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Abstract In 1993 Hocherman and Rosenau Hocherman and Rosenau (Phys D 67: 113-125, 1993) conjectured that long-wave
unstable Cahn–Hilliard-type interface models develop finite time singularities when the nonlinearity in the destabilizing term grows
faster at larger amplitudes than the nonlinearity in the stabilizing term. In 1998 Bertozzi and Puch (Comm. Pure App. Math. 51:
625–661, 1998) revised the conjecture for a class equations, often used to model thin films in a lubrication context, and proved the
global boundedness part of this conjecture. We shall prove the blow up part of this revised conjecture in the power law case in the
paper.

1 Introduction

In this paper we study the general fourth-order parabolic equation

ut � ∇ · (A(u)∇( f (u) − �u)), (1.1)

on a bounded (smooth) domain � in RN . Equations of this form arise quite common from the study of pattern formation in material
science, fluid dynamics and population dynamics whenever interfaces are involved.

A well-known one is the Cahn-Hilliard equation which describes the separation of phases in binary fluids(to see [1, 2]). In this
model the unknown u is the concentration of one fluid, A(u) ≡ 1, and f (u) − �u is the chemical potential.

Another model under intensive investigation recently is the thin film type equation (see the survey Oron-Davis-Bankoff [3])
where u in (1.1) (N ≤ 2) stands for the height of a thin film on a flat surface. Here the mobility A and external force f are certain
functions defined for u ≥ 0 where A is positive for positive u and vanishes at 0.

The well-posedness of (1.1) is usually studied under the Neumann and “no-flux” conditions

ν · ∇u � ν · ∇( f (u) − �u) � 0 on ∂�, (1.2)

where ν is the unit outer normal at the boundary. In some works the periodic boundary conditions are imposed.
When the functions A and f , and the initial data are sufficiently regular, there is a unique solution for (1.1) under (1.2) in some

maximal time interval (0, T ), T > 0. In many cases, T is finite and the solution demonstrates singular behavior as time approaches
T .

There are at least two types of such singular behavior. First, it is blow-up; more precisely, the solution becomes unbounded
at T . This happens, for instance, for some solutions to the Cahn-Hilliard equation when f is a cubic polynomial with negative
coefficients (Elliott-Zheng [4]). On the other hand, rupture may develop even the solution remains bounded. Starting with a positive
initial function, the thin film equation (A(u) � un , 1 < n < 3 and f � 0) admits a solution which touches down in finite time.
Subsequently the equation losses parabolicity and the fourth derivative of the solution becomes infinite ([5]). Rupture could also
happen due to the presence of driving forces. For the thin film equations with destabilizing forces, blow-up and rupture could happen
simultaneously ([5]).

To proceed further, we note that two basic properties of (1.1) under (1.2). First, we have the conservation law∫
�

u(x , t)dx �
∫

�

u(x , 0)dx . (1.3)

Second, there is a free energy associated to (1.1), namely,
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E(u) � 1

2

∫
�

|∇u|2+
∫

�

F(u),

where F is the primitive function of f with F(0) � 0. We have the energy dissipation relation

E(u(·, t)) +
∫ t

0

∫
�

A(u)|∇(− f (u) + �u)|2dxdt � E(u(·, 0)). (1.4)

In particular, the energy is a Liapunov function for (1.1).
With its strong physical background, (1.1) constitutes an important class of fourth order parabolic equations that deserves a

systematic study.
When A is a positive constant and f is the gradient of a double-well potential, the energy is bounded from below, and long

time solvability is rather easy to establish. Subsequently most works are concerned with issues like asymptotic behavior, spinodal
decomposition, and classification of the steady states. When A depends on the concentration, very few results are known. From the
expression for the energy, we see that it is bounded from below when the primitive of f is sublinear. In this case one expects that the
equation behaves nicely. On the other hand, the energy becomes unbounded when the primitve grows in a superlinear way, so the
solution may behave badly in this case. Taking f � −u p , one may compare (1.1) with the semilinear heat equation

ut � �u + u p , p > 1, (1.5)

which is the negative L2-gradient flow of the same energy. The classical result of Fujita [6] tells us that under the Dirichlet condition
some (nonnegative) solutions of (1.5) blow up in finite time. In view of this, one may guess that some solutions of (1.1) blow up in
finite or infinite time in the superlinear case while all solutions exist globally in the sublinear case. In fact, such assertion is made
precise by Hocherman and Rosenau in [7]. In this paper the authors propose a conjecture on the blow-up and long time existence of
solutions for a large class of general fourth order parabolic equations. When applied to (1.1), it states as,

Conjecture 1.1 Hocherman-Rosenau conjecture
Consider (1.1) (N � 1) under (1.2) where A(z) > 0, z ∈ R, and f ′(z) < 0 for z ≥ M, for some M. Then

lim
z→∞

∣∣∣∣ f (z)

z

∣∣∣∣ �
⎧⎨
⎩

∞, u blows up in finite time,
finite, marginally linear case,
0, the system has globally stable solution(s).

