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Abstract A quiescent neuron develops static electric field in the media beside two sides of the cell membrane. In presence of external
electric stimuli or electromagnetic radiation, the neurons can be excited to induce time-varying electric field and magnetic field during
continuous pumping of intracellular ions. When external magnetic field is applied to the media, the ions propagation across the ion
channels are affected and the firing patterns are changed. In this paper, a magnetic flux-controlled memristor (MFCM) is connected
into a FitzHugh–Nagumo (FHN) neural circuit to build a memristive circuit, and its equivalent memristive neuron can perceive
the modulation from external magnetic field. The circuit equations are obtained under Kirchhoff’s law and field energy function
for the neural circuit is defined, and then scale transformation is applied to obtain its equivalent neuron model and dimensionless
energy function. The Hamilton energy function for this memristive neuron can also be obtained by using the Helmholtz theorem.
In addition, an adaptive growth law of for memristive channel gain is presented to express the self-adaptive property in of the
memristive neuron. Dynamic analysis indicates that the memristive neuron can be induced complex firing patterns (bursting, spiking
and chaotic) by changing the external stimuli and external magnetic field. The simulation result of the Multisim software illustrates
that the memristive neuron can be realized by applying analog circuit.

1 Introduction

Memristor explains the relationship between charge and magnetic flux, in 1971, Chua [1] firstly proposed the concept of memristor.
Memristors are usually divided into two categories: charge-controlled memristor (CCM) [2–4] and MFCM [5–7]. Chaotic circuit is
an important research content in nonlinear circuits, and the nonlinear element is the key for designing chaotic circuits. Memristor is
widely used in the field of chaotic circuits because of the nonlinear characteristic and its controllability under external electromagnetic
field. For example, Chen et al. [8] designed a mix chaotic circuit by applying a memristor, a capacitor, an induction coil and a
memcapacitor. Luo et al. [9] obtained an improved memristive chaotic circuit by replacing the Chua diode in the Chua circuit with
a memristor. Peng et al. [10] proposed a new memristive chaotic circuit by replacing the nonlinear term in the Chua circuit with
a memristor and a negative conductance. Wang et al. [11] introduced a chaotic circuit by applying an extended memristor and a
capacitor. In Ref. [12], a 5D Wien-bridge hyperchaotic memristive circuit was developed from a 4D Wien-bridge chaotic circuit.
Memristors have also been studied in discrete maps by introducing different kinds of memristive terms into the mathematical maps.
For instance, 2D memristive chaotic maps [13–15], 2D memristive hyperchaotic maps [16–18], 3D memristive chaotic maps [19,
20], 3D memristive hyperchaotic maps [21–23], 4D memristive map [24], higher dimensional memristive map [25] and memristive
neuron maps [26–30].

Because the electrical properties of memristors are similar to synapses work [31, 32], memristors are used to simulate the
synapses of biological neurons. For instance, Yang et al. [33] investigated the activation and connection of synapses by coupling two
functional neurons via memristors. Guo et al. [34] coupled two photoelectric neurons by applying memristive synapse, and explored
the synchronization between neurons. Wu et al. [35]confirmed that a memristive synapse can produce similar firing patterns in a
neuron encoded with chemical synapse. Hou et al. [36] studied the effect of energy flow on mode selection in neural activities and
stochastic resonance in a memristive neuron. In Refs. [37, 38], a memristive neuron was proposed to estimate the external electric
field and electromagnetic field, and the self-adaptive regulation mechanism in neural activities under energy flow is explained [39].
In fact, the involvement of Josephson junction [40–44] and other functional electric components [45–49] enable the neural circuits
to detect different physical stimuli effectively. Based on these memristive models, the coupling channels and links are tamed to
create a variety of memristive neural networks in [50–53]. In generic way, memristive terms are used to modulate the local kinetics
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of the neural network, that is, each node of the network has one or two memeristive terms and the collective spatial patterns are
affected by the distribution of initials for the memristive variables. On the other hand, memristive channels are created to control
the collective behaviors of the network, which indicates high order coupling [54–58] and field coupling [59–61] are more effective
to control the network behaviors effectively.

