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Abstract In this work, we present an iterative method for gravitational collapse in higher dimensions. A framework is developed
in a post-quasi-static regime with non-comoving coordinates. The internal five-dimensional system is smoothly matched with
the corresponding outer Vaidya space-time over the boundary surface (BS). This correspondence provides a set of dimensionless
surface equations in higher dimensions. The physical quantities such as Doppler shift, luminosity, and redshift at the BS of gravitating
systems can be described through these surface equations. This procedure offers valuable insights that facilitate comprehension of
the behavior of compact objects.

1 Introduction

There has been a lot of interest in the expansion of general relativity (GR) to higher dimensions in recent years. The Kaluza–Klein
(KK) five-dimensional and higher manifolds are employed in a variety of gravitational theories that go beyond Einstein’s GR. A
few decades after the development of special relativity, KK [1, 2] proposed the presence of an additional spatial dimension as an
extension of the relativistic theory. They did this because they wanted to provide a five-dimensional metric that would describe
electromagnetic and gravity together. They looked at the characteristics of matter in KK theories in the extensive study done in this
field following the presentation of KK by Wesson’s [3]. The dependence of the theory of gravitation and cosmology in the fifth
dimension on space-time matter theories has been increasing, as stated in reference [4]. In higher dimensions, Liu and Overduin [5]
looked at the outcomes of light deflection and temporal delays for massless test particles.

The investigation of more than four-dimensional gravstars was also carried out by Rahaman et al. [6].
In general relativity, spherically symmetric solutions are significant for the investigation of compact objects. The Einstein

field equations (EFEs), which are among the most straightforward and accurate models available, can be used to predict the
gravitational fields of astronomical bodies. In fact, spherically symmetric exact solutions to EFEs have been investigated the
most. The Schwarzschild solution estimates the gravitational field surrounding a stationary, spherical, compact object [7]. The
Schwarzschild, Reissner–Nordström, and Kerr solutions were examined by Myers and Perry in the context of higher-dimensional
space-times [8]. In higher dimensions, Wyman’s approach was discussed by You-Gen Shen and Zhung-Qiang Tan [9]. A spherically
symmetric KK-type metric exterior solution was found by Chatterjee [10].

Oppenheimer and Snyder’s [11] ground breaking research encouraged scientists to explore the relativistic features of gravitating
objects and their internal composition. This interest stems from the fact that GR is predicted to be a significant factor in the
observable occurrence of massive star gravitational collapse (GC). Chodos and Detweiler [12] presented a spherically symmetric,
time-independent solution to the five-dimensional vacuum EFEs in standard three-dimensional space. Their technique was based
on the assumption that a killing vector existed in a higher dimension. Kerr [13] examined the real physical bodies form black
holes, singularities were not present. Roger Penrose postulated that imprisoned surfaces produce light rays of finite affine length,
which Hawking and Penrose later demonstrated to be genuine singularities. However, counterexamples in the Kerr metric, which
are asymptotic to at least one event horizon, do not result in singularities.
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Vaz [14] studied that there is no need for Hawking radiation to be pure for effective field theory to hold outside of a stretched
horizon and for infalling observers to notice nothing out of the ordinary for the black hole complementarity paradox to hold. They
contend that the firewall breaches quantum gravity’s CPT invariance and violates the equivalence principle. They provide evidence
in favor of Hawking’s conclusion in a quantum gravitational model of dust collapse, demonstrating that two separate and complete
solutions of the Wheeler–DeWitt equation must be combined to achieve continuous collapse to a singularity. Such a combination is
prohibited by this interpretation, which results in a picture of matter condensing during quantum collapse on the apparent horizon.