(1.6)

All results previously known support this conjecture. For instances, when A is a positive constant, [4] showed that when N ≤ 3
and f behaves like −z3 for large values of |z|, all solutions of (1.1) with sufficiently negative energy blow up in finite time. Their
results were further extended in N � 1 by Novick-Cohen [NC] to more general f . In Bernoff-Bertozzi [8], the Childress-Spiegel
equation (A � 1, f � −z − z2) was shown to have finite time blow-up with a self-similar singularity. The blow-up rate of the
solution was further studied in Bertozzi-Pugh [9] and Chou [10]. Very few results are known when A is non-constant. In Yin [11]
global solutions were obtained when A is positive and F is bounded from below.

In particular, for one dimension the thin film type equation, for simplicity, we consider power law case, i.e., the mobility A(u) � un ,
n > 0, and f ′(u)un � −um in (1.1), that is

f (u) � −q−1uq , q � m − n + 1.

For thin liquid films, the fourth-order term of (1.1) comes from surface tension between the liquid and air and also incorporates any
slippage at the liquid/solid interface [12].

Only nonnegative solution are interested. Using the conservation law (1.3) and Gagliardo-Nirenberg interpolation inequality it
can be shown that the energy is bounded from below if q < 3. This motivated Bertozzi and Pugh [13] to propose the following
modification of Hocherman-Rosenau’s conjecture for thin film type equation:

Conjecture 1.2 Modified Hocherman-Rosenau conjecture
Setting as above, assuming that f ′ ≤ 0, consider (1.1) under the periodic boundary conditions. Then

lim
z→∞

| f ′(z)|
z2 �

⎧⎨
⎩

∞ supercritical: blow-up possible,
finite critical case,
0 subcritical: solutions are globally bounded.

Moreover, finite time blow-up is possible when limz→∞
√
A(z) f ′(z) � −∞.

One may consult [13] for a heuristic argument leading to this conjecture. In the same paper they solved the conjecture in the
subcritical case. Next, in [14] and [15] the conjecture for the special case A(z) � z and f (z) � −zq , q ≥ 3 was studied when
the periodic condition is replaced by considering initial data with compact support. They showed that every weak solution of the
Cauchy problem blows up in finite time whenever its initial energy is negative.

Let us recall the definition of a weak period nonnegative solution:
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Definition 1.1 A nonnegative function u, P period function, in

L∞(0, T ; H1([0, P])) ∩ L2(0, T ; H2([0, P]))

a weak solution of (1.1) if for all φ ∈ F ,∫ T

0

∫ P

0
uφt �

∫ T

0

∫ P

0
A′uxφx (− f (u) + uxx ) +

∫ T

0

∫ P

0
Aϕxx (− f (u) + uxx ), (1.7)

where

F � {
ϕ : ϕt ∈ L2([0, P] × (0, T )), ϕ ∈ L2(0, T ; H2(�)), ϕ � 0 near t � 0, and T

}
.

There is a nonnegative period weak solution to see Bernis-Friedman [16], Bertozzi-Pugh [9, 13].
We note that the local existence of the positive solution implies that the solution is smooth, as A(u) ≥ a0(T ) > 0, (1.1) is

parabolic equation, and by using the Gagliardo-Nirenberg inequality, the L∞(0, T ; H1(�))- and L2(0, T ; H3(�))-norms of u can
be estimated by constants depending on ‖u‖L∞ , E(u0), T etc., in the case N � 1, 2. Moreover the energy dissipation relation (1.4)
holds.

Let us denote by Tmax the maximal existence time of the solution u,

Tmax � sup{T > 0, u(x , t) exist on [0, T ]},
the solution on [0, Tmax ) is called the maximal solution. In particular, if Tmax � ∞, we set T∞ � Tmax .

In the present article we consider the blow-up part of the Conjecture 1.2 in the case of power law. We rewrite the following the
thin film type equation, power law case,

ht � −(hnhxxx )x − (hmhx )x (1.8)

with initial date h|t�0� h0 > 0 and periodic condition h(x + P , t) � h(x , t). We have the conservation law∫
h(x , t)dx �

∫
h0(x)dx � c0.

The local existence of the positive period solution for h0 > 0 of (1.8) was proved by Bertozzi and Pigh, to see Theorm 3.3 in [13].
We recall the steady state solution hss of (1.8) if hss � h satisfies

hxxx − hm−nhx � 0, (1.9)

and ∫
hss �

∫
h0 � c0.