When memristor is incorporated into an additive branch circuit of the neural circuit, the memristive term accompanying with the
magnetic flux variable can describe the effect of electromagnetic induction of neural activities. On the other hand, the memristive
coupling channels become controllable under external field energy injection when memristors are used to couple two or more neural
circuits. As mentioned above, activation of memristor into the nonlinear circuits can develop complex dynamics and creation of
multistability in the memristive systems and networks. Some memristive systems are used for image encryption [62–65]. Indeed, one
recent work claimed that a memristor can connect two capacitors for building a memristive cell membrane [66], and this memrisive
membrane of the biophysical neurons becomes more controllable under energy flow. That is, the physical property of the cell
membrane can be discovered from a new aspect, and two capacitive variables are introduced into the neuron model for discerning
the effect of membrane flexibility [48, 67, 68]. The electromagnetic induction generated by ion transport inside and outside of the
neuron membrane and the influence of external magnetic field on the neuron discharge activity can be explored in a memristor-based
nonlinear circuit, and the energy characteristic is discussed for clarifying the self-adaptive property of the memristive neuron.

As is known, Josephson junction can recognize the stimuli from external magnetic field. Therefore, connection of Josesphon
Junction [42, 43, 69] to a neural circuit can be used to percieve the effect of electromagnetic field on the neural activities. For
example, Zhang et al. [70] suggested a Josephson Junction-coupled neural circuit for detecting mode transition under external
magnetic field, and then a memristor is connected to the Josephson junction in parallel [71] to improve the sense ability, which
inner and outer magnetic field effect can be desribed synchronously. Besides the model approach and dynamical description, it is
more interesting to explore the intrinsic self-daptive property and energy regulation role during changes of neural acticities. In this
paper, a memristor-based neuron model is obtained by embedding a MFCM into a simple neuronal circuit. This memristive cicuit
can estimate the external magnetic field. The energy function for the memristive circuit is defined and then converted into equivalent
Hamilton energy function, which can also be confirmed by using the Helmholtz theorem. An adaptive law is suggested to explain
the self-adaptive growth and regulation in the memristive channel because of energy injection. Analog circuit is implemented with
exact energy estimation.

2 Model and scheme

A memristive neural circuit is developped by connecting a MFCM into the fifth branch of the FHN neural circuit. The memristive
channel can keep field energy and its channel current will be changed due to external magnetic field, and the circuit approach is
displayed in Fig. 1.

Based on the Kirchhoff’s law, the circuit equations for Fig. 1 can be described by
⎧
⎪⎪⎨

⎪⎪⎩

C
dV

dt
� Vs − V

Rs
− iL − iN − iM ;

L
diL
dt

� V − RiL + E .

(1)

The channel current iN through the nonlinear resistor RN in Fig. 1 can be estimated by

iN � − 1

ρ

(

V − 1

3

V 3

V 2
0

)

, (2)

where ρ and V0 represent the normalization parameters, and the memristive channel current iM across the MFCM is given in

iM � M(ϕ)V � αϕV ,
dϕ

dt
� λ tanh(ϕ) − dϕ + δV ; (3)

Fig. 1 Schematic diagram for
single memristive neuron model.
Vs denotes an external stimulus
source, M(ϕ) is a MFCM, Rs, R
and RN are linear and nonlinear
resistors, E, L and C represent
constant voltage source, induction
coil and capacitor, respectively
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Fig. 2 The v-i curve for MFCM
with different stimulus. For a A �
3; b ω � 0.8

where α, δ and d represent the normalization parameters. As shown in Eq. (3), the M(ϕ) has a simple form with low order, and
its internal state equation is only composed of linear term. Compared with higher-order memristors, the memristor in this paper is
easier to implement physically. By imposing simusoidal stimulus Asin(2πωt), where A means the amplitude of stimulus, ω denotes
the frequnency of stimulus. The v–i curve for MFCM with different frequnencies ω under A � 3 is shown in Fig. 2a, the v–i curve
for MFCM with different amplitude A with ω � 0.8 is shown in Fig. 2b.