Corda [15] developed the Schrödinger equation of the Schwarzschild black hole. The black hole is made up of an electron
and a central field, and at the Schwarzschild scale, quantum gravity effects change the black hole’s semi-classical structure. The
Schrödinger equation for the hydrogen atom’s states can be used to solve the equation. Like the Rydberg constant and fine structure
constant, the quantum gravitational quantities have discrete spectra and are dynamical quantities. Often referred to as “gravitational
hydrogen atoms,” black holes are precisely characterized by quantum gravitational systems. The gravitational energy of a spherically
symmetric shell is the potential energy in the black hole Schrödinger equation; as a result, black holes lack horizons, singularities,
and information loss through evaporation, complexity, and firewall paradox. Corda [16] also determines the black hole mass and
energy spectra using a Schrodinger-like method, confirming Vaz’s conclusion that a compact “dark star” held up by quantum gravity,
similar to conventional atoms, is the outcome of gravitational collapse. The generalized uncertainty principle is used to estimate the
maximum density of Vaz’s shell.

The phenomenon of GC has also been studied in different theories of gravity. The stability of a limited class of anisotropic
axial symmetrical compact geometry under f (R, T ) gravity is investigated by Bhatti et al. [17], where T is the trace of the energy-
momentum tensor, and R is the Ricci curvature. The collapse equation is assessed using a perturbation technique after field and
non-conservation equations have been set up. In the Newtonian and post-Newtonian approximations, significant limits are provided
for the stiffness parameter � to examine the dynamical instability of a stellar compact structure. The phenomenon of GC has also
been studied in different theories of gravity. In the nonminimally connected f (R, T ) theory of gravity, Bhatti et al. [18] investigate the
dynamical instability of charged spherical fluid structures under anisotropic conditions. It looks at continuity equations and modified
field equations, analyzing how minor adjustments to material and geometric features impact the fluid’s collapse structure. The study
examines unstable eras using approximations based on Newtonian and post-Newtonian theories. Throughout the evolutionary
process, unstable structures/phases are caused by dark source terms owing to f (R, T ) gravity, and the stiffness parameter � has a
substantial impact on identifying unstable phases.

The investigation conducted by Barnafoldi et al. [19] involved the study of neutron stars with higher dimensions that included
compactified excitations in the fifth dimension. The study proposed a fundamental concept of a compact star, implying that neutron
stars with extradimensional cores are similar entities. The stability region in the case of extra dimensions where KK models could
be observed was found to have a well-defined and similarly structured shape, as predicted by the Tolman–Oppenheimer–Volkoff
(TOV) equation.

In his research, Paul [20] examined compact star solutions in higher dimensions that maintained hydrostatic equilibrium with
spherical symmetric space-time. His findings revealed that the star’s central density was directly influenced by the existence of higher
dimensions. The density of a star’s core increases proportionally to the square of its spatial and temporal dimensions. Consequently,
for stars possessing more than four dimensions of space-time, the central density is comparatively higher for a given radius. Moreover,
it is apparent that if there are more than four dimensions of space-time, a compact star with greater mass can exist for a given radius.
The incorporation of an extra-temporal dimension was initially introduced by Bars and Terning [21], who used gauge symmetry as
the foundation for their solution. By utilizing an extra time-dependent coordinate, they established a comprehensive framework and
discovered that the findings were in agreement with the conventional models of GR.

Chattopadhyay and Paul [22] conducted a study to investigate compact stars under hydrostatic equilibrium conditions in higher
dimensions. To do this, they employed a pseudospheroidal space-time metric in their investigation. This observation suggests that
in higher-dimensional space-times, the gravitational forces become stronger, which leads to a denser and more compact core for
a star of a given radius. This result highlights the impact of the number of dimensions of space-time on the properties of compact
objects and has significant implications for the understanding of gravity and the behavior of stars in higher dimensions.

In their research, Bhar et al. [23] put forth evidence that indicated the presence of anisotropic compact stars in dimensions
exceeding those of commutative space-time. The authors noted that model parameters, including radial and transverse pressures,
matter-energy density, and anisotropy, exhibited uniform physical behaviors across the entire star structure. Additionally, they noted
that as the dimensions of space-time increased, the central densities of the stars decreased sharply, while the level of anisotropy
gradually increased and peaked at five dimensions.