Note that

q � m − n + 1.

The energy

E(h) �
∫ P

0

(
1

2
h2
x − hq+1

q(q + 1)

)
dx ,

and the energy is decreasing:

dE(h)

dt
� −

∫ P

0
hn(hxxx + hm−nhx )2dx < 0,

moreover

E(h0) − E(h)(t) �
∫ t

0

∫ P

0
hn(hxxx + hm−nhx )2. (1.10)

For any given c0 > 0, let

γ ≡ inf

{
E(w) : w ∈ H1[0, P],

∫
w � c0, and w is a positive steady state of (1.8)

}
.

It is known (Laugesen-Pugh [17]) that the energy of every positive periodic steady state h is greater than or equal to the energy of
its average. We define, h � 1

P

∫ P
0 hdx � 1

P c0, then

γ (P , q , c0) ≡ E(h) � − cq+1
0

q(q + 1)|P|q < 0.

We shall prove the Conjecture 1.2 in the case of super-critical. Our main theorem is
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Theorem 1.1 Assume q > 3. Then the solution of (1.8) blows up at T∞ or at Tmax < ∞, for suitable initial date h0 > 0, with∫
h0 � c0 and h0 ∈ H1.

Remark 1.1 (1) In general, the blows up occur in limt↑Tmax ‖hxx‖L1 (t) � ∞, for example, the solution h of the Modified Kuramoto-
Sivashinsky equation, to see [8, 13].

(2) For thin film equation, the blows up occur in {(x , t) : h � 0}, because the equation (1.8) is degenerate parabolic equation, to
see [5].

(3) We choose initial data h0 such that

E(h0) < E(h0) � γ ,

then solution of (1.8) blows up.

2 The proof of theorem 1.1

First we note that the energy is decreasing:

dE(h)

dt
� −

∫ P

0
hn(hxxx + hm−nhx )2dx < 0,

moreover

E(h0) − E(h)(t) �
∫ t

0

∫ P

0
hn(hxxx + hm−nhx )2. (2.1)

We prove the theorem by contrary. If the maximal solution of (1.8) does not blow up in finite time. Further suppose that it is globally
uniformly bounded, or equivalently, there is some M > 0 such that

||h||L∞ (t) ≤ M for t ∈ (0, ∞),

then the fact that E(h)(t) ≤ E(h0) and ||h||L∞ (t) ≤ M implies

||h||H1 (t) ≤ C(E(h0), M , P).

So by (2.1) we have ∫ P

0
hn(hxxx + hm−nhx )2(t j ) → 0

for some series t j → ∞.

Suppose h(·, t j ) → hss(·), a steady state. Then hss satisfies

hxxx + hm−nhx � 0,

and hss is not equivelent zero as
∫ P

0 hss � ∫ P
0 h0 > 0, and hss is a nonnegative periodic steady state. Integrating, hss satisfies

hxx +
hq − D

q
� 0 (2.2)

with D � 1
P

∫ P
0 hq > 0.

On the other hand, since hss ∈ L∞ and ||hss ||H1≤ C , we know that hss ∈ C1/2, moreover by (2.2), hss ∈ C2, 1/2, by elliptic
equation regularity. So that there are two cases: (i) hss is positive periodic function; (ii) hss is a droplet with zero contact angle.

Case (i): If hss is a positive periodic nonconstant steady state, then by Theorem 6 of [17] we have

E(hss) > E(hss).

where hss � 1
P

∫ P
0 hss , and

E(hss) � −P
hss

q+1

q(q + 1)
� − Ph0

q+1

q(q + 1)
� γ (P , q , c0).

Case (ii): If hss is a droplet with zero contact angle, then hss satisfies (2.2). Since D > 0 for q ≥ 3, we can rescale the solution hss
as follows

K (x) � D−1/qhss(D
1

2q − 1
2 x)

and K satisfies
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Kxx +
Kq − 1

q
� 0.

We fix the solution by requiring that K attains its minimum height 0 at x � 0, K ′(0) � 0. Then we have

1

2
K 2
x +

1

q
[
Kq+1

q + 1
− K ] � 0. (2.3)

Define

H (K ) � 1

q
[
Kq+1

q + 1
− K ].