The Fig. 2 show that the v–i curve for MFCM exhibites the characteristic of 8-shaped. The 8-shaped area is decreased when the
frequnency of stimulus is increased. While the 8-shaped area is increased when the amplitude of stimulus is increased.

The voltage source Vs is selected with periodic form as follows

Vs � A0 cos( f0t). (4)

A group of dimensionless variables and parameters are defined by setting scale transformation for the parameters and variables
in Eqs. (1)–(4).

⎧
⎪⎪⎨

⎪⎪⎩

x � V

V0
, y � ρiL

V0
, z � ϕ

ρCV0
, τ � t

ρC
, a � E

V0
, b � R

ρ
, c � ρ2C

L
;

ξ � ρ

Rs
, A � ρA0

RsV0
, f � ρC f0, k � αρ2CV0, γ � dρC , ρ � λρC.

(5)

A memristive neuron model is obtained by replacing the variables and parameters in Eq. (1) under the scale criterion in Eq. (5)
without external electromagnetic radiation. In presence of external magnetic field, the magnetic flux and channel current across the
MFCM will be changed; as a result, the memristive current is modified to regulate the excitability and firing modes of the neuron.
Therefore, external disturbance term is added to regulate the right side of the formula for magnetic flux variable shown in Eq. (7).

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx

dτ
� x(1 − ξ ) − 1

3
x3 − y − kzx + A cos( f τ );

dy

dτ
� c(x − by + a);

dz

dτ
� ρ tanh(z) − γ z + δx ;

(6)

Both the memristive current (induction current) kzx and the external stimulus Acos(fτ ) have impacts on the excitability, and any
changes of the two kinds of currents will modify the firing patterns of the neuron. External magnetic field has an impact on the inner
magnetic field of the memristor, and then channel current is changed by introducing additive disturbance ϕext on the third variable
for magnetic flux as follows

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx

dτ
� x(1 − ξ ) − 1

3
x3 − y − kzx + A cos( f τ );

dy

dτ
� c(x − by + a);

dz

dτ
� ρ tanh(z) − γ z + δx + ϕext ,

(7)

where ϕext denotes an external magnetic field, here, ϕext can be considered as a constant for a static magnetic field or a periodic
form for a changeable magnetic field, respectively. Furthermore, the physical field energy in the memristive neural circuit in Fig. 1
is calculated by

W � WC + WL + WM � 1

2
CV 2 +

1

2
Li2

L +
1

2
ϕiM . (8)
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By applying the same scale transformation in Eq. (5) on the field energy in Eq. (8), the Hamilton energy function in dimensionless
form is obtained by

H � HC + HL + HM � W

CV 2
0

� WC

CV 2
0

+
WL

CV 2
0

+
WM

CV 2
0

� 1

2
x2 +

1

2c
y2 +

1

2
kz2x . (9)

According to the Eq. (9), the Hamilton energy function of an isolated memristive neuron mainly depends on the variables (x, y,
z) and two normalized parameters (c, k). The Hamilton energy function for the memristive neuron in Eq. (6) can also be approached
in a theoretical way, based on the Helmholtz theorem, the memristive neuron is written in equivalent vector form in Eqs. (10a, 10b).

⎛

⎜
⎝

ẋ

ẏ

ż

⎞

⎟
⎠ �

⎛

⎜
⎝

x(1 − ξ ) − 1/3x3 − y − kzx + A cos( f τ )

c(x + a − by)