Despite the usefulness of the static or quasi-static (QS) approximation in studying self-gravitating compact objects, there are
some phenomena that cannot be accurately described by this approach. For instance, when a neutron star undergoes a quick collapse,
non-equilibrium effects must be taken into consideration. To address this issue, Herrera et al. [24] introduced the PQS approximation,
which was later extensively used by Herrera and his colleagues [25]. The PQS approximation differs from the QS approximation in
that it uses “effective” variables rather than physical ones, such as effective pressure and energy density. This technique can be viewed
as an iterative process, with each step deviating from equilibrium in increasing proportions. One approach to implementing the PQS
approximation is through the radiative Bondi approach, which immediately takes the system from a static to a PQS evolution. The
QS approximation can be considered as an iterative process; nevertheless, because the effective variables are the same as the physical
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variables. As an example, in reference [26], the authors utilized a method to simulate the evolution of self-gravitating bodies, which
eliminates the need for fully integrating the EFEs in the time dimension.

Numerical techniques have proved to be useful for mathematicians in studying complex systems that are challenging to analyze
analytically [30]. In particular, they have been effective in investigating strong field scenarios and revealing unforeseen phenomena
in general relativity [27]. However, it is generally more difficult to solve partial differential equations numerically than ordinary
differential equations (ODEs). To investigate self-gravitating spheres, the authors used a numerical method to develop a system of
ODEs with variables determined at the BS of the fluid distribution. The researchers began with a seed solution to the EFEs that were
static and spherically symmetric [27]. The numerical solution obtained describes the dynamic evolution of self-gravitating compact
objects, with the initial solution representing the results of the static limit.

The study of GC is of great importance in the framework of various gravity theories associated with the five-dimensional system
with smooth junction conditions at the boundary surface with the external Vaidya space-time. In their research of gravitational
junction conditions for f (G, T ) gravity, Bhatti et al. [28] presented the theory in both its derived dynamically equivalent scalar–tensor
representation and its standard geometric representation. The established junction conditions for smooth matching between two space-
times across a separation hyper-surface, preventing thin-shells, and providing a foundation for smooth matching model searching
at the surface of alternative compact structures supported by thin-shells. The “cut and paste” method for static thin-shell wormhole
models is investigated by Bhatti et al. [29]. They analyze the stability and instability of these models under isotropic perfect fluid
and polytropic equation of state while taking mass and parametric factors into account.

The study’s goal is to investigate how compact objects evolve in a five-dimensional space-time during the PQS regime. The
researchers concentrate on a radiative fluid distribution where dissipative effects are brought about by photon and/or neutrino
emission. Compact object evolution frequently involves dissipation, with neutrino emission being the most effective method of
eradicating the binding energy created during the formation of a collapsing star. The analysis of radiative transport in stellar objects
frequently makes use of two additional approximations, diffusion and streaming out. The diffusion approximation, like thermal
conduction, assumes that the flux of energy radiation is roughly proportional to the gradient of temperature. This approximation is
frequently accurate because the mean free path of particles involved in energy transfer within star interiors is usually much shorter
than the normal length scale of the object. The average free path of photons in a star like the sun, for instance, is roughly 2 cm. For
compact cores with densities near 1012 g cm−3, trapped neutrinos have a mean free path that is smaller than the size of the star’s
core, as reported in [31, 32]. Furthermore, observations from the 1987A supernova showed that the streaming out limit [33] is more
distant from the dominating radiation transport regime during the emission phase than the diffusion approximation.

The significance of GR and its alignment within the wider context of gravitational collapse with stellar sources is also of great
interest. The behavior of stellar structures is investigated by Malik et al. [34], applying the embedding approach in the modified
theory of gravity. LMC X-4, Cen X-3, and EXO 1785-248 are the three stars selected to illustrate stellar structures. To compute
unknown parameters, the study compares spherically symmetric space-time with Schwarzschild space-time. The study looks into
the equation of state parameters, pressure components, energy density, and other graphical aspects of stellar spheres. The outcomes
demonstrate the viability and stability of the embedding class one solution for anisotropic compact stars and are consistent with
established physical features. Yousaf et al. [35] study static cylindrically symmetric thin-shell wormhole models with an electric
charge in f (R, T ) gravity. They use a cut-and-paste technique and boundary conditions to ensure consistent matching. The study
explores the stability of charged models.

