitting ratio will lead to improved free ion transport, resulting in a larger SP. Therefore,
the EKEC efficiency is also improved accordingly, which can be obtained from Eq. (87).
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Fig. 4 The variations of SP with electrokinetic width K for different the ratio of fluid viscosity μ at ψ � 1, ε∗ � 0.05. a two-dimensional graph, b contour
plot

Fig. 5 The variations of EKEC
efficiency with electrokinetic
width K for different the interface
electric potential difference ψ ,
when ε∗ � 0.9, μ � 1.1

Figure 7 depicts the result of EKEC efficiency as a function of the electrokinetic width for different viscosity ratios. It can be
observed that the magnitude of EKEC efficiency shows an increasing trend with the increase of electrokinetic width. A high viscosity
ratio will result in a greater flow resistance of the liquid, resulting in a decrease in velocity, which further leads to an increase in
EKEC efficiency. This is because the SP is mainly concentrated at the EDL, where we find a significant increase in the SP. Likewise,
the favorable pressure gradient provides a necessary driving force for EOF. This result indicates that it is feasible to improve the
efficiency of EKEC by increasing the viscosity ratio.

Figure 8 compares the EKEC efficiency in two-layer and that of single-layer fluid with normalized pressure-viscosity coefficient
changes. Compared to the single-layer fluid, the efficiency in a two-layer fluid is increased by up to 50% within the current range
of physical parameters when the normalized pressure-viscosity coefficient equals 0.001, as well as the EKEC efficiency decreases
in pace with the enhancement of K . Besides, with the increase of pressure-viscosity coefficient, the EKEC efficiency gap between
two-layer fluid and single-layer fluid is narrowing. Similarly, along with the multiplication of the pressure-viscosity coefficient, the
EKEC efficiency of both single and two layers shows a downward trend, which could keep pace with the research consequences of
Ref. [38]. This result indicates a possibility, where the EKEC can increase by using two immiscible fluid layers.

4 Conclusions

A theoretical model has been established in this study, which is driven by the pressure gradient, in two immiscible fluid layers
confined with parallel plate microchannels. The streaming potential and EKEC efficiency in the two fluid layers have been obtained
analytically, under pressure-dependent viscosities conditions. It has been verified that the asymptotic analytical solutions agree
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Fig. 6 The variations of EKEC efficiency with electrokinetic width K for different the ratio of the permittivity ε∗, when ψ � 0.5, μ � 1. a Two-dimensional
graph, b contour plot

Fig. 7 The variations of EKEC efficiency with electrokinetic width K for different the ratio of fluid viscosity μ at ψ � 0.5, ε∗ � 1.0. a Two-dimensional
graph, b contour plot

excellently with the result of Xie et al. [44]. Results show that the EKEC efficiency can be enhanced obviously by the permittivity
and viscosity ratios, the maximum efficiency is about 67% and 28%, respectively, but shows a decreasing trend with the interface
electric potential difference, the maximum efficiency is about 44%. This implies that more electrokinetic power output can be
obtained by altering the permittivity and viscosity. Furthermore, we company the EKEC efficiency in two-layer and that of single-
layer fluid. It is found that, for given flow parameters, the conversion efficiency of two-layer fluid systems can be higher than
that of single-layer fluid systems by up to 50%. Besides, the optimal ratios can also be obtained in the two-layer fluid system
and the conversion efficiency attains the maximum at these optimal ratios. Finally, to enhance the energy conversion efficiency,
the pressure-viscosity coefficient may be considered. The present theoretical result can be viewed as an efficiency validation for
complex electrokinetic flow in a two-layer fluid system. The optimal parameters can be used to design an electrokinetic energy
conversion device with high conversion efficiency.
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Fig. 8 Comparisons of EKEC
efficiency between two-layer fluid
and that of single-layer fluid at the
normalized pressure-viscosity
coefficient changes, where
two-layer fluid: ψ � 0.001, ε∗
� 0.5, μ � 0.5, Q � 0.001;
single-layer fluid: ψ � 0, ε∗ �
1.0, μ � 1.0, Q � 0
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Appendix A

n1 � − μC2h2
1

2(μh2 + h1)
+

α2C0μ

144(μh2 + h1)

⎧⎪⎨
⎪⎩

C2
0

12
h4

1 +
a2

1

2
h2

1 +
C0a1

3
h3

1 − 2a1ur Ēs

(
A1 sinh(K1h1)

K1
+

B1 cosh(K1h1)

K1

)

+
u2
r Ē

2
s

[
A2

1K
2
1

(
e2K1h1 − 4K 2

1h
2
1 + e−2K1h1

)
+ 4A1B1K 2

1 sinh(2K1h1) + B2
1 K

2
1

(
e2K1h1 + 4K 2

1h
2
1 + e−2K1h1

)]
16K 2

1

− 2C0ur K1 Ēs
[
A1
(
K1h1

(
eK1h1 − e−K1h1

)− 2eK1h1 − 2e−K1h1
)

+ B1
(
K1h1

(
eK1h1 + e−K1h1

)− 2eK1h1 + 2eK1h1
)]