ρ tanh(z) − γ z + δx

⎞

⎟
⎠ � Fc + Fd

�
⎛

⎜
⎝

−y − δkzx

cx + 0.5ckz2

δx + 0.5δkz2

⎞

⎟
⎠ +

⎛

⎜
⎜
⎝

x(1 − ξ ) − 1/3x3 + A cos( f τ ) − (1 − δ)kzx

c(a − by) − 0.5ckz2

ρ tanh(z) − γ z − 0.5δkz2

⎞

⎟
⎟
⎠

�
⎛

⎜
⎝

0 − c − δ

c 0 0

δ 0 0

⎞

⎟
⎠

⎛

⎜
⎜
⎝

x + 0.5kz2

y

c
kzx

⎞

⎟
⎟
⎠ +

⎛

⎝
A11 0 0
0 A22 0
0 0 A33

⎞

⎠

⎛

⎜
⎜
⎝

x + 0.5kz2

y

c
kzx

⎞

⎟
⎟
⎠ . (10a)

A11 � x(1 − ξ ) − 1/3x3 + A cos( f τ ) − (1 − δ)kzx

x + 0.5kz2 ;

A22 � c(c(a − by) − 0.5ckz2)

y
;

A33 � ρ tanh(z) − γ z − 0.5δkz2

kzx
.

(10b)

The Hamilton energy function H meets the following criterion according to the Helmholtz theorem

∇HT Fc � 0 ; ∇HT Fd � Ḣ � dH

dτ
. (11)

A sole Hamilton energy function can be exact solution for the formula as follows

0 � ∇HT Fc � (−y − δkzx)
∂H

∂x
+
y

c

∂H

∂y
+ (δx + 0.5δkz2)

∂H

∂z
; (12)

Indeed, an exact solution for Eq. (12) can be obtained to be identical to the Hamilton energy function in Eq. (9)

H � 1

2
x2 +

1

2c
y2 +

1

2
kz2x ; (13)

That is, the memristive neuron holds exact energy function and the energy can be shunted from the memristive channel considered
as energy source (HM � 0.5kxz2 < 0). The first two terms in Eq. (13) always keep positive value, the third term can become negative
value, it indicates the memristive channel can release energy and external energy source can be captured.

3 Results and discussions

In this section, the numerical solutions for a single memristive neuron are obtained on the MATLAB platform by applying the
four-order Runge–Kutta algorithm with time step h � 0.01. The parameters of the neuron model are selected as a � 0.7, b � 0.8, c
� 0.1, ξ � 0.25, k � 0.01, ρ � 0.01, δ � 0.1, γ � 0.1. In Fig. 3, the bifurcation analysis and the largest Lyapunov exponent (LLE)
for the memristive neuron are calculated by varying the periodic voltage source.

The results in Fig. 3 show that the memristive neuron can be induced to present bursting, spiking and chaotic firing patterns by
adjusting the frequency of external stimulus. In fact, the firing patterns for the memristive neuron can be controlled by applying the
periodic voltage source. Furthermore, firing patterns and the changes of Hamilton energy for the memristive neuron are shown in
Fig. 4 by changing the frequency for the voltage source.

Figure 4 illustrates that the memristive neuron can be excited to show three kinds of firing modes during taming the frequency for
external stimulus, and the memristive neuron has higher mean value of Hamilton energy with bursting and spiking firing patterns,
while it has lower mean value of Hamilton energy accompanying with chaotic modes.
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Fig. 3 Bifurcation diagram and LLE for the neuron driven by the periodic voltage source. For a f � 0.8; b A � 0.6. Parameters are chosen as a � 0.7, b �
0.8, c � 0.1, ξ � 0.25, k � 0.01, ρ � 0.01, δ � 0.1, γ � 0.1, and initial value is set as (0.2, 0.1, 0.01). xpeak denotes peak values of membrane potential

Fig. 4 Sampled time series of
membrane potential and evolution
of Hamilton energy with different
f . For a f � 0.02; b f � 0.2; c f �
0.88. Parameters are chosen as
a � 0.7, b � 0.8, c � 0.1, ξ �
0.25, k � 0.01, ρ � 0.01, δ � 0.1,
γ � 0.1, A � 0.6, and initials (0.2,
0.1, 0.01). <H > denotes the mean
value of Hamilton energy

As shown in Eq. (7), the neuron is placed into a stable magnetic field when ϕext is considered as a constant signal ϕc. Changing
the intensity of external magnetic field, magnetic flux is regulated synchronously and the results are plotted in Fig. 5 by calculating
the distribution of LLE for the memristive neuron under setting different values for ϕc.

