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Abstract The linear properties of the global instability induced by the circulating EPs with double rational surfaces are investigated
by solving the eigenvalue equation. The top-hat structure of global energetic particle modes (EPMs) is generated in a cases with weak
mode coupling, like the double kink mode. As mode coupling increases, a single peaking mode structure near the resonant surface
emerges. In reversed magnetic shear plasmas, global instability exhibits a strong dependence on the value of qmin and position rmin

related to the minimum safety factor q , which may lead to mode conversion, such as between EPMs and Alfvén eigenmodes.

1 Introduction

In the pursuit of high confinement mode in fusion devices, the use of high-power auxiliary heating, such as neutral beam injection
(NBI) and electron cyclotron resonance heating (ECRH), is common [1–3]. However, these external agents can introduce energetic
particles (EPs), leading to instability [4–8]. These EP-driven instabilities remove impurities from the core and reduce heating
efficiency by causing a significant loss of EPs [9–12]. Therefore, investigating of energetic particle modes (EPMs) driven by EPs is
crucial for understanding their properties and improving plasma confinement.

In the fusion device, the steady-state operating scenario characterized by reversed magnetic shear is generally regarded as an
advanced operation mode [2, 3, 6–8]. A hollow current distribution is induced by an off-axis current drive, such as neutral beam
current drive, resulting in the safety factor q > 1 and magnetic shear s < 0 [2, 3]. In this configuration, tearing and kink modes are
usually stable because the lower-order rational surfaces of q � 1 and q � 2 are avoided [13, 14]. However, many circulating EPs
generated by the tangential injection of NBI may still drive fishbone-like or non-resonant modes at q > 1 or q � 2 [15–19]. These
high-frequency instabilities are typically excited more easily and lead to rapid loss of EPs, significantly reducing plasma confinement.
In recent decades, this issue has received extensive attention in related research [20–25]. The linear dispersion relation of the m/n �
1 mode for a reversed magnetic shear configuration has been theoretically described in references [19, 20], where m and n represent
poloidal and toroidal mode numbers, respectively. Helander et al. have also investigated the fishbone-like modes with m/n � 1/1
[18], assuming a fixed mode structure. However, the value of EP-beta significantly influences the mode structure. Specifically, when
value of EP-beta is large, the singularity of the mode structure is disrupted, such that the top-hat structure hypothesis does not apply
as expected. Moreover, while most theoretical studies have concentrated on instabilities driven by trapped EPs, less attention has
been given to circulating EPs. Recent experimental observations have revealed that circulating particles can trigger a fishbone-like
mode instability. Therefore, further study is necessary to understand the influence of the EPM instability of m/n � 2/1 excited by
the circulating EPs in a reversed shear configuration.

In this study, the excitation of EPM by energetic ions under a reversed shear configuration withm/n� 2/1 was simulated by solving
the eigenvalue equation, which preserves the self-consistent variation of the mode structure. The rest of this paper is organized as
follows. Section 2 presents the eigenvalue equations including magnetohydrodynamic (MHD) and EPs; In Sect. 3, the effects of EP
parameters and the coupling strength of rational surfaces on the growth rate and frequency of EPM are discussed through numerical
analysis of the eigenvalue equation. Finally, Sect. 4 presents the conclusions.
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2 Model and basic equations

The eigenmode equation of EP-driven instabilities with arbitrary m/n is presented in this section. The linear momentum equation in
fluid approximation can be expressed as [10, 26]

ρm
∂2

∂t2 ξ � −1

c
(δ j × B + j × δB) − ∇δpc, (1)

where ρm � n0mi is the mass density with mass mi and density n0 of background ions,t is the time, the radial displacement vector
ξ � ξ(r)exp

[
i(mθ + kz − ωt)

]
with kz � −n/R, R is the major radius, θ is poloidal angle, ω � ωr + iγ is the frequency with

ωr and γ being mode frequency and growth rate, c is the speed of light, δ j is the perturbed current density, B is the magnetic
field, j is the current density, δB is the perturbed magnetic field, δpc is the perturbed plasma pressure. The equation of state can be
approximately expressed as a linear relationship, given by δpc � −�p∇ · ξ − ξ · ∇ p, where the plasma is incompressible ∇ · ξ � 0,
� is the adiabatic index, p is the equilibrium plasma pressure. The perturbed kinetic energy’s inertia term takes the form of [10]