We have

E(K ) � 1

q

∫ P

0
K − 2

q(q + 1)

∫ P

0
Kq+1.

Since the maximum value β of K must satisfy

2H (β) � K ′(0)2 � 0

we have β � (1 + q)
1
q . From dx

dK � 1√−2H (K )
we obtain

qE(K ) � 2

[ −2

q + 1

∫ β

0
Kq+1 dx

dK
dK +

∫ β

0
K

dx

dK
dK

]

� √
2q

⎡
⎣ −2

q + 1

∫ β

0

Kq+1dK√
K − Kq+1

q+1

+
∫ β

0

KdK√
K − Kq+1

q+1

⎤
⎦

�
√

2

q
(1 + q)3/(2q)

∫ 1

0

x
3

2q ( 1
x − 2)√

1 − x
.

Define

Iq �
∫ 1

0

x
3

2q ( 1
x − 2)√

1 − x
.

Then

I3 �
∫ 1

0

x1/2( 1
x − 2)√

1 − x
� 0.

We shall prove that Iq ≥ I3 � 0 for q ≥ 3 in following.
In deed,

d Iq
dq

� 3

2q2

∫ 1

0

x
3

2q |ln x |( 1
x − 2)√

1 − x
dx

� 3

2q2

⎡
⎣

∫ 1/2

0

x
3

2q |ln x |( 1
x − 2)√

1 − x
dx −

∫ 1

1/2

x
3

2q |ln x |(2 − 1
x )√

1 − x
dx

⎤
⎦

� 3

2q2 [A − B].

For x ∈ (0, 1
2 ] we first have

− ln x ≥ 2(1 − x)2.

So

A �
∫ 1/2

0

x
3

2q |ln x |( 1
x − 2)√

1 − x
dx

≥
∫ 1/2

0
x

3
2q (

1

x
− 2)2(1 − x)3/2dx
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≥ 1√
2

∫ 1/2

0
x3/(2q)

(
1

x
− 2

)
dx

� 1√
2

4q2

3(2q + 3)

(
1

2

)3/(2q)

.

For B we use the inequality

ln x ≤ 2(1 − x) for x ∈ [
1

2
, 1].

B �
∫ 1

1/2

x
3

2q |ln x |(2 − 1
x )√

1 − x
dx

≤ 2
∫ 1

1/2
x3/(2q)

√
1 − x(2 − 1

x
)dx

≤ √
2

∫ 1

1/2
x3/(2q)(2 − 1

x
)dx

� √
2

[
2q(3 − 2q)

3(3 + 2q)
+

4q2

3(3 + 2q)
(
1

2
)3/(2q)

]
.

Thus

A − B ≥ 1√
2

4q2

3(2q + 3)

(
1

2

)3/(2q)

− √
2

[
2q(3 − 2q)

3(3 + 2q)
+

4q2

3(3 + 2q)

(
1

2

)3/(2q)
]

� 2q

3(2q + 3)

[(√
2 − (

√
2 − 1√

2
)

(
1

2

)3/(2q)
)

2q − 3
√

2

]

>
2q

3(2q + 3)

[(√
2 − (

√
2 − 1√

2
)

)
2q − 3

√
2

]

� 2q

3(2q + 3)

√
2(q − 3)

≥ 0.

Turing back to the energy E(hss), we get

E(K ) � D−( 1
2 + 3

2q )E(hss).

So

E(hss) ≥ 0, for q ≥ 3.

If we can choose the initial date h0 > 0 such that

E(h0) < E(h0) < 0,

(see following Lemma 2.1) then we get a contrary.
We have

Lemma 2.1 There exist two positive constants l0 and α0 large enough such that h0(x) � l0 exp(−(x − P/2)α0) satisfies E(h0) <

E(h0).

Proof Suppose h0(x) � l exp(−α(x − P/2)). Then∫ P

0

1

2
h2

0x � l2α

4
(eαP − e−αP ),

∫ P

0
hq+1

0 � lq+1

α(q + 1)
(e(q+1)Pα/2 − e−(q+1)α/2).

h0 �
(
l(eαP/2 − e−αP/2)

αP

)q+1

.

Then

E(h0) � αl2

4
(ePα − e−Pα) − lq+1

q(q + 1)2α
(e(q+1)Pα/2 − e−(q+1)Pα/2),
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E(h0) � − P

q(q + 1)

(
l

P

)q+1(ePα/2 − ePα/2

α

)q+1

.

Define

A(α) � 1

q(q + 1)Pq

(
ePα/2 − e−Pα/2

α

)q+1

,

B(α) � 1

q(q + 1)

e(q+1)Pα/2 − e−(q+1)Pα/2

α
.

Then

lim
α→∞

A(α)

B(α)
� 0.

So there exists a α0 > 0 such that A(α0) < 1
2 B(α0). Now for fixed α0,

lim
l→∞

E(h0)

E(h0)
� A(α0)

B(α0)
> 2.

Thus we can take l0 > α0 such that for h0(x) � l0 exp(−α0(x − P/2))

E(h0) < E(h0).

The proof is finished. �
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