It is confirmed that a memristive neuron exhibits periodic and chaotic firing modes when an external magnetic field is applied
with suitable intensity. Additionally, the memristive neuron undergoes mode transition from a periodic state to a chaotic state
through reverse period-doubling bifurcation when the external magnetic field increases from 0 to 1. That is, the strength of the
external magnetic field controls the complex firing activities of memristor neurons such as periodic, chaotic patterns. The evolution
of membrane potential and changes of Hamilton energy corresponding to periodic and chaotic modes are shown in Fig. 6.

The results in Fig. 6 show that periodic firing mode has a higher average value of the Hamilton energy, while chaotic pattern has
a lower mean value of the Hamilton energy. Furthermore, the effect of periodic magnetic field on the electrical activity of neuron is
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Fig. 5 Bifurcation diagram and LLE for the neuron under constant magnetic field ϕc. For a bifurcation diagram; b LLE. Parameters are chosen as a � 0.7,
b � 0.8, c � 0.1, ξ � 0.25, k � 0.01, ρ � 0.01, δ � 0.1, γ � 0.1, A � 0.6, f � 0.8, and initials (0.2, 0.1, 0.01)

Fig. 6 Sampled time series of
membrane potential and evolution
of Hamilton energy with different
external magnetic field ϕc. For
a ϕc � 0.3; b ϕc � 0.6.
Parameters are chosen as a � 0.7,
b � 0.8, c � 0.1, ξ � 0.25, k �
0.01, ρ � 0.01, δ � 0.1, γ � 0.1,
A � 0.6, f � 0.8, and initials (0.2,
0.1, 0.01). <H > denotes the mean
value of Hamilton energy

Fig. 7 Bifurcation diagram and LLE for the neuron by changing the amplitude Aϕ for external magnetic field. For a bifurcation diagram; b LLE. Parameters
are chosen as a � 0.7, b � 0.8, c � 0.1, ξ � 0.25, k � 0.01, ρ � 0.01, δ � 0.1, γ � 0.1, A � 0.6, f � 0.8, f ϕ � 0.4, and initials (0.2, 0.1, 0.01)

discussed. The time-varying external magnetic field is considered as ϕext � Aϕsin f ϕτ , here, Aϕ denotes the amplitude and f ϕ is the
frequency of a periodic external magnetic field. The parameters and initial values are kept as above, f ϕ is fixed at 0.4, the bifurcation
diagram and LLE are calculated by changing the value for Aϕ , and the results are plotted in Fig. 7.

The results in Fig. 7 indicate that there are four periodic windows are occurred in the range of amplitude a from 0.6 to 1.2, and
the chaotic modes are distributed in a large parameter range. Similar to the case of constant external magnetic field, the firing mode
of memristor neurons is completely controlled by periodic external magnetic field. Furthermore, the relation between firing patterns
and the Hamilton energy is calculated by selecting different values Aϕ , and evolution of membrane potential accompanying with
energy changes are displayed in Fig. 8.

Similar to the results in Fig. 6, the periodic state exhibits a higher average Hamilton energy value, while the chaotic modes occur
a lower average Hamilton energy value. In fact, the applied external magnetic field just injected energy flow into the media and the
neural circuit, and the captured energy will be propagated and shared between the capacitive and inductive channels including the
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Fig. 8 Evolution of membrane
potential and Hamilton energy for
the neuron under periodic external
magnetic field. For a Aϕ � 0.82;
b Aϕ � 0.92. Parameters are
chosen as a � 0.7, b � 0.8, c �
0.1, ξ � 0.25, k � 0.01, ρ � 0.01,
δ � 0.1, γ � 0.1, A � 0.6, f � 0.8,
f ϕ � 0.4, and initial value is set as
(0.2, 0.1, 0.01). <H > denotes the
mean value of Hamilton energy

capacitor channel, the induction coil channel and the memristor channel. Any changes of energy proportion between these channels
and electric components will modify the excitability, and the firing modes are changed even accompanying with parameter shift
because of shape deformation in some electric components. To explore the adaptability of the memristor channel in memristive
neurons, energy flow is used to control the adaptive growth of the memristor channel. That is, the energy ratio between capacitive
and inductive channels will predict possible mode transition, and shape deformation of memristive channels due to large energy
injection can be approached by using adaptive parameter shift as follows

dk

dτ
� κ · k · θ

(

ε −
∣
∣
∣
∣
HM

HL

∣
∣
∣
∣

)

