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Abstract The vibration and damping characteristics of sandwich shells including cylindrical and conical shells with viscoelastic
core layer are investigated by using a meshfree method. The energy principle and Donnel shell hypothesis are applied to establish the
theoretical formulations of sandwich shells. The displacement components of the viscoelastic core are expressed as those of base and
constraining layers by using continuity condition. The displacement variables of sandwich shells expanded by the meshfree shape
function and axial and circumferential directions Fourier series. The validation including accuracy and reliability of the presented
method is verified by comparing the presented results with the corresponding results of the existing literatures. Furthermore, the
vibration and damping behaviors of sandwich shells are analyzed by investigating the effects of geometric dimensions, material
properties and boundary conditions on the natural frequencies and modal loss factors of sandwich shells, which contributes to the
preliminary design of sandwich shells with viscoelastic core layer.

1 Introduction

As the typical representative of novelty intelligent multifunctional structure, sandwich shell structure is made up of three impor-
tant components including base layer (lower panel), viscoelastic core layer (core structure) and constraining layer (upper panel).
Comparing with the traditional shell engineering structure, sandwich shell structure has excellent capacity in energy dissipation
and absorption, high temperature and pressure resistances, low-weight and high structural efficiency. Based on the above excellent
structural properties, sandwich shell structure has been promoted to various engineering applications including underwater sub-
marine, launch vehicle, spacecraft and pressure vessels and so on. However, the vibration and damping performances with regard
to sandwich shells have important influences in the reliability and stability of engineering structure composed of sandwich shell
structure. Thus, the investigations of vibration and damping characteristic have great significance to the structural designation and
safety performance evaluation of sandwich shell structure.

Yadav et al. [1] analyzed the forced vibration behaviors of sandwich shell contain cellular core and thin panels based on high-
order shear deformation theory (HSDT) by employing Galerkin, incremental harmonic balance and arclength continuation methods.
Yang et al. [2] proposed a three-dimensional numerical model of sandwich shallow shells under various boundary conditions for
investigating its vibration characteristics by using Rayleigh–Ritz and modified three-dimensional Fourier series approaches. Li et al.
[3] studied the vibration and thermal buckling behaviors of sandwich shells made up of face panels with functionally graded material
(FGM) and tunable auxetic honeycomb core by employing complex modulus approach and Hamilton’s principle. Wang et al. [4]
studied the vibration behaviors of sandwich cylindrical shell with composite pyramidal truss core by employing theoretically in
conjunction with experimentally. Wang et al. [5, 6] put forward a semi-analytical approach for investigating the vibration behaviors
of sandwich shell and panel with FGM under various boundary conditions by using modified Fourier series method based on first-
order shear deformation theory (FSDT). Taati et al. [7, 8] focused on the vibration behaviors with regard to sandwich cylindrical
shell which consists of carbon nanotube-reinforced face sheets and metal foam core under fluid flow by establishing fluid–structure
coupling model based on classical shell theories. Yang et al. [9] discussed the vibration and damping characteristics of sandwich
shells with pyramidal truss-like cores by applying finite element and Rayleigh–Ritz methods. Karimiasl et al. [10] investigated
the nonlinear vibration behaviors of sandwich shell composed of magnetorheological layer flexible core layer and composite layer
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based on the Hamilton’s principle and Reddy’s third-order shear deformation theory. Li et al. [11] studied the free flexural vibration
behaviors of sandwich shell with porous honeycomb core based on Flügge’s shell theory and Gibson’s formula in conjunction with
experiments. Fu et al. [12] investigated the vibration behaviors of sandwich shells composed of functionally graded material skins
and isotropic core subjected to elastic foundations by applying generalized differential quadrature approach. Sobhani et al. [13]
researched the vibration characteristics of sandwich coupled shells under boundary conditions based on FSDT and Donnell’s shell
theory. Kumar et al. [14] established two-dimensional finite element model for studying the vibration behaviors of sandwich shell
by using first and higher order zigzag theories. Singha et al. [15] analyzed the vibration behaviors of sandwich conical shell made
up of composite panels and synthetic foam core. Li et al. [16, 17] proposed an analytical model of shells that consist of hexagon
honeycomb core and fiber-reinforced composite skins by employing Hamilton’s principle and Galerkin approach.

Sobhani et al. [18, 19] analyzed the circumferential vibration of sandwich coupled shell structures subjected to various elastic
boundary conditions by using generalized differential quadrature strategy and Hamilton’s method. Xue et al. [20] investigated the
damping and vibration performances of sandwich cylindrical shell with gradient core by means of experiments. Sofiyev et al. [21]
discussed the vibration and bulking behaviors of sandwich cylindrical shell with different type coatings by applying FSDT. Chen
et al. [22–25] presented a dynamics model to investigate the sandwich doubly-curved shallow shells subjected to simply supported
boundary conditions by employing Navier method in conjunction with FSDT. Sayyad et al. [26–28] analyzed the vibration and
bending behaviors of sandwich spherical and conical shells based on classical and high-order shear shell theories and Hamilton’s
principle. F. Bahranifard et al. [29–31] investigated the dynamic characteristics of sandwich-truncated conical shells made up of face
sheets and porous core by using Chebyshev–Ritz method. Li et al. [32] presented a novelty theoretical analysis model of sandwich
cylindrical shell with composite pyramidal truss and damp coating subjected to elastically supported boundary conditions by applying
Rayleigh–Ritz approach. Zheng et al. [33] provided an accurate numerical model of sandwich shell made up of composite panel layer
and magnetorheological core by means of wave propagation technique, Hamilton’s principle and linear viscoelastic scheme. Biswal
et al. [34, 35] discussed the vibration and damping behaviors of sandwich shells with three layers including base layer, viscoelastic
core and constraining layer based on Hamilton’s principle by employing finite element method. Soureshjani et al. [36] proposed
a semi-analytical approach for investigating the vibration characteristics with regard to coupled sandwich conical shell structures
under various boundary conditions. Parand et al. [37, 38] analyzed the vibration behaviors of sandwich shell with viscoelastic
interface and FGM core by employing Fourier series in conjunction with differential quadrature method. Sahu et al. [39] researched
the vibration and damping behaviors of sandwich shell panels including viscoelastic core layer and functional graded layer based
on FSDT by utilizing finite element method.