δK � πB2
0

2R

−(1 + 
)ω2

ω2
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0
dr |ξ |2, (2)

where the plasma inertia enhancement factor for the collisionless regime 
 ≈
[(

1.2/ε
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)
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]
q2 with ε1 ≡ rs

/
R

and rs being the radial location of the singular layer [27], ωA is the Alfvén frequency, a is the minor radius. For the energy equation,
including the EP effect,

δK + δWMHD + δWK � 0, (3)

where δWMHD and δWK are contributions of MHD and EPs on the perturbed potential energy, respectively. Due to the focus of this
paper on EPM instability driven by EPs and its primary discussion of the dynamic effects caused by these particles, the contribution
of fluid term to perturbation potential energy is disregarded. According to Betti et al. theory, the potential energy of circulating EPs
can be expressed as follows [15–17]:s

δWK � 2π2R0mhq2
s

ωcrmin2ξ2
0 B

2
0 (|s1| + |s2|)2

∑

σ

∫
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∫
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v2⊥
2
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2

(4)

where ωc is the cyclotron frequency, mh is the fast ion mass, the fast ion kinetic energy E � mhv
2/2, � ≡ μB0/E with μ being the

magnetic moment, v is the velocity of energetic ions, ω∗h � (∂Fh/∂Pφ)(∂Fh/∂E)−1 is the energetic ions diamagnetic frequency,
Fh is the mean-field distribution function of energetic ions, Pφ is the toroidal angular momentum withPφ � mhv‖R + (e/c)ψ , τb
is the transit time of particles, 〈...〉 means the particle orbital average, κ � B−2∇⊥(B2/2 + 4πp) is curvature of magnetic field
lines,σ � v‖/

∣∣v‖
∣∣, v‖ and v⊥ are the velocity of a EP along and perpendicular to the magnetic field, respectively. Applying variational

and asymptotic matching to Eq. (3), we can obtain the eigenvalue equation for the m/n ≥1 mode [13–15]:
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where F(x) � 1
π

{
10x − 8x

3
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[
tan−1 1√
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x

]
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,

Cm+1 � −n2(m + 1)(2 + m + bm+1)(2 + m + cm+1)

2m2[(m − bm+1)(2 + m + cm+1) − (m − cm+1)(2 + m + bm+1)]
,

Cm−1 � −n2(m − 1)(2 − m + bm−1)(2 − m + cm−1)

2m2
[
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Fig. 1 a The q-profiles for cases 1
and 2; b the mode frequency and
growth rate as a function of βh

with bm±1 � r1

ξ
(m±1)
1 (r1)

dξ
(m±1)
1
dr (r1−) and cm±1 � r2

ξ
(m±1)
1 (r2)

dξ
(m±1)
1
dr (r2+), rs1 and rs2 are the radial position of two rational surfaces, s1

and s2 represent the magnetic shear on the two rational surfaces. ωsi � |si |v2‖/(ωc R0rsi ). 
rb is the orbit width of EPs. A � −β′Rq2

with β′ ≡ dβ/dr . The background plasma beta has a form of β � 8πp/B2
0 . βE is the EP beta. [17].

3 Numerical results

In this section, the eigenvalue equation Eq. (5) is solved using the shooting method. The safety factor distribution used in the
calculation is specified for the reversed shear configuration.

q � qmin + (q1 − qmin) × (r − rmin)
λ (6)

where q1 � 7.0, rmin � 0.45, and λ � 2. Moreover, qmin is the minimum value of q with the radial position rmin . The two rational

surfaces with q � 2 are located at r1,2 � rmin ±
√

qs−qmin
q1−qmin

. Figure 1a shows the safety factor q-profile, where case 1 and case

2 represent the weak and strong coupling scenarios, corresponding to qmin � 1.8 and qmin � 1.95, respectively. For parameters
similar to those of the ASDEX Upgrade [6, 28, 29], the major radius R � 1.6m, the minor radius a � 0.5m, the magnetic field
B ≈ 1.0T , the plasma density ni ≈ 5.31 × 1019m−3, and the Alfvén frequency ωA ≈ 2.99 × 106s−1. The plasma beta profile was
chosen according to the following equation. β(r) � β0