Rosa’s [36] study examines the conditions necessary for matching two space-times at a separation hyper-surface in the perfect-fluid
model of f (R, T ) gravity. The parameters take into account scalar–tensor representations that are geometrically and dynamically
equivalent, as well as partial derivatives and constraints on stress-energy tensor trace continuity. All energy conditions must be
fulfilled by spherically symmetric thin-shells with a positive energy density. The stability of a limited class of axially symmetric
cosmic matter configuration in anisotropic settings under modified gravitational theory is examined by Bhatti et al. [37]. It includes
mass functions, collapse equations, continuity equations, and dynamically changed equations. The impact of a minimally connected
gravitational function and f (R, T ) gravity is also investigated. It also takes into account metric and material functions and investigates
the fluid’s stiffness parameter.

Thin-shell wormholes from charged static cylindrically symmetric space-times are analyzed under f (R, T ) gravity by Bhatti
et al. [38], utilizing Visser’s “cut and paste” method. The study of the dynamics of manufactured wormholes is made possible by
the modified Chaplygin gas, which supports exotic matter in the shell. The impact of the charge on the stability of the models is
examined, as well as their stability under linear perturbations. The analysis discovers stable and unstable solutions for a range of
gravity shapes and parameters. This study focuses on the behavior of collapsing fluid systems that are spherically symmetric and
confined within a spherical surface in five dimensions while dissipating through free streaming radiation. The structure of the paper
is organized as follows: Sect. 2 explains the conventions used and presents the EFEs. The methodology is discussed in Sect. 3.
Lastly, Sect. 4 provides the conclusion and discussion.
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2 The Einstein field equations in higher dimension

In this study, we examine collapsing fluid distributions that are spherically symmetric, non-static, and dissipating through free
streaming radiation while being confined within a spherical surface

∑
. The metric in five dimensions is expressed as follows [39]:

ds2 � eν(r ,t)dt2 − eλ(r ,t)dr2 − r2(dθ2 + sin2dφ2) − eμ(r ,t)dw2, (1)

The space-time coordinates are x0 � t , x1 � r , x2 � θ , x3 � φ, x4 � w. We will use geometrized units, i.e., c � G � 1. The
tensorial form of the corresponding EFEs is as follows:

Gν
μ � −8πT ν

μ . (2)

The resulting set of equations are as follows:
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To attribute physical significance to the elements of the stress tensor Tμ
ν , we utilize the Bondi method. This Bondi method focuses

on the behavior of gravitational fields at great distances from the sources, particularly at null infinity. These are space-times that,
at large distances from any sources of gravity, resemble flat Minkowski space. The method is particularly useful in analyzing such
space-times. In accordance with Bondi, we thus suggest Minkowski coordinates (τ , x , y, z, q) in five dimensions. In this case,
dτ � eν/2dt, dx � eλ/2dr , dy � rdθ , dz � rsinθdφ, and dq � eμ/2dw. A bar is used to symbolize the energy stress tensor’s

higher-dimensional Minkowski coordinates which gives T̄ 0
0 � T 0

0 , T̄ 1
1 � T 1

1 , T̄ 2
2 � T 2

2 , T̄ 3
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4 , and T̄01 � e− (ν+λ)
2 T01.

We then assume that the physical components of space consist of an isotropic fluid with an energy density of ρ, an isotropic pressure
of P, an energy density of ε̂, and an unpolarized radiation with that is propagating radially, as seen by an observer moving at a proper
velocity of ω about these coordinates. The higher-dimensional Lorentz transformation can be used to demonstrate that

T 0
0 � T̄ 0
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with

ε ≡ ε̂
(ω + 1)

(1 − ω)
. (12)

It is important to mention that in the (t , r , θ , φ, w) system, the coordinate velocity dr
dt can be related to ω (proper velocity) as

follows:

ω � dr

dt
e

(λ−ν)
2 . (13)
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After applying Lorentz transformations to Eqs. 8–11, we can substitute them into the field Eqs. 3–7, resulting in