This paper proposes an unified numerical method for investigating the vibration and damping behaviors of sandwich shell structure
including conical shell and cylindrical shell by employing the meshfree method. The sandwich shell structures are composed of
based layer, viscoelastic layer and constraining layer, and the theoretical formulations of sandwich shells are derived based on
energy principle and Donnel shell assumption in conjunction with FSDT. Only flexural and axial deformations are allowed in the
base layer and constraining layer; only shear strains is allowed in the viscoelastic layer. Using the continuity condition in interface
between the layers, the displacement components of the viscoelastic core are replaced by those of base and constraining layers.
The displacement components of sandwich shell are approximated by employing Fourier series in conjunction with shape function
produced by meshfree Tchebychev radial point interpolation method. The validation of the presented approach is verified by the
comparison results of presented approach and existing literatures. Based on the above proposed method, the vibration and damping
analyses of sandwich shells are performed by investigating the influences of the parameters including geometric dimension, boundary
conditions and material properties on the vibration and modal loss factor of sandwich shell.

2 Theoretical modeling

2.1 Introduction of model

As shown in Fig. 1, sandwich conical shell structure with isotropic is made up of three layers including based layer, viscoelastic
core layer and constraining layer. For convenience, the sandwich conical shell structure is described by employing orthogonal
curvilinear coordinate systems, and the above coordinate systems are established at the middle surfaces of each layer. α and L denote
semi-vertex and length with respect to sandwich conical shell structure of each layer; Ri0 (i � s, v, c) represents the left side of
sandwich conical shell structure of each layer and the subscript characters s, v and c of Ri0 indicate base layer, viscoelastic core
layer and constraining layer. Meanwhile, it is worth mentioning that the conical shell structure can be regard as cylindrical shell
structure when the geometric characteristic parameter α is selected as 0.
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2.2 Meshfree shape function

The meshfree shape function produced by Tchebychev radial point interpolation method is applied in the proposed approach. The
above meshfree shape function can be regard as the combination of the radial basis function and Tchebychev polynomials, the
corresponding expression is written as follow.

u(x) �
N∑

i�1

Ri (x)ai +
Nt∑

j�1

τ j (x)b j � RT (x)a + T T (x)b (1)

where the symbols of Ri(x) and τ j(x) represent radial and Tchebychev polynomial basis functions; N and Nt denote the numbers of
the above corresponding basis functions. The concrete expression of Tchebychev polynomial basis function with one-dimensional
can be expressed as follows:

T (x) � [
T0(x) T1(x) · · · Tp(x) · · · ]T (2)

Tk(x) � cos[k cos−1(x)] , k � 0, 1, 2 · · · (3)

The radial basis function of meshfree shape function is determined by selecting multi-quadrics (MQ) radial basis function; the
specific expression of radial basis function is described as follows:

Ri (x) � [
r2
i + (αcdc)

2]q (4)

where dc denotes nodal mean spacing and ri represents the distance between interested node and divided node. For determining the
unknown variables ai and bj, the divided nodes need to be introduced into Eq. (1) for establishing a set of linear equation, the matrix
expression of the above linear equation can be written as the following form:

U s � R0a + T Nt b (5)

a � [
a1 a2 · · · aN

]T
, b � [

b1 b2 · · · bNt

]T
(6)

where the concrete expressions of the matrices Us, R0, T Nt can be described as follows:

U s � [
u1 u2 · · · uN

]T
(7)

R0 �

⎡

⎢⎢⎢⎣

R1(r1) R2(r1) · · · RN (r1)
R1(r2) R2(r2) · · · RN (r2)

...
...

. . .
...

R1(rN ) R2(rN ) · · · RN (rN )

⎤

⎥⎥⎥⎦ (8)

T Nt �

⎡

⎢⎢⎢⎣

T0(x1) T1(x1) · · · TNt (x1)
T0(x2) T1(x2) · · · TNt (x2)

...
...

. . .
...

T0(xN ) T1(xN ) · · · TNt (xN )

⎤

⎥⎥⎥⎦

N×Nt

(9)

The definition expression of rk in Ri(rk) of Eq. (8) is shown as follows:

rk � xk − xi (10)

In order to solving Eq. (5) advantageously, the following constraint equations need to be applied.

N∑

i�1

Tj (xi )ai � T T
Nt
a � 0 , j � 1, 2, · · · , Nt (11)

From Eqs. (5) and (11)

U s �
[
U s

0

]
�
[

R0 T Nt

T T
Nt

0

][
a
b

]
� Ga0 (12)

According to variable substitution, Eq. (1) can be revised as follows:

u(x) �RT (x)a + T T (x)b � [
RT (x) T T (x)

][ a
b

]

�[ RT (x) T T (x)
]
G−1Ū s � �̄

T
(x)Ū s (13)
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�̄
T

(x) �[ RT (x) T T (x)
]
G−1

=
[
φ1(x) φ2(x) · · · φN (x) φN + 1(x) · · · φN+Nt (x)

]
(14)

The shape function of nodal displacements produced by Tchebychev radial point interpolation method can be ascertained as
follows:

ΦT (x)�[φ1(x) φ2(x) · · · φN (x)
]

(15)

2.3 Governing equation of sandwich shell

According to FSDT and Donnel shell assumption, the displacement components of any point of each layer are expressed as [24]
⎧
⎨

⎩

ui � ui + zψxi

vi � vi + zψθ i

wi � w

i � s, v, c (16)

where ui, vi and w denote the displacement components of middle surface of each layer in the x, θ and z directions, respectively.
For the base layer and constraining layer, the shear rotations ψxi and ψθ i can be determined as follows:

⎧
⎨

⎩
ψxi � − ∂w

∂x

ψθ i � − ∂w
Ri ∂θ

i � s, c (17)

where Ri � Ri0 + xsinα.
The displacements of the viscoelastic layer can be ascertained as the following expression based on the displacement continuity

conditions of interlayer.

uv � 1
2

(
us + uc + hs

2 ψxs − hc
2 ψxc

)
, ψxv � 1

hv

(
uc − us − hs

2 ψxs − hc
2 ψxc

)

vv � 1
2

(
vs + vc + hs

2 ψθs − hc
2 ψθc

)
, ψθv � 1

hv

(
vc − vs − hs

2 ψθs − hc
2 ψθc

) (18)

Generally, the Young’s modulus of the base layer and constraining layer is much larger than the that of viscoelastic core layer.
Therefore, the former only considers flexural and axial deformations, and the latter only considers shear strains. Considering Eq. (18),
the strains of the viscoelastic core layer are expressed as:

γ v
xz � 1

hv

(uc − us) + cx
∂w

∂x

γ v
θ z �

(
1

hv

− cos α

2Rv

)
vc −

(
1

hv

+
cos α

2Rv

)
vs + cθ

∂w

∂θ

(19)

where

cx � hs + hc + 2hv

2hv

cθ �
[

1

2hv

(
hc
Rc

+
hs
Rs

)
+

1

4Rv

(
hs cos α

Rs
− hc cos α

Rc
+ 4

)] (20)

The shear stresses with regard to the viscoelastic core layer can be written as follows:

τv
xz � Gvγ

v
xz τv

θ z � Gvγ
v
θ z (21)

where Gv denotes shear modulus with regard to the viscoelastic core layer, which consists of real and imaginary parts.

