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Abstract The oscillating aspects of pressure-driven micropolar fluid flow through a hydrophobic cylindrical microannulus under
the influence of electroosmotic flow are analytically studied. The study is based on a linearized Poisson–Boltzmann equation and the
micropolar model of Eringen for microstructure fluids. An analytical solution is obtained for the distributions of electroosmotic flow
velocity and microrotation as functions of radial distance, periodic time, and relevant parameters. The findings of the present study
demonstrate that, unlike the decrease in flow rate resulting from the micropolarity of fluid particles, velocity slip and spin velocity
slip, when contrasted with Newtonian fluids, act as a counteractive mechanism that tends to enhance the flow rate. Additionally,
the findings indicate that a square plug-like profile in electroosmotic velocity amplitude is observed when the electric oscillating
parameter is low and the electrokinetic width is large, for both Newtonian and micropolar fluids. Moreover, in cases where there is
a wide gap between the cylindrical walls and a high-frequency parameter, the electroosmotic velocity and microrotation amplitudes
tend to approach zero at the center of the microannulus across all ranges of micropolarity and zeta potential parameters. Furthermore,
it has been observed that the amplitude of microrotation strength rises as slip and spin slip parameters increase. Across the entire
spectrum of micropolarity, the zeta potential ratio influences both the dimension and direction of the electroosmotic velocity profiles
within the electric double layer near the two cylindrical walls of the microannulus. The study emphasizes the physical quantities by
presenting graphs for various values of the pertinent parameters juxtaposing them with existing data in the literature and comparing
them with the Newtonian fluids.

1 Introduction

Microfluidics constitutes a broad and swiftly advancing domain within micro-electromechanical systems, owing to its utilization in
biomedical science and engineering [1]. The term “electroosmotic flow” denotes the movement of fluid in a microchannel triggered
by an externally applied electric field. This fundamental electrokinetic phenomenon is utilized in various practical applications. In
numerous microfluidic applications, there is a need to propel fluids between different sections of the device, regulate fluid movement,
improve the mixing of various substances, or separate fluids. Electroosmosis offers an appealing method for manipulating liquids
in these devices. A notable benefit of the electroosmosis phenomenon is that the voltages applied at the device reservoirs can not
only govern the overall fluidic transport but also segregate distinct components of a sample based on their varying electrophoretic
mobilities. Contrary to flows in macro-sized channels, the examination of flow in microchannels necessitates accounting for the
existence of the electric double layer (EDL). This layer forms due to the interaction between the charged wall surface and ionized
solution [2]. In the case of a negatively charged channel surface, positive ions are drawn toward the surface, while negative ions
are pushed away from it, maintaining the bulk of the fluid at a distance from the wall and electrically neutral. Ions of opposite
charge quickly gather near the wall, creating the Stern layer. Adjacent to the Stern layer, the diffuse layer forms, encompassing
both coions and counterions, with its ion density variation following the Boltzmann distribution [3]. Thus, the electric double layer
(EDL) comprises two distinct regions: the Stern layer and the diffuse layer. Debye length is a commonly used term to denote the
characteristic thickness of EDL. Therefore, the impact of an EDL is predominantly observable at the surface; its consequences
become evident when the channel’s typical dimensions are comparable to the thickness of the EDL [4]. Electroosmotic flow (EOF)
arises from the interplay between ions in the EDL and an externally imposed electric field.

The significance of the zeta potential (represented by ζ ) in analyzing the EDL of a microtube is noteworthy. The distribution
of potential within the EDL is determined by the nonlinear Poisson–Boltzmann equation. To simplify the governing differential
equation of the potential, the Debye–Hückel approximation is employed. This approximation transforms the Poisson–Boltzmann
equation into a linear form, potentially allowing for an exact solution. The applicability of the Debye–Hückel approximation arises
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when the ionic energy at the surface is considerably smaller than the thermal energy, that is, when ζ < 25 mV [5]. When a pressure
gradient is applied to propel an electrolyte solution through a microchannel, the counterions within the diffuse layer of the EDL
migrate toward the downstream end. This migration of electric charges gives rise to a current known as streaming current. The
buildup of charges between the two ends of the microchannels results in the generation of an electrokinetic potential referred to as
the streaming potential [6, 7].