, θ (p) � 1, p ≥ 0, θ (p) � 0, p < 0; (14)

where gain κ controls the growth of the parameter k for the memristive current, the threshold 0 <ε < 1 determines the energy ratio of
a memristive channel to inductive channel energy in the neuron. At first, the case of a constant external magnetic field is discussed.
Parameters are selected as a � 0.7, b � 0.8, c � 0.1, ξ � 0.25, ρ � 0.01, δ � 0.1, γ � 0.1, A � 0.6, f � 0.8, and the initial
values for variables are set as (0.2, 0.1, 0.01). The initial value of parameter k is fixed at 0.001, threshold for ε is fixed as 0.4, and
a constant external magnetic field is given as ϕc � 0.1. The adaptive growth of k, membrane potential and Hamilton energy for
different parameter κ are calculated, the results are shown in Fig. 9.

It is found that the parameter k reaches a stable value (1.54) aftera transient period (867 time unites). The membrane potential
and Hamilton energy also maintain periodic oscillations with time. By setting larger value for the gain κ , k reaches a stable value
in a smaller transient period. Chaos theory often emphasizes sensitivity to initial conditions as a defining characteristic. To explore
the sensitivity of the memrisve system to initial values, the time sampling sequence of the membrane potential with different initial
values are calculated, and the results are shown in Fig. 10.

The results in Fig. 10 illustrate that this memristive neuron model is highly sensitive to initial values. The circuit simulation of
the memristive neuron can be realized by applying the Multisim software. The neuron model presented in Eq. (6) is transformed on
a time scale by applying τ � 100t, and the Eq. (6) is updated as follows

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx

dt
� 100x(1 − ξ ) − 100

3
x3 − 100y − 100kzx + 100A cos(100 f τ );

dy

dt
� 100cx − 100by + 100a;

dz

dt
� 100ρ tanh(z) − 100γ z + 100δx ;

(15)

Parameters are chosen as a � 0.7, b � 0.8, c � 0.1, ξ � 0.25, k � 0.01, ρ � 0.01, δ � 0.1, γ � 0.1, A � 0.6, and initial value is
set as (0.2, 0.1, 0.01). The corresponding analog circuit is shown in Fig. 11.

According to Fig. 11, the state equations can be described by
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Fig. 9 The growth of k, membrane potential and Hamilton energy. For a κ � 0.01; b κ � 0.02

Fig. 10 Sampled time series of
membrane potential with different
initial values. For a (0.2 + 10–15,
0.1, 0.01), (0.2, 0.1, 0.01); b (0.2,
0.1 + 10–15, 0.01), (0.2, 0.1, 0.01).
Parameters are chosen as a � 0.7,
b � 0.8, c � 0.1, ξ � 0.25, k �
0.01,ρ � 0.01, δ � 0.1, γ � 0.1, A
� 0.6, f � 0.88

Fig. 11 The analog circuit of the memristive neuron
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Fig. 12 Output voltages and
formed attractors on the Multisim
platform. For a membrane
potential and phase diagram for
f � 0.318; b membrane potential
and phase diagram for f � 3.18;
c membrane potential and phase
diagram for f � 14.005

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C1
dVx

dt
� 1

R1
Vx − 1

100R2
V 3
x − 1

R3
Vy − 1

10R4
VzVx +

1

R5
A cos(2π f t);

C2
dVy

dt
� 1

R6
Vx − 1

R7
Vy +

1

R8
Vac;