Gv � Gr + iG i (22)

where Gr and Gi denote the real and imaginary parts of the above shear modulus Gv, respectively.
Meanwhile, the relationships between stress and strain of the base and constraining layers are written as follows:

⎡

⎣
σ i
x

σ i
θ

τ ixθ

⎤

⎦ �
⎡

⎣
Q11 Q12 0
Q12 Q11 0

0 0 Q66

⎤

⎦

⎡

⎣
εix
εiθ
γ i
xθ

⎤

⎦ i � s, c (23)

where the stiffness coefficients Qmn of the isotropic material are as

Q11 � Ei

1 − μ2
i

, Q12 � μi Ei

1 − μ2
i

, Q66 � Ei

2(1 + μi )
(24)

123



Eur. Phys. J. Plus         (2024) 139:521 Page 5 of 20   521 

where Ei and μi denote Young’s modulus and Poisson’s ratios with regard to the base and constraining layers. The relationships
between strain and displacement of the base and constraining layers can be determined as follows:

εix �∂ui
∂x

− z
∂2w

∂x2

εiθ � sin α

Ri
ui +

1

Ri

∂vi

∂θ
+

cos α

Ri
w − z

sin α

Ri

∂w

∂x
− z

R2
i

∂2w

∂θ2

γ i
xθ � 1

Ri

∂ui
∂θ

+
∂vi

∂x
− sin α

Ri
vi + 2z

sin α

R2
i

∂w

∂θ
− 2z

Ri

∂2w

∂x∂θ
(25)

The above displacement components can be expanded as follows by introducing the meshfree TRPIM shape function.

us �
N∑

m�1

M∑

n�0

φm(x)
[
cos(nθ )Ũ s

mn + sin(nθ )U
s
mn

]
eiωt

vs �
N∑

m�1

M∑

n�0

φm(x)
[
sin(nθ )Ṽ s

mn + cos(nθ )V
s
mn

]
eiωt

uc �
N∑

m�1

M∑

n�0

φm(x)
[
cos(nθ )Ũ c

mn + sin(nθ )U
c
mn

]
eiωt

vc �
N∑

m�1

M∑

n�0

φm(x)
[
sin(nθ )Ṽ c

mn + cos(nθ )V
c
mn

]
eiωt

w �
N∑

m�1

M∑

n�0

φm(x)
[
cos(nθ )W̃mn + sin(nθ )Wmn

]
eiωt

(26)

where M and N represent the circumferential wave number and the node number which distributed in the meridional direction of
shell, respectively. The symbols Ũ s

mn , Ṽ s
mn , Ũ c

mn , Ṽ c
mn„ W̃mn ,U

s
mn , V

s
mn ,U

c
mn , V

c
mn and Wmn represent the displacement components

with regard to node.
The strain energies of the sandwich shell can be described as follows:

U �
c∑

i�s

Ui + Uv (i � s, c)

Ui � 1

2

2π∫

0

L∫

0

hi / 2∫

−hi / 2

(
σ i
xε

i
x + σ i

θ ε
i
θ + τ ixθ γ

i
xθ

)
Ridzdxdθ ; Uv � 1

2

2π∫

0

L∫

0

hv/ 2∫

−hv/ 2

(
τv
xzγ

v
xz + τv

θ zγ
v
θ z

)
Rvdzdxdθ

(27)

The kinetic energies of the sandwich shell can be given as

T �
c∑

i�s

Ti + Tv(i � s, c)

Ti � ρi hi
2

2π∫

0

L∫

0

(
u̇2
i + v̇2

i + ẇ2)Ridxdθ ; Tv � ρvhv

2

2π∫

0

L∫

0

ẇ2Rvdxdθ

(28)

where ρi (i � s, v, c) denotes the density of each layer.
The elastic energies stored in distributed springs of base and constraining layers can be given as

UBC � 1

2

c∑

i�s

2π∫

0

{ [
ku0u

2
i + kv0v

2
i + kw0w

2 + Kw0
(
∂w
/

∂x
)]

x�0

+
[
ku1u

2
i + kv1v

2
i + kw1w

2 + Kw1
(
∂w
/

∂x
)]

x�L

}
Ridθ(i � s, c) (29)

The total Lagrangian energy function with regard to sandwich shell can be determined as follows:

L � T −U −UBC (30)

The extremum of the above Lagrangian energy function can be determined by the following derivative operation.

∂L

∂q
� 0, q � Ũ s

mn , Ṽ s
mn , Ũ c

mn , Ṽ c
mn , W̃mn ,U

s
mn , V

s
mn ,U

c
mn , V

c
mn , Wmn (31)
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Fig. 1 Diagram of sandwich
conical shell with viscoelastic core

Fig. 2 Convergence of natural frequency and modal loss factor for a sandwich conical shell with different numbers of nodes N : a C–C and b S–S

Substituting Eqs. (27)–(30) into Eq. (31), following governing equations are obtained.
(
K − ω2M

)
U s � 0 (32)

where Us is the nodal displacement vector; K and M denote mass and stiffness matrices respectively, the concrete expression of the
above matrices can be found in Appendices 1 and 2. From Eq. (32), the complex eigenvalues are obtained. The definitions of real
frequency ω and modal loss factor η of sandwich shells are shown as follows:

ω �
√

Re
(
ω2
)

(33)

η � Im
(
ω2
)

Re
(
ω2
) (34)
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Fig. 3 Convergence of natural frequency for a sandwich conical shell with different boundary spring stiffnesses: a n � 1, b n � 2, c n � 3 and d n � 4

3 Numerical discussion

The validity including accuracy and reliability of the presented method is performed for demonstrating that it can be used to analyze
the vibration and damping behaviors of sandwich shells including conical shell and cylindrical shell in this section.

Unless otherwise specified, the material parameters of sandwich shells in the following discussion are selected as: Es � Ec �
210 GPa, Gr � 8.582 MPa, Gi � 2.985 MPa, μs � μc � 0.3, ρs � ρc � 7850 kg/m3 and ρv � 1340 kg/m3.