ρ + Pω2
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The system of equations in Eqs. 14–17 is used to determine the values of ω, ρ, P, and ε for given functions μ, ν, and λ. For higher
dimensions, the corresponding Vaidya exterior geometry is expressed as follows [40]:

ds2 �
(

1 − 2M(u)

R2

)

du2 + 2dudR − R2(dθ2
1 + sin2θ1

(
dθ2

2 + sinθ2
2 dθ3

2

))
, (18)

where u stands for the retarded time, and M(u) represents the system’s total mass, indicated as Sigma inside the BS. At and outside
the BS, the two coordinate systems (t , r , θ , φ, w) and (u, R, θ1, θ2, φ) are connected as

u � t − r − 2M ln
( r

2M
− 1

)
, R � r� , (19)

and certain sufficient and necessary conditions must be met for the two metrics in Eqs. 1 and 18 to match smoothly. These conditions
are given as

eν� � e−λ� � e−μ� � 1 − 2M

R2
�

, (20)

[P]� � 0. (21)

In this study, we assume that the fluid is isotropic and dissipative, with free streaming radiation. The radiation density is denoted by
ε and is defined as follows:

Tμν � (ρ + P)uμuν − Pgμν + εlνlμ, (22)

with

uμ �
(

eν/2
√

(1 − ω2)
,

ωeλ/2
√

(1 − ω2)
, 0, 0, 0

)

, (23)

lμ �(
eν/2, eλ/2, 0, 0, 0

)
. (24)

The five velocity of the fluid is denoted by uμ, and a null outgoing vector in five dimensions is denoted by lμ. The following equation
is obtained by using the conservation law to calculate Tμ

ν;μ � 0, we obtained:

P,r � −
(ν,r + μ,r

2

)
(ρ + P). (25)

The static form of the TOV equation is represented in the above equation. By setting μ, r � 0 in the TOV Eq. 25, we can obtain the
standard TOV equations in four dimensions.

3 The methodology for higher dimension

The most basic case when dealing with compact self-gravitating objects is static equilibrium. This condition indicates that all time-
dependent derivatives vanish, the quantities ω and ε are equal to zero, and we will get a modified TOV equation. The timescale
for the sphere to respond to minor perturbations in hydrostatic equilibrium is, on average, significantly longer, consistent with the
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sphere’s slower evolution in QS regime. Therefore, in QS regime, the system remains consistently in the vicinity of hydrostatic
equilibrium. Equation 17 connects a series of static models that represent the evolution of the sphere. This estimate makes sense
because the hydrostatic time scale is brief during different phases of a star’s.

For instance, it takes around 27 min for the Sun, 4.5 s for a white dwarf, and 10−4 s for a neutron star with a solar mass and
a radius of 10 km [41]. The stars have been observed to change over periods that are significantly longer than their corresponding
hydrostatic timescales. However, as noted earlier, in certain critical scenarios, this approximation becomes inaccurate, and deviations
from quasi-equilibrium must be considered.

3.1 Approximation of effective variables and higher dimension PQS

The PQS approximation employs the following equation to define the effective variables:

ρ̃ � T 0
0 � ρ + Pω2

1 − ω2 + ε, (26)

P̃ � −T 1
1 � P + ρω2

1 − ω2 + ε. (27)

In the QS regime, the effective variables and the corresponding physical variables satisfy the same TOV Eq. 25. Therefore, the
physical and effective variables have identical radial dependencies in both QS and static conditions. The mass function associated
with the effective variables is given by

m �
∫ r

0
4πr2ρ̃dr. (28)

Substituting Eq. 27 into Eq. 15:
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)
dr. (30)

For a given radial dependency of ρ̃ and P̃ , the metric functions radial dependency can be entirely determined. The ρ̃ and P̃ exhibit
a radial dependency that is comparable to that of the corresponding physical variables when they are in equilibrium or quasi-
equilibrium. On the other hand, the PQS regime metric functions that define the system have the same radial dependency as the
static or QS regime metric functions. This formulation was developed with a simple goal in mind: to identify a regime that, while
not in an equilibrium state, best simulates the evolution of a QS.