[
1 − (r/a)2

]
with β0 being the pressure value at the axis. Additionally, the

distribution of beta of EPs was as per the following formulation. βE (r) � βhe−( r
σ

)4
, where βh is the EP beta at the magnetic axis

and σ is the radial width of the beam distribution. In this work, σ � 0.6 and β0 � 0.01.
When the distance between rational surfaces is sufficiently large, decoupling the two rational surfaces causes the mode to

degenerate into two single tearing modes [30–32]. Conversely, when distance between rational surfaces is sufficiently small, mode
coupling intensifies and forms a characteristic top-hat mode structure [30]. Usually, EPs stabilize tearing mode instability, but a
sufficient number of EPs can drive new instabilities [33, 34]. Here, we examine case 1 and case 2 separately, corresponding to the
weak and strong mode coupling scenarios, respectively. The growth rate of the instability exhibits an almost linear dependency on
βh , which represents the ratio of the pressure of the EPs to the magnetic pressure, in Fig. 1b. For the case of small βh values, the
mode remains stable in case 1. However, in case 2, the mode has a significantly high growth rate and a low threshold βh, c value.

In general, for EPM, the precession drift of EPs results in a mode frequency ω > 0 to intersect with the Alfvén continuum
spectrum, causing a shift in resonance location as per the following relation. k‖ � (mq − n)/R �� 0 [35–40]. This leads to the
appearance of a double-step mode structure near the rational surface [38–41]. Figure 2a shows that an increase in βh can disrupt
the singularity of the rational surface and significantly broaden the mode structure due to the finite mode frequency. The Alfvén
continuum spectrum is depicted in Fig. 2b. The position of the intersection between the mode frequency and the Alfvén continuum
spectrum satisfies the following relation. 2/q − 1 � ±ωr/ωA. In case of positive shear with q � 1 + 2r and ωr/ωA � 1, two
resonant layers are expected near the rational surface with a spacing approximately equal to 
rs ≈ 2ωr/ωA.

In Fig. 2(c), the mode is marginally stable when βh ∼ 0.0002. As βh increases, the resonant layer broadens, and the mode
frequency increases. Meanwhile, the mode structure begin to interact and couple each, similar to the behavior of a 2/1 mode with a
single rational surface [19]. Figure 2d shows the mode frequency corresponding to the threshold of instability, where βh � 0.02%.
The maximum value of the m � 2 branch of the Alfvén continuum spectrum is estimated as follows. ωmax

ωA
� 2

qmin − 1 ∼ 0.0256
at r � rmin. Since the Alfvén continuum damping is minimized for ωr� ωmax and βh > 0.01, the growth rate of the instability
increases. Finally, the peak of mode structure is located at r � rmin. This result is similar to a reversed shear Alfvén eigenmode [38].

Since the distance 
r between the two resonant surfaces, � 2
√

qs−qmin
q1−qmin

, directly affects the coupling strength of the mode, it alters

the frequency and growth rate of the mode [22]. In this study, we considered a range of values for the distance 
r between the two
resonant surfaces, where0.2 � 
r � 0.4, with qmin ranging from 1.8 to 1.95. Figure 3 shows that due to enhanced mode coupling,
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Fig. 2 a Normalized radial
displacement of the mode for case
1, where the real and dashed lines
represent the real and imaginary
parts of the displacement. b the
Alfvén continuum spectrum and
mode frequency (dashed line),
where the red, green, and blue
lines correspond to m � 2,3,4 (the
same below), respectively,
βh � 0.008. c Normalized radial
displacement of the mode for case
2. d the Alfvén continuum
spectrum and mode frequency
(dashed lines) for case 2,
βh � 0.02%

Fig. 3 The mode frequency and
growth rate as a function of qmin

the growth rate almost linearly increases withqmin . The frequency of the mode approaches the transit frequency of circulating EPs,
which is represented as follows.ωt/ωA ∼ 0.01 ∼ ωr/ωA. This frequency range is also comparable to the results observed in cases
with positive magnetic shear [42–45]. It should be noted that whenqmin > m/n, an Alfvén continuum spectrum ωmin > 0 exists
at an r � rmin. In this scenario, mode conversion into a non-resonant mode withωr< ωmin , can be driven by the circulating EPs.
However, in Betti’s model, the finite magnetic shear at the rational surface (|s1|, |s2| �� 0) is required. Therefore, the theoretical
model used here is not suitable for non-resonant modes where q � m/n [19, 21].