3.1 Convergence and verification analyses

The computational cost and accuracy of the meshfree numerical solution are influenced by the number of divided node in the solving
domain. However, it is worth noting that the computational cost and accuracy exist certain contradiction. The above contradiction
can be interpreted as the computational cost and accuracy increase with the number of divided node increased. The influence of
divided node number N on the natural frequencies and modal loss factor of sandwich conical shell structure are investigated; the
corresponding results can be found in Fig. 2. The geometric parameters of sandwich conical shell structure are defined as: Rs � 1 m,
L � 2 m, hs � hc � 2hv � 0.02 m and α � π /6.

As shown in Fig. 2, the natural frequencies and modal loss factors of sandwich conical shell subjected to various boundary
conditions have varying degree variation tendencies firstly and then remain unchanged with the number of divided node increased.
The above results indicate that the proposed method has stable convergence in the process of analyzing the vibration and damping
behaviors of sandwich shells under various boundary conditions.

According to the above discussion, the various boundary conditions of the proposed method are simulated by employing artificial
spring technique. The crucial of artificial spring technique is select appropriate spring stiffness value in different directions. In order
to determine the spring stiffness value of various boundary conditions, the effects of spring stiffness values on the natural frequencies
and modal loss factors of sandwich shells including conical shell and cylindrical shell are discussed, the corresponding results are
shown in Figs. 3 and 4. The geometric parameters used in this discussion can be found in Fig. 2. The left and right sides of sandwich
shell structure are selected as elastic boundary and completely clamped boundary, respectively. The longitudinal mode number is
selected as m � 1.
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Fig. 4 Convergence of modal loss factor for a sandwich cylindrical shell with different boundary spring stiffnesses: a n � 1, b n � 2, c n � 3 and d n � 4

Table 1 Stiffness values for
different boundary springs

B.C Boundary spring stiffness value

ku, kv kw Kw

F 0 0 0 0

C 1014 1014 1014 1014

S 1014 1014 1014 0

SD 0 1014 1014 0

As shown in Figs. 3 and 4, the natural frequencies and modal loss factors of sandwich shells have opposite variation tendencies
firstly and then keep constant with the spring stiffness values of different directions increased. The above results indicate that the
solution of natural frequencies and modal loss factors of sandwich shells reach stable convergence when spring stiffness values
increase to 1013.

According to the above discussion, the values of spring stiffness subjected to various boundary condition are ascertained in
Table 1. It is necessary to point out that F and C denote free and clamped boundary conditions, respectively; S and SD represent
simply supported and shear diaphragm boundary conditions, respectively.

Then, the validation of the presented method is performed by comparing the results calculated by the proposed method with the
corresponding results from the existing literatures. The material geometric parameters are selected as: Es � Ec � 70 GPa, Gv �
0.896(1 + i0.9683) MPa, μs � μc � 0.3, ρs � ρc � 2700 kg/m3, ρv � 999 kg/m3, hs � hc � 2hv � 0.02 m, Rs � 1 m, L � 0.5 m.
The comparison results of natural frequencies of sandwich cylindrical shell subjected to different boundary conditions are shown
in Table 2. The material geometric parameters are consistent with Table 2 except for the following geometric parameters L � Rs �
3 m, hs � hc. The two sides of the shell are selected as simply supported boundary condition, and the axial wave number is chosen
as m � 1. The comparison results of natural frequencies of sandwich cylindrical shell under various thickness ratios can be found
in Table 3. As shown in Tables 2 and 3, it is not hard to see that the comparison results between proposed method and the existing
literatures have good consistency.
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Table 3 Comparison of natural
frequencies for a sandwich
cylindrical shell with various
thickness ratios

hs/Rs hv/hs Circumferential wave number

1 2 3

Ref.
[40]

Present Diff (%) Ref.
[40]

Present Diff (%) Ref.
[40]

Present Diff (%)

1/20 1 219.06 219.061 − 0.0005 175.10 175.101 − 0.0006 146.60 146.603 − 0.0020

2 200.92 200.915 0.0025 161.71 161.712 − 0.0012 135.60 135.595 0.0037

3 185.83 185.830 0.0000 150.52 150.519 0.0007 126.46 126.462 − 0.0016

4 173.05 173.046 0.0023 140.97 140.971 − 0.0007 118.71 118.713 − 0.0025

1/60 1 220.90 220.902 − 0.0009 171.22 171.221 − 0.0006 133.74 133.740 0.0000

2 204.91 204.912 − 0.0010 159.36 159.358 0.0013 124.56 124.560 0.0000

3 191.65 191.654 − 0.0021 149.52 149.519 0.0007 116.98 116.984 − 0.0034

4 180.43 180.426 0.0022 141.18 141.181 − 0.0007 110.59 110.587 0.0027

1/100 1 221.66 221.654 0.0027 171.17 171.156 0.0082 132.69 132.681 0.0068

2 206.11 206.108 0.0010 159.54 159.538 0.0013 123.70 123.693 0.0057

3 193.24 193.241 − 0.0005 149.92 149.919 0.0007 116.29 116.284 0.0052

4 182.36 182.362 − 0.0011 141.78 141.781 − 0.0007 110.04 110.037 0.0027

Table 4 Dimensionless
frequencies for a sandwich conical
shell with various semi-vertex
angles (m � 1)

α n B.C

C–C C–S C–SD S–S S–SD SD–SD F–C F–S

0 1 0.0439 0.0437 0.0433 0.0435 0.0430 0.0336 0.0286 0.0285

2 0.0345 0.0341 0.0340 0.0338 0.0337 0.0300 0.0178 0.0175

3 0.0276 0.0271 0.0263 0.0265 0.0258 0.0254 0.0121 0.0118

4 0.0233 0.0226 0.0214 0.0219 0.0208 0.0198 0.0096 0.0094

π /6 1 0.0323 0.0314 0.0294 0.0314 0.0293 0.0258 0.0286 0.0282

2 0.0274 0.0267 0.0265 0.0265 0.0263 0.0216 0.0198 0.0195

3 0.0230 0.0223 0.0222 0.0219 0.0218 0.0210 0.0141 0.0138

4 0.0199 0.0190 0.0185 0.0185 0.0179 0.0176 0.0110 0.0107

π /4 1 0.0251 0.0240 0.0220 0.0240 0.0219 0.0197 0.0234 0.0227

2 0.0220 0.0210 0.0206 0.0209 0.0204 0.0175 0.0173 0.0169

3 0.0189 0.0180 0.0180 0.0177 0.0176 0.0162 0.0127 0.0124

4 0.0168 0.0158 0.0155 0.0153 0.0150 0.0148 0.0102 0.0098

π /3 1 0.0178 0.0166 0.0151 0.0165 0.0149 0.0135 0.0167 0.0159

2 0.0160 0.0148 0.0144 0.0146 0.0142 0.0126 0.0129 0.0124

3 0.0143 0.0131 0.0131 0.0127 0.0127 0.0113 0.0099 0.0095

4 0.0132 0.0119 0.0119 0.0114 0.0113 0.0112 0.0084 0.0080

3.2 Parametric analysis

According to the above convergence and verification analyses, the validation including accuracy and stability of the proposed
approach is verified. The vibration and damping behaviors of sandwich shells including shell conical and cylindrical shell are
investigated by analyzing the influences of some parameters on the natural frequencies and modal loss factor in this section.