C3
dVz
dt

� 1

R9
tanh(Vz) − 1

R10
Vz +

1

R11
Vx ;

(16)

In addition, the energy for the neural circuit is mainly kept in capacitive form as follows

W � 1

2
C1V

2
x +

1

2
C2V

2
y +

1

2
C3V

2
z . (17)

In Fig. 11, the capacitance and resistance parameters are fixed as C1 � C2 � C3 � 10 nF, R1 � 1333.3 kΩ , R2 � 30 kΩ ,R3 �
R5 � 1000 kΩ ,R4 � R6 � R10 � R11 � 10,000 kΩ ,R8 � R9 � 100,000 kΩ ,R12 � R13 � R14 � R15 � 10 kΩ , and Multiplier is A1

� A2 � A3 � 0.1. The simulation results by applying the oscilloscopes on the Multisim software are displayed in Fig. 12.
The results in Fig. 12 confirmed that the memristive neuron can be realized by analog circuits, which will provide a good theoretical

basis and experimental guidance for the application of neuron model driven mechanism. Furthermore, according to energy function
presented in Eq. (17), the analog circuit for energy function is shown in Fig. 13.

The state equation for energy in Fig. 11 can be expressed by

W � R16

R17
V 2
x +

R16

R18
V 2
y +

R16

R19
V 2
z ; (18)
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Fig. 13 The analog circuit of the
memristive neuron

Fig. 14 Simulation results for energy on the Multisim platform. For a bursting firing; b spiking firing; c chaotic firing

In Fig. 13, the resistance parameters are fixed as R16 � 50 Ω , R17 � R18 � R19 � 100,000 kΩ ,R20 � R21 � 10 kΩ , and Multiplier
is A4 � A5 � A6 � 0.1. Based on the anolog circuits in Figs. 11, 13, The energy sequences corresponding to the firing modes in
Fig. 13 are displayed in Fig. 14. Due to the small value of W , the results in Fig. 14 are magnified by a factor of 10 in order to observe
the output sequence of W significantly in the oscilloscope.

The results indicate that the energy function is dependent on the firing mode, and analog circuit approach is consistent with the
results of numerical approach of the memristive neuron model.

In summary, an involvement of memristor into simple FHN neural circuit is effective to detect and describe the effect of
external magnetic field on the neural activities. The energy level accounts for mode selection and then external stimuli including
electromagnetic radiation can inject energy into the media, as a result, the firing activities of the neuron can be controlled completely.
In fact, noisy disturbance on the membrane potential or the magnetic flux due to electromagnetic radiation can be imposed on this
memristive neuron, similar coherence resoance and stochastic resonance can be induced, and the cuvre for SNR (signal to noise ratio)
and average Hamilton enegry will provide fast way of this prediction. From physical aspect, large energy injection can cause some
shape deformation of the electric components even damage, therefore, one or more intrinsic parameters of these electric components
will be changed under energy flow. As a result, fast and effective energy shuntering and exchange between different channels and
components are crucial for keeping safe running of these neural circuits, and the biophysical neurons release their self-adaptive
property by adjusting the intrinsic parameters in adaptive way.

4 Conclusion

A memristive neural circuit sensitive to the magnetic field is proposed. According to the the famous Helmholtz theorem, the Hamilton
energy for the memristive neuron is approached in theoretical way, and it is also confirmed by applying scale transformation on
the field energy for the neural circuit. The electrical activities and field energy distribution of the memristive neuron under the
different types of the magnetic field are investigated in detail. The numerical results show that neuron can be controlled to present
suitable firing patterns, in particular, continuous mode transition occurs under the self-adaptive law, which one intrinsic parameter
of memristive synapse controls its growth under the energy flow. The potential mechanism is that energy accumulation and external
energy injection induce shape deformation of the memristive channels, and one parameter is changed to keep safe energy level in
this memristor. It prefers to keep periodic firing patterns when the average field energy maintains a higher level. The memristive
neuron can be realized by applying anolog cricuit on the Multisim platform.
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