Figure 4(a) shows that the top-hat structure gradually degenerates due to the enhanced coupling between the rational surface
and the influence of EPs. It is especially evident near the outer rational surface, where the singularity at the resonance layer almost
completely disappears. When the resonant layers merge ultimately, a 2/1 global mode structure with Im(ξ ) exhibiting a single peak
value emerges. It is worth noting that although the frequency of the mode remains almost constant in Fig. 4b–e, the maximum
value of the m � 2 branch of the Alfvén continuum spectrum decreases significantly. In the strong coupling cases of qmin � 1.98
and ωr/ωA(∼ 0.02) > ωmax/ωA(≈ 0.01). Hence, under the reversed magnetic shear configuration, the mode properties are more
sensitive to qmin , which can lead to some mode transitions, such as between EPM and Alfvén eigenmodes. This sensitivity could
provide a theoretical explanation for early experimental results [6–8].

Moreover, off-axis external heating could also cause a radial shift of the mode [2, 3]. The effect of rmin on the EPM also shown in
Fig. 5a–b, where qmin � 1.98 is fixed. It can be observed that when the rational surface moves outward, the growth rate and frequency
of instability decrease rapidly until the mode becomes completely stable. When the rational surface is close to the boundary, the
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Fig. 4 a Normalized radial
displacement of the mode for
qmin � 1.8,1.85,1.9,1.98, where
the solid line represents the real
part of the displacement and the
dashed line represents the
imaginary part of the
displacement; b–e Alfvén
continuum spectrum and mode
frequency (dashed lines) for
qmin � 1.8,1.85,1.9,1.98,
respectively

Fig. 5 a The q-profiles for
rmin � 0.15,0.3,0.5; b The mode
frequency and growth rate as a
function of rmin and βh � 0.0005

Fig. 6 a Normalized radial
displacement of the mode for
different rmin ; b–d the Alfvén
continuum spectrum and mode
frequency (dashed lines) for case 2
with rmin � 0.15, 0.3, 0.5,
respectively

growth rate γ < ωr . However, in the core region with rmin < 0.3, the growth rate γ � ωr , indicating a potential change in the
nature of the mode.

Figure 6 demonstrates that a pronounced singularity occurs in the resonance layer near the boundary when the mode is marginal
unstable. Within the region r < r1, there is a transition in the real part of the mode structure from ξ ∼ rm to ξ ∼ rm−1. Simultaneously,
the imaginary part of the mode structure becomes negative, like the feature of EP-driven interchange modes [46, 47]. As can be
seen from Fig. 6b–d, the frequency of the mode increases significantly as the unstable resonance region moves inward. When the
mode is close enough to the core, it may no longer exhibit the characteristics of an m/n � 2/1 EPM, but may transforms into an
instability like the reversed shear Alfvén eigenmode (ωr� ωmax ) as shown in Fig. 6b. This result suggests another possibility for
mode conversion. When rmin decreases due to factors like off-axis external heating, the type of instability may also change along
with variation in mode frequencies [48, 49].

4 Conclusions

In this paper, we derived the eigenvalue equation for the m/n � 2/1 energetic particle mode driven by the circulating EPs and solved
it using the shooting method. The main conclusions are as follows:
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1. we observed a global double top-hat mode structure of EPMs driven by circulating EPs reminiscent of double kink modes for
weak mode coupling. In contrast, strong mode coupling results in the merging of modes into a global instability characterized
by a single peaking mode structure at the resonant surface. It highlights the substantial impact of mode coupling on the growth
rate of the mode.

2. As qmin increase, the mode frequency also increases. It occurs because the damping of the continuous Alfvén spectrum is
minimized near ωr ∼ ωmax , and the spatial distribution of the mode resembles that of reversed shear Alfvén eigenmodes.

3. The radial position rmin can also influence the mode frequency and growth rate. As the unstable resonance region moves
inward, the frequency increases significantly. Particularly when the mode approaches the core, its structure resembles that of an
interchange-like mode structure.

In this study, the small orbit radius approximation was employed, where |s1| and|s2| �� 0. However, in cases of strong mode
coupling, where |s1|, |s2| ∼ 0 at qmin ∼ m/n, or for non-resonant modes with q � m/n, it will be necessary to develop a new
theoretical model in the future [50–52].
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