First of all, the effect of semi-vertex angle on the natural frequencies (dimensionless frequency) and modal loss factors of
sandwich conical shell are investigated; the corresponding results can be seen in Table 4 and Fig. 5, respectively. The definition of
dimensionless frequency is shown as: � � ωR2

s

√
ρs/Esh2, the total thickness of sandwich conical shell is h � hs + hv + hc. The

geometric parameters are selected as: Rs � 1 m, L � 1 m and hs � hc � 2hv � 0.02 m.
From Table 4 and Fig. 5, it is easy to find that the natural frequencies and modal loss factors have opposite variation tendencies with

the company of semi-vertex angle increased, the former decreases and the latter increase, respectively. Meanwhile, it is necessary
to point out that the variation tendency of modal loss factors is remarkable when the semi-vertex angle increases to 70°.

Subsequently, the effects of thickness of viscoelastic core layer on the natural frequencies and modal loss factors of sandwich
conical shell and cylindrical shell are investigated; the corresponding results are shown in Table 5 and Fig. 6. The above natural
frequencies are nondimensionalized by means of � � ωR2

s

√
ρs/Esh2; the definition of thickness ratio of sandwich conical shell is
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Fig. 5 Variation of modal loss factors for a sandwich conical shell with various semi-vertex angles (m � 1): a C–C, b C–S, c C–SD and d S–S

set as hv/h. The thickness of base layer is consistent with the thickness of constraining layer. The geometric parameters is selected
as: Rs � 1 m, L � 2 m, α � π /6 and h � 0.05 m. As shown in Table 5, it is easy to see that the thickness ratio has important effect
in the vibration characteristics of sandwich conical shell. The model parameters of Fig. 6 are the same as Table 5 except the total
thickness of conical shell is chosen as h � 0.1 m. From Fig. 6, the natural frequencies decrease with the thickness of viscoelastic
core layer increased. However, the modal loss factors decrease firstly and then increase with the thickness of viscoelastic core layer
increased.

Then, the influences of circumferential wave number on the natural frequencies and modal loss factors of sandwich shells
including conical shell and cylindrical shell subjected to various boundary conditions are discussed; the corresponding results can
be seen in Fig. 7. The geometric parameters of sandwich shells are selected as: Rs � 1 m, L � 2 m and hs � hc � hv � 0.02 m. From
Fig. 7, it is easy to see that the natural frequencies and modal loss factors of sandwich cylindrical shell subjected to various boundary
conditions attain minimum and maximum values when the circumferential wave number is set as 4. The natural frequencies and
modal loss factors of sandwich conical shell subjected to C–SD and S–SD boundary conditions get minimum and maximum values
when the circumferential wave number is set as 5. When sandwich conical shell under the C–C, C–S and S–S boundary conditions,
the above corresponding circumferential wave number is set as 6.

Fourthly, the influences of material loss factor Gi/Gr of viscoelastic material layer on modal loss factors of sandwich shells
are researched; the corresponding results are shown in Fig. 8. The geometric parameters are consistent with the corresponding
parameters come from Fig. 7 except for the real part of shear modulus is chosen as Gr � 8.582 MPa. As shown in Fig. 8, the modal
loss factors increased by means of linear with the material loss factor Gi/Gr increased. The influence of material loss factor on modal
loss factors of sandwich shells under C–SD boundary condition is much larger than that of sandwich shells under C–C boundary
condition.

Finally, the effects of various geometric parameters, circumferential wave numbers and boundary conditions on natural frequencies
of sandwich shells including cylindrical shell and conical shell are performed; the corresponding results of cylindrical shell and
conical shell can be found in Table 6 and Table 7. The geometric parameters are chosen as: Rs � 1 m, hv � 0.02 m and hs � hc �
0.01 m. The dimensionless definition of natural frequencies can be expressed as � � ωR2

s

√
ρs/Esh2. As shown in Tables 6 and

7, the structure length has significantly effect on the natural frequencies of sandwich shells compared with circumferential wave
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Table 5 Dimensionless
frequencies for a sandwich conical
shell with various thickness ratios
(m � 1)

hv/h n B.C

C–C C–S C–SD S–S S–SD SD–SD F–C F–S

0.1 1 0.0249 0.0246 0.0230 0.0246 0.0230 0.0196 0.0211 0.0210

2 0.0183 0.0181 0.0179 0.0180 0.0178 0.0176 0.0125 0.0123

3 0.0139 0.0137 0.0127 0.0135 0.0125 0.0121 0.0081 0.0081

4 0.0115 0.0112 0.0099 0.0110 0.0097 0.0092 0.0072 0.0071

0.2 1 0.0225 0.0222 0.0208 0.0222 0.0207 0.0171 0.0191 0.0190

2 0.0165 0.0164 0.0162 0.0163 0.0161 0.0159 0.0112 0.0112

3 0.0124 0.0123 0.0113 0.0121 0.0112 0.0108 0.0072 0.0071

4 0.0100 0.0098 0.0086 0.0097 0.0084 0.0079 0.0059 0.0058

0.3 1 0.0221 0.0219 0.0204 0.0219 0.0204 0.0168 0.0188 0.0187

2 0.0162 0.0161 0.0159 0.0161 0.0159 0.0157 0.0111 0.0110

3 0.0122 0.0120 0.0111 0.0119 0.0110 0.0106 0.0070 0.0069

4 0.0097 0.0095 0.0083 0.0094 0.0082 0.0077 0.0055 0.0055

0.4 1 0.0217 0.0215 0.0200 0.0215 0.0200 0.0165 0.0185 0.0185

2 0.0159 0.0158 0.0156 0.0158 0.0156 0.0154 0.0109 0.0108

3 0.0119 0.0118 0.0108 0.0117 0.0108 0.0104 0.0068 0.0067

4 0.0094 0.0093 0.0081 0.0092 0.0080 0.0074 0.0052 0.0051

0.5 1 0.0211 0.0209 0.0195 0.0209 0.0195 0.0163 0.0181 0.0181

2 0.0155 0.0154 0.0153 0.0154 0.0152 0.0151 0.0106 0.0106

3 0.0115 0.0115 0.0196 0.0114 0.0105 0.0101 0.0066 0.0065

4 0.0091 0.0090 0.0078 0.0089 0.0077 0.0072 0.0049 0.0049
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Fig. 6 Variation of dimensionless frequency and modal loss factor for a sandwich conical shell with various thickness ratios (m � 1): a C–C and b C–SD
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Fig.7 Variation of dimensionless frequency and modal loss factor for a sandwich shell according to circumferential wave number (m � 1): a cylindrical
shell and b conical shell (α � π /6)

numbers and boundary conditions. According to the variation tendencies of the above natural frequencies, it can conclude that the
increase of structure length will result in the decrease of stiffness of sandwich shells.