3.2 The higher-dimensional algorithm for PQS approximation

We will be using the following approach:

1. An equilibrium state of fluid distributed matter is represented by an analytical interior solution to the EFEs, which is defined as
ρst � ρ(r ) and Pst � P(r ).

2. Assume that P̃ and ρ̃ have the same radial dependence as Pst and ρst .
3. Using Eqs. 28, 29, and 30, as well as the radial dependency of P̃ and r̃ ho, obtain m, μ, and ν up to certain functions of t.
4. For these functions of t, there are three surface equations given by:

• Evaluating Eq. 13 at r � r� .
• The equation that depicts the connection between mass loss rate along the BS and energy flux (Ê).
• Determining the dynamic TOV equation at r � r� .

5. Additional information is needed to conclude the set of surface equations and highlight a few physical factors on the BS.
6. Once the system is closed, it can be integrated for any given set of initial conditions.
7. The expressions for m, μ, and ν can be fully determined by inserting the integration results.
8. For every kind of fluid distribution, a system of equations for physical variables can be generated by appropriately describing

metric functions with the EFEs.
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3.3 Higher-dimensional surface equations

The preceding discussion highlights that the system of surface equations plays a crucial role in the algorithm. To address this, we
introduce dimensionless variables as follows:

F � 1 − 2M

A2 , A � r�
m�(0)

, M � m�

m�(0)
, β � t

m�(0)
, � � ω�.

The total mass m�(0) for the first surface equation is derived by substituting r � r� in Eq. 13. We obtained,

d A

dβ
� F�, (31)

by applying the junction conditions to Eqs. 14, 17, and 20 evaluated at r � r� , we can obtain:

dM

dβ
� −F2

Ŝ

(
(1 + �) − �ρ�

2
+ �ρ� B̂

)
Ê , (32)

where

Ê � 4πr2
�ε̂� , (33)

Ŝ � m ,r�r�(3 + r2
� − 2m�) − 6m� , (34)

B̂ � r3
� − 12πr2

�ρ� + 16πr4
� + r2

� − 2m� − 16πr3
�ρ��

3r�(r2
� − 2m�)

. (35)

The right-hand side of Eq. 32 represents both the Doppler shift and gravitational redshift. The equation for defining the perceived
luminosity at infinity as perceived by an observer is as follows:

L � −dM

dβ
. (36)

The following equation is the second surface equation:

dF

dβ
� 2(1 − F)F�

A
+

2L

A
. (37)

The evaluation of Tμ
ν;μ � 0 at the BS yields the following third surface equation:

P̃ + (ρ̃ + P̃)
(ν,r + μ,r

2

)
� e−ν

4πr (r2 − 2m)

(
2m ,t t +

7(m ,t )2

r2 − 2m
− m ,tν,t

)
+

2

r
(P − P̃). (38)

When Eq. 38 is evaluated at the BS, the resulting equation is:

d�

dβ
� �2

[
{4π A5ρ̃�F − 4π A6ρ̃��2F2 − 3A2Fm� + 6Fm2

� − 2A3ρ̃��F

A5 − 5A3m� + 6Am2
� + 2π A4ρ̃� − 4π A4m�ρ̃�

}

+ 6πρ̃� + 16π2ρ̃2
��2

]

− AF

2ρ̃�

[

R +
2

A

(
ρ̃��2 +

Ē(1 + �)

4πr2
�

)
]

(39)

where

R �
[
P̃ +

(
ρ̃ + P̃

)(ν,r + μ,r

2

)]

�
, (40)

Ē � Ê(1 + �). (41)

According to Eq. 31, this implies � � 0, we get

d2A

dβ2 � F
d�

dβ
. (42)

By applying � � 0 on Eq. 39, we obtain

d�

dβ
� − F

ρ̃�

[
AR

2
+

Ê

4πr2
�

]

. (43)
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It can be observed that when there is a positive energy flux Ê , the radius of the sphere tends to decrease, leading to object
compactification, which is expected. Conversely, if the signs of these quantities are reversed, the opposite effect occurs. According
to the following inequality, the sphere will only bounce at its surface if there is a positive energy flux and � � 0.

d�

dβ
≥ 0. (44)

This can be restated as per Eq. 43 to mean that

− AR

2
(� � 0) ≥ 0. (45)

The meaning of this equation is physical and can be explained as follows. When dealing with non-radiating and static configurations,
the expression for R in Eq. 40 can be separated into two components. The gravitational and hydrodynamical forces are defined by
the first and second terms of the expression given in Eq. 40, for non-radiating, static configurations. The force that results when r
rises is precisely − AR

2 . The net acceleration of dynamic configurations in five dimensions can be shown using Eq. 45, indicating
either an outward or inward acceleration depending on the direction of the force.