2K 3
1

⎫⎪⎬
⎪⎭

+
α2D0h1

144(μh2 + h1)

(
u2
r Ē

2
s U

∗2
A2B2K2

2ε∗2 +
4ur ĒsU∗D0B2
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ε∗K2

)
(88)

123



  788 Page 16 of 19 Eur. Phys. J. Plus         (2024) 139:788 

m1 �n1

μ
− α2D0

144μ

(
u2
r E

2
sU

∗2
A2B2K2

2ε∗2 +
2ur EsU∗D0B2

ε∗K2
− 2b1ur EsU∗A2

ε∗

)

+
α2C0

144

(
u2
r E

2
s A1B1K1

2
+

2C0ur Es B1

K1
− 2a1ur Es A1

)
(89)

m2 � − 1

2
C2h

2
1 − m1h1 +

α2C0

144

⎧⎪⎨
⎪⎩

C2
0

12
h4

1 +
a2

1

2
h2

1 +
C0a1

3
h3

1 − 2a1ur Es

(
A1 sinh(K1h1)

K1
+
B1 cosh(K1h1)

K1

)

+
u2
r E

2
s

[
A2

1K
2
1

(
e2K1h1 − 4K 2

1h
2
1 + e−2K1h1

)
+ 4A1B1K 2

1 sinh(2K1h1) + B2
1 K

2
1

(
e2K1h1 + 4K 2

1h
2
1 + e−2K1h1

)]
16K 2

1

− 2C0ur K1Es
[
A1
(
K1h1

(
eK1h1 − e−K1h1

)− 2eK1h1 − 2e−K1h1
)

+ B1
(
K1h1

(
eK1h1 + e−K1h1

)− 2eK1h1 + 2e−K1h1
)]

2K 3
1

⎫⎪⎬
⎪⎭

(90)

n2 �m2 +
α2D0

144μ

(
u2
r E

2
sU

∗2(
A2

2 + B2
2

)
8ε∗2 +

4ur EsU∗D0A2

K 2
2

− 2b1ur EsU∗B2

ε∗K2

)

− α2C0

144

(
u2
r E

2
s

(
A2

1 + B2
1

)
8

+
4C0ur Es A1

K 2
1

− 2a1ur Es B1

K1

)
(91)

C2 � 3m1

−h1
+

6m2

−h2
1

+
α2C0

24h3
1

⎧⎪⎨
⎪⎩

C2
0

60
h5

1 +
a2

1

6
h3

1 +
C0a1

12
h4

1 − 2a1ur Es

(
A1 cosh(K1h1) + B1 sinh(K1h1)

K 2
1

)

+
u2
r E

2
s

[
A2

1K
2
1

(
e2K1h1 −e−2K1h1

2K1
− 4K 2

1 h
3
1

3

)
+ 2A1B1K1 cosh(2K1h1) + B2

1 K
2
1

(
e2K1h1 −e−2K1h1

2K1
+

4K 2
1 h

3
1

3

)]

16K 2
1

− 2C0ur K1Es
[
A1
(
eK1h1(K1h1 − 1) + e−K1h1(K1h1 + 1) − 2eK1h1 + 2e−K1h1

)]
2K 4

1

− 2C0ur K1Es
[
B1
(
eK1h1(K1h1 − 1) − e−K1h1(K1h1 + 1) − 2eK1h1 − 2e−K1h1

)]
2K 4

1

⎫⎪⎬
⎪⎭

− α2C0

24h3
1

(
u2
r E

2
s A1B1K1

8K 2
1

+
6C0ur Es B1

K 3
1

− 2a1ur Es A1

K 2
1

)
(92)

D2 �3n1

h2
− 6n2

h2
2

− α2D0

24h3
2

⎧⎪⎨
⎪⎩

D2
0

−60
h5

2 − b2
1

6
h3

2 +
D0b1

12
h4

2 +
2b1ur EsU∗

ε∗

(
B2 sinh(K2h2) − A2 cosh(K2h2)

K 2
2

)

+
u2
r E

2
sU

∗2[
A2

2K
2
2

(
3e−2K2h2 + 8K 2

2h
3
2 − 3eK2h2

)
+ 12A2B2K2 cosh(2K2h2) + B2

2 K
2
2

(
3e−2K2h2 − 8K 2

2h
3
2 − 3e2K2h2

)]
96ε∗2 K 3

2

− 2D0ur K2EsU∗[A2
(
e−K2h2(−K2h2 − 1) − eK2h2(K2h2 − 1) − 2e−K2h2 + 2eK2h2

)]
2ε∗K 4

2

− 2D0ur K2EsU∗[B2
(
e−K2h2(−K2h2 − 1) + eK2h2(K2h2 − 1) − 2e−K2h2 − 2eK2h2

)]
2ε∗K 4

2

⎫⎪⎬
⎪⎭

+
α2D0

24h3
2

(
u2
r E

2
sU

∗2
A2B2

8ε∗2 K2
+

6D0ur Es B2U∗

ε∗K 3
2

− 2b1ur EsU∗A2

ε∗K 2
2

)
(93)

123



Eur. Phys. J. Plus         (2024) 139:788 Page 17 of 19   788 

Appendix B:
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