4 Conclusion

A meshless method is proposed to investigate the vibration and damping characteristics of sandwich shells including cylindrical
shell and conical shell. The sandwich shells are made up of three layers including base layer, viscoelastic core layer and constraining
layer. The theoretical modeling of sandwich shells is deduced by employing the energy principle in framework of FSDT and
Donnel shell hypothesis. The displacement components of arbitrary point locate at the sandwich shell are expanded by employing
the circumferential Fourier series and the meridional direction meshfree TRPIM shape function. The convergence and validation
including accuracy and stability of the proposed method are verified by comparing the results calculated by the presented approach
with the corresponding results of existing literatures. Based on the above proposed method, the vibration and damping behaviors
analysis of sandwich shells are carried out by investigating the influences of some parameters including geometric dimensions,
material parameters and circumferential wave numbers on the natural frequencies and modal loss factors of sandwich shells. Some
representative conclusions are shown as follows:

(1) The influences of semi-vertex angle on the natural frequencies and modal loss factors of sandwich conical shell structure are
opposite. The increase of semi-vertex angle leads to the decrease and increase of natural frequencies and modal loss factors,
respectively.

(2) The thickness of viscoelastic core layer has important effects on the natural frequencies and modal loss factors of sandwich
shell structure.

(3) The natural frequencies and modal loss factors of sandwich shell structure exist the extreme value phenomenon under the
effects of circumferential waver number and boundary condition.
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Fig. 8 Variation of modal loss factor for a sandwich shell according to material loss factor of viscoelastic material layer (m � 1): a cylindrical shell and
b conical shell (α � π /6)

(4) The material loss factor Gi/Gr of viscoelastic material layer and the modal loss factors of sandwich conical shell structure are
positively correlated.
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Appendix 1. The components of the complex stiffness matrix K

Ainm � Qnmhi

Dinm � 1

12
Qnmh

3
i i � s, c m, n � 1, 2, 6, Ri1 � Ri0 + L sin α, i � s, c

Dv � Gvhv

K � K c + K bl + K br

−n � 0
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Table 6 Dimensionless
frequencies for a sandwich
cylindrical shell with various
length ratios (m � 1)

L/Rs n B.C

C–C C–S C–SD S–S S–SD SD–SD F–C F–S

0.5 1 0.0379 0.0373 0.0362 0.0369 0.0358 0.0240 0.0317 0.0315

2 0.0351 0.0344 0.0340 0.0339 0.0335 0.0334 0.0244 0.0241

3 0.0317 0.0309 0.0308 0.0302 0.0302 0.0302 0.0187 0.0184

4 0.0286 0.0276 0.0276 0.0268 0.0268 0.0268 0.0148 0.0144

1 1 0.0330 0.0329 0.0326 0.0329 0.0325 0.0240 0.0219 0.0218

2 0.0257 0.0256 0.0255 0.0255 0.0254 0.0254 0.0134 0.0133

3 0.0201 0.0199 0.0194 0.0198 0.0192 0.0189 0.0088 0.0087

4 0.0163 0.0161 0.0152 0.0159 0.0149 0.0142 0.0064 0.0063

2 1 0.0231 0.0230 0.0227 0.0230 0.0227 0.0227 0.0110 0.0110

2 0.0148 0.0148 0.0138 0.0147 0.0137 0.0130 0.0055 0.0055

3 0.0103 0.0102 0.0091 0.0102 0.0090 0.0078 0.0033 0.0033

4 0.0077 0.0077 0.0066 0.0076 0.0065 0.0054 0.0029 0.0029

5 1 0.0096 0.0096 0.0085 0.0096 0.0084 0.0074 0.0028 0.0028

2 0.0051 0.0051 0.0041 0.0050 0.0041 0.0031 0.0022 0.0022

3 0.0032 0.0032 0.0025 0.0031 0.0025 0.0023 0.0014 0.0014

4 0.0028 0.0028 0.0025 0.0028 0.0025 0.0020 0.0013 0.0012

Table 7 Dimensionless
frequencies for a sandwich conical
shell with various length ratios
(m � 1, α � π /6)

L/Rs n B.C

C–C C–S C–SD S–S S–SD SD–SD F–C F–S

0.5 1 0.0301 0.0289 0.0274 0.0287 0.0271 0.0186 0.0275 0.0270

2 0.0284 0.0272 0.0264 0.0269 0.0260 0.0249 0.0227 0.0223

3 0.0263 0.0251 0.0248 0.0246 0.0243 0.0241 0.0182 0.0178

4 0.0242 0.0229 0.0229 0.0222 0.0222 0.0222 0.0148 0.0143

1 1 0.0237 0.0233 0.0218 0.0233 0.0217 0.0193 0.0215 0.0213

2 0.0201 0.0199 0.0197 0.0199 0.0197 0.0161 0.0149 0.0148

3 0.0166 0.0164 0.0163 0.0163 0.0162 0.0161 0.0104 0.0103

4 0.0139 0.0136 0.0132 0.0135 0.0130 0.0128 0.0077 0.0076

2 1 0.0169 0.0168 0.0156 0.0168 0.0156 0.0132 0.0145 0.0145

2 0.0124 0.0123 0.0122 0.0123 0.0122 0.0121 0.0085 0.0085

3 0.0092 0.0091 0.0084 0.0091 0.0084 0.0081 0.0052 0.0052

4 0.0072 0.0071 0.0062 0.0071 0.0061 0.0057 0.0038 0.0038

5 1 0.0088 0.0088 0.0086 0.0088 0.0086 0.0084 0.0079 0.0079

2 0.0054 0.0054 0.0049 0.0054 0.0048 0.0047 0.0037 0.0037

3 0.0037 0.0037 0.0029 0.0037 0.0028 0.0026 0.0021 0.0021

4 0.0028 0.0028 0.0022 0.0028 0.0022 0.0020 0.0019 0.0019

K bl � diag
[
ku0Φ

TΦRs0 kv0Φ
TΦRs0 ku0Φ

TΦRc0 kv0Φ
TΦRc0

kw0Φ
TΦ(Rs0 + Rc0) + Kw0

∂Φ

∂x

T ∂Φ

∂x
(Rs0 + Rc0)

]

x�0
K br � diag

[
ku1Φ

TΦRs1 kv1Φ
TΦRs1 ku1Φ

TΦRc1 kv1Φ
TΦRc1

kw1Φ
TΦ(Rs1 + Rc1) + Kw1

∂Φ

∂x

T ∂Φ

∂x
(Rs1 + Rc1)

]

x�L

K c �
L∫

0

⎡

⎢⎢⎢⎣

k11 k12 · · · k15

kT12 k22 · · · k25
...