4 Summary and analysis

In this study, a non-comoving coordinate system similar to the five-dimensional Schwarzschild metric is employed to create a general
framework for examining the GC of a spherical system. We extend the PQS approximation to five-dimensional space-time to explore
the effects of GC. The additional spatial dimension enhances the gravitational interaction at small scales, leading to a more efficient
collapse process. The EFEs are constructed using these coordinates, with the fifth coordinate representing the space-like element. In
non-comoving coordinates, the velocity of any fluid element is considered a relevant physical variable. These variables are discussed
in the context of higher-dimensional surface equations. A starting point was established by utilizing an analytical solution for the
interior in the EFEs. This method proposes a collection of ODEs for quantities that are identified at the BS. By numerically solving
these equations, it becomes possible to simulate self-gravitating spheres that are under consideration.

It is assumed that the fluid distribution in the inner region is isotropic and has a radiation factor that has dissipative effects on
the field of gravitation. Dissipation is a stage in the evolution of giant stars, where massless particles are emitted, and neutrino
emission is believed to be the only viable method for removing most of the binding energy during the collapse of a star, leading
to the formation of a neutron star or black hole. Furthermore, the inclusion of the fifth dimension allows for a richer variety of
isotropic, dissipative fluid dynamics, which are critical for accurately modeling the thermal properties of the collapsing matter.
These effects are not adequately captured in four-dimensional models, thus justifying the need for higher-dimensional analysis. To
ensure a smooth match at the boundary of the sphere, the outer region is considered as Vaidya space-time.

The TOV equation is obtained through the conservation law in higher dimensions. To develop the surface equation, we utilized
a modified version of the TOV Eq. 22 that employs effective variables. Effective variables, including effective energy density
and pressure, satisfy the TOV equation along with physical variables. Both physical and effective variables have identical radial
dependencies in static and quasi-static equilibrium. This iterative process involves successive steps that reflect a profound under-
standing of the departure from the state of equilibrium. The PQS approximation has been defined to facilitate the analysis of GC
in non-comoving coordinates. The justification and verification for the PQS method, which employs an approximate approach and
“effective” variables, become evident in the context of a five-dimensional regime.

This investigation aimed to create a series of surface equations utilizing the PQS approximation methodology in higher dimensions,
specifically in the context of the five-dimensional PQS framework. The study examined realistic characteristics of stars, such as
gravitational redshift, Doppler shift, and total mass loss rate, which are associated with the energy flow of total mass loss over the BS.
To gain an understanding of the nature of relativistic GC in five dimensions, it was necessary to establish a comprehensive framework
for the PQS regime through the solution of nonlinear differential equations. The significance of dissipation in the process of GC
was taken into account, as it is a highly energy-dissipating mechanism that plays a dominant role in star evolution and formation.
The five-dimensional null outgoing vector represents the dissipative model in the diffusion approximation.

The existence of compact stars, such as neutron stars and hybrid stars, in higher-dimensional space-time, has prompted researchers
to study GC in these dimensions. There is currently no model for GC in the PQS approximation for dimensions higher than four.
This article examines the physical properties/aspects of the stellar structure of compact objects in five-dimensional coordinates.
Three types of models can be utilized in relativistic astrophysical applications: Schwarzschild-type models, Tolman type-VI, and
Lemaitre–Florides-type models. The above-mentioned models illustrate the relativistic gravitational effects resulting from the radial
pressure discontinuity at the BS. This research could be expanded to GC for the PQS regime in comoving coordinates.
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