...
. . .

...
kT15 kT25 · · · k55

⎤

⎥⎥⎥⎦dx
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k11 �
(
As11

∂Φ

∂x

T ∂Φ

∂x
+

As22 sin2 α

R2
s

ΦTΦ +
As12 sin α

Rs

∂Φ

∂x

T

Φ +
As12 sin α

Rs
ΦT ∂Φ

∂x

)
Rs +

Dv

h2
v

ΦTΦRv

k13 � −Dv

h2
v

ΦTΦRv

k15 �
(
As12 cos α

Rs

∂Φ

∂x

T

Φ +
As22 sin α cos α

R2
s

ΦTΦ

)
Rs − Dvcx

hv

ΦT ∂Φ

∂x
Rv

k22 �
(
As66

∂�

∂x

T ∂�

∂x
+

As66 sin2 α

R2
s

�T� − As66 sin α

Rs

∂�

∂x

T

� − As66 sin α

Rs
�T ∂�

∂x

)
Rs

+ Dv

(
1

hv

+
cos α

2Rv

)2

�T�Rv

k24 � −Dv

(
1

hv

− cos α

2Rv

)(
1

hv

+
cos α

2Rv

)
ΦTΦRv

k33 �
(
Ac11

∂Φ

∂x

T ∂Φ

∂x
+

Ac22 sin2 α

R2
c

ΦTΦ +
Ac12 sin α

Rc

∂Φ

∂x

T

Φ +
Ac12 sin α

Rc
ΦT ∂Φ

∂x

)
Rc +

Dv

h2
v

ΦTΦRv

k35 �
(
Ac12 cos α

Rc

∂Φ

∂x

T

Φ +
Ac22 sin α cos α

R2
c

ΦTΦ

)
Rc +

Dvcx
hv

ΦT ∂Φ

∂x
Rv

k44 �
(
Ac66

∂Φ

∂x

T ∂Φ

∂x
+
Ac66 sin2 α

R2
c

ΦTΦ − Ac66 sin α

Rc

∂Φ

∂x

T

Φ − Ac66 sin α

Rc
ΦT ∂Φ

∂x

)
Rc

+ Dv

(
1

hv

− cos α

2Rv

)2

ΦTΦRv

k55 �

⎛

⎜⎜⎜⎝

Ds11
∂2Φ

∂x2

T
∂2Φ

∂x2 +
Ds22 sin2 α

R2
s

∂Φ

∂x

T ∂Φ

∂x
+

As22 cos2 α

R2
s

ΦTΦ

+
Ds12 sin α

Rs

∂2Φ

∂x2

T
∂Φ

∂x
+
Ds12 sin α

Rs

∂Φ

∂x

T ∂2Φ

∂x2

⎞

⎟⎟⎟⎠Rs

+

⎛

⎜⎜⎜⎝

Dc11
∂2Φ

∂x2

T
∂2Φ

∂x2 +
Dc22 sin2 α

R2
c

∂Φ

∂x

T ∂Φ

∂x
+

Ac22 cos2 α

R2
c

ΦTΦ

+
Dc12 sin α

Rc

∂2Φ

∂x2

T
∂Φ

∂x
+
Dc12 sin α

Rc

∂Φ

∂x

T ∂2Φ

∂x2

⎞

⎟⎟⎟⎠Rc

+ Dvc
2
x
∂Φ

∂x

T ∂Φ

∂x
Rv

−n > 0

K bl � diag π
[
ku0Φ

TΦRs0 kv0Φ
TΦRs0 ku0Φ

TΦRc0 kv0Φ
TΦRc0

kw0Φ
TΦ(Rs0 + Rc0) + Kw0

∂Φ

∂x

T ∂Φ

∂x
(Rs0 + Rc0)

ku0Φ
TΦRs0 kv0Φ

TΦRs0 ku0Φ
TΦRc0 kv0Φ

TΦRc0

kw0Φ
TΦ(Rs0 + Rc0) + Kw0

∂Φ

∂x

T ∂Φ

∂x
(Rs0 + Rc0)

⎤

⎥⎦

x�0

K br � diag π
[
ku1Φ

TΦRs1 kv1Φ
TΦRs1 ku1Φ

TΦRc1 kv1Φ
TΦRc1

kw1Φ
TΦ(Rs1 + Rc1) + Kw1

∂Φ

∂x

T ∂Φ

∂x
(Rs1 + Rc1)

ku1Φ
TΦRs1 kv1Φ

TΦRs1 ku1Φ
TΦRc1 kv1Φ

TΦRc1

kw1Φ
TΦ(Rs1 + Rc1) + Kw1

∂Φ

∂x

T ∂Φ

∂x
(Rs1 + Rc1)

⎤

⎥⎦

x�L
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K c � π

L∫

0

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

k11 k12 k13 k14 · · · k110

kT12 k22 k23 k24 · · · k210

kT13 kT23 k33 k34 · · · k310

kT14 kT24 kT34 k44 · · · k410
...

...
...

...
. . .

...
kT110 kT210 kT310 kT410 · · · k1010

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

dx

k11 � k66 �

⎛

⎜⎜⎝
As11

∂Φ

∂x

T ∂Φ

∂x
+

As66n2

R2
s

ΦTΦ +
As22 sin2 α

R2
s

ΦTΦ +
As12 sin α

Rs

∂Φ

∂x

T

Φ

+
As12 sin α

Rs
ΦT ∂Φ

∂x

⎞

⎟⎟⎠Rs

+
Dv

h2
v

ΦTΦRv

k12 � n

(
As12

Rs

∂Φ

∂x

T

Φ − As66

Rs
ΦT ∂Φ

∂x
+

As66 sin α

R2
s

ΦTΦ +
As22 sin α

R2
s

ΦTΦ

)
Rs

k13 � k68 − Dv

h2
v

ΦTΦRv

k15 � k610 �
(
As12 cos α

Rs

∂Φ

∂x

T

Φ +
As22 sin α cos α

R2
s

ΦTΦ

)
Rs − Dvcx

hv

ΦT ∂Φ

∂x
Rv

k22 � k77 �

⎛

⎜⎜⎝
As66

∂Φ

∂x

T ∂Φ

∂x
+

As22n2

R2
s

ΦTΦ+
As66 sin2 α

R2
s

ΦTΦ − As66 sin α

Rs

∂Φ

∂x

T

Φ

− As66 sin α

Rs
ΦT ∂Φ

∂x

⎞

⎟⎟⎠Rs

+Dv

(
1

hv

+
cos α

2Rv

)2

ΦTΦRv

k24 � k79 � −Dv

(
1

hv

− cos α

2Rv

)(
1

hv

+
cos α

2Rv

)
ΦTΦRv

k25 � nAs22 cos α

R2
s

ΦTΦRs + nDvcθ

(
1

hv

+
cos α

2Rv

)
ΦTΦRv

k33 � k88 �

⎛

⎜⎜⎝
Ac11

∂Φ

∂x

T ∂Φ

∂x
+

Ac66n2

R2
c

ΦTΦ +
Ac22 sin2 α

R2
c

ΦTΦ +
Ac12 sin α

Rc

∂Φ

∂x

T

Φ

+
Ac12 sin α

Rc
ΦT ∂Φ

∂x

⎞

⎟⎟⎠Rc

+
Dv

h2
v

ΦTΦRv

k34 � n

(
Ac12

Rc

∂Φ

∂x

T

Φ − Ac66

Rc
ΦT ∂Φ

∂x
+

Ac66 sin α

R2
c

ΦTΦ +
Ac22 sin α

R2
c

ΦTΦ

)
Rc

k35 � k810 �
(
Ac12 cos α

Rc

∂Φ

∂x

T

Φ +
Ac22 sin α cos α

R2
c

ΦTΦ

)
Rc +

Dvcx
hv

ΦT ∂Φ

∂x
Rv

k44 � k99 �

⎛

⎜⎜⎝
Ac66

∂Φ

∂x

T ∂Φ

∂x
+

Ac22n2

R2
c

ΦTΦ+
Ac66 sin2 α

R2
c

ΦTΦ − Ac66 sin α

Rc

∂Φ

∂x

T

Φ

− Ac66 sin α

Rc
ΦT ∂Φ

∂x

⎞

⎟⎟⎠Rc

+Dv

(
1

hv

− cos α

2Rv

)2

ΦTΦRv

k45 � nAc22 cos α

R2
c

ΦTΦRc − nDvcθ

(
1

hv

− cos α

2Rv

)
ΦTΦRv
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k55 � k1010 �

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ds11
∂2�

∂x2

T
∂2�

∂x2 +
Ds22n4

R4
s

�� +
Ds22 sin2 α

R2
s

∂�

∂x

T ∂�

∂x
+

4Ds66n2 sin2 α

R4
s

�T�

+
As22 cos2 α

R2
s

�T� +
4Ds66n2

R2
s

∂�

∂x

T ∂�

∂x
+
Ds12 sin α

Rs

∂2�

∂x2

T
∂�

∂x

+
Ds12 sin α

Rs

∂�

∂x

T ∂2�

∂x2 − Ds12n2

R2
s

∂2�

∂x2

T

� − Ds12n2

R2
s

�T ∂2�

∂x2 − Ds22n2 sin α

R3
s

∂�

∂x

T

�

−Ds11n2 sin α

R3
s

�T ∂�

∂x
− 4Ds66n2 sin α

R3
s

�T ∂�

∂x
− 4Ds66n2 sin α

R3
s

∂�

∂x

T

�

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Rs

+

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dc11
∂2�

∂x2

T
∂2�

∂x2 +
Dc22n4

R4
c

�� +
Dc22 sin2 α

R2
c

∂�

∂x

T ∂�

∂x
+

4Dc66n2 sin2 α

R4
c

�T�

+
Ac22 cos2 α

R2
c

�T� +
4Dc66n2

R2
c

∂�

∂x

T ∂�

∂x
+
Dc12 sin α

Rc

∂2�

∂x2

T
∂�

∂x
+
Dc12 sin α

Rc

∂�

∂x

T ∂2�

∂x2

−Dc12n2

R2
c

∂2�

∂x2

T

� − Dc12n2

R2
c

�T ∂2�

∂x2 − Dc22n2 sin α

R3
c

∂�

∂x

T

� − Dc11n2 sin α

R3
c

�T ∂�

∂x

−4Dc66n2 sin α

R3
c

�T ∂�

∂x
− 4Dc66n2 sin α

R3
c

∂�

∂x

T

�

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Rc

+

(
Dvc

2
x
∂�

∂x

T ∂�

∂x
+ Dvc

2
θn

2�T�

)
Rv

k67 � n

(
− As12

Rs

∂Φ

∂x

T

Φ +
As66

Rs
ΦT ∂Φ

∂x
− As66 sin α

R2
s

ΦT �− As22 sin α

R2
s

ΦTΦ

)
Rs

k710 � −nAs22 cos α

R2
s

ΦTΦRs − nDvcθ

(
1

hv

+
cos α

2Rv

)
ΦTΦRv

k89 � n

(
− Ac12

Rc

∂Φ

∂x

T

Φ +
Ac66

Rc
ΦT ∂Φ

∂x
− Ac66 sin α

R2
c

ΦTΦ − Ac22 sin α

R2
c

ΦTΦ

)
Rc

k910 � −nAc22 cos α

R2
c

ΦTΦRc + nDvcθ

(
1

hv

− cos α

2Rv

)
ΦTΦRv

Other elements of the matrix K are zero.

Appendix 2. The components of the mass matrixM

−n � 0

M �
L∫

0

ΦTΦ{diag[ρshs Rs ρshs Rs ρchcRc ρchc Rc ρshs Rs + ρvhvRv + ρchc Rc]}dx

−n > 0

M � π

L∫

0

ΦTΦ

{
diag

[
ρshs Rs ρshs Rs ρchc Rc ρchc Rc ρshs Rs + ρvhvRv + ρchc Rc

ρshs Rs ρshs Rs ρchc Rc ρchc Rc ρshs Rs + ρvhvRv + ρchc Rc

]}
dx
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