Over the preceding decades, researchers have explored steady, fully developed Electroosmotic Flow (EOF) in various geometric
domains of microcapillaries through both experimental and theoretical studies (e.g., [8–10]). In recent years, there has been a growing
emphasis on time-dependent EOF as an alternative mechanism for microfluidic transport, leading to several groundbreaking experi-
mental studies ([11, 12]) and theoretical investigations ([13–15]). The studies mentioned earlier that explore classical electrokinetic
transport phenomena assume that fluid particles do not have internal structures, primarily focusing on Newtonian fluids. Nevertheless,
microfluidic devices often deal with complex fluids such as polymer solutions, colloids, and cell suspensions. These fluids display
evident non-Newtonian characteristics, requiring attention to their internal structure, especially when dealing with particles with
intricate shapes. Eringen [16] introduced the theory of micropolar fluids, widely recognized for offering a comprehensive description
of the internal microstructure inherent in such fluids. Lately, there has been a growing interest in the micropolar electrokinetic flow
observed in microchannels or on hydrophobic microchannel surfaces (e.g., [17–20]). In the typical representation of a micropolar
issue within the constraints of low Reynolds numbers, it is customary to consider no-slip and no-spin slip conditions at the interface
between solid and fluid. Nevertheless, this represents an idealized view of the transport processes at play, with the no-slip condition
holding solely at the macroscopic length scale [21–25]. Therefore, in the context of fluids exhibiting microstructure, the term “spin
slip” denotes the relative occurrence of microrotation of microelements near the solid surface alongside conventional slip [20].

This paper aims to provide an analytical solution for the time-periodic microstructure electroosmotic flow within a microannulus
region. The microstructured fluid is modeled as a micropolar type. In our analysis, we employ the Poisson–Boltzmann equation under
the Debye–Hückel approximation and the Eringen micropolar equations. Our investigation diverges from the one conducted by Jian
et al [15] as we focus on microstructured electrolytes, and the microannulus surface is hydrophobic with the pressure-driven flow.
In contrast, Jian et al [15] concentrate on Newtonian viscous electrolytes with no hydrophobic surfaces and without pressure-driven
flow. This sets it apart from the study undertaken by Faltas et al [20] in two key aspects: In [20], the flow is steady, and it occurs
within a cylindrical microtube, whereas in our work, the microstructured electrolyte experiences time-periodic flows through a
cylindrical microannulus. Again, our study focuses on a hydrophobic microannulus, whereas Ding et al. [26] dealt with flow through
non-hydrophobic plane walls. All these differences contribute to the novelty of our work. The annulus model is more encompassing
than models such as a circular cylinder or two parallel plates. Annulus geometry is utilized as an innovative microfluidic method for
mixing chemical and biological fluids [25]. Another significant application of electroosmotic flow through microannulus is in the
chemical remediation of contaminated soil [27].

2 Formulation of the problem and electrical potential

Consider an electrolyte micropolar solution exhibits unsteady flow within the annular space between two concentric circular cylinders
with inner radius a and outer radius b, as depicted in Fig. 1. The cylinders are assumed to be infinitely long to ignore the edge effects.
Let ζi and ζo be the zeta potentials of the inner and outer surfaces of the cylinders, respectively. Circular cylindrical coordinates
(r , θ , z), along with their corresponding unit vectors (�er , �eθ , �ez), are employed, with the z− axis aligned along the centerline
of the microannulus. The chemical interaction between the micropolar fluid electrolyte and the solid walls of the cylinders gives
rise to an electric double layer—an extremely thin charged liquid layer at the solid–fluid interface. In the case of a symmetric
binary electrolyte solution, the Poisson–Boltzmann equation, under the Debye–Hückel linearization approximation that describes
the electrical potential of the (EDL), is given by [15, 20]:

∇2ψ � κ2ψ , (1)

with net volume charge ρe � −2n0z2
0e

2ψ/kBT , where κ �
√

2n0z2
0e

2/εkBT represents the Debye–Hückel screening parameter,

and κ−1 signifies the characteristic thickness of the electric double layer. Conveniently, we can define the following dimensionless
set of variables for the electrical potential:

r∗ � r

b
, ψ∗ � ez0ψ

kBT
, ζ ∗

i ,o � ez0ζi ,o

kBT
, κb � k, (2)

where k is known as the non-dimensional electrokinetic width; a large k means a thin EDL. For convenience, we drop asterisks
in the subsequent analysis. In a cylindrical coordinate system, when the deformation of the electric double layer is negligible, the
electrical potential Eq. (1) in the annulus region can be represented as

(D2 − k2)ψ � 0, (3)
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Fig. 1 a A cross-sectional sketch of time-periodic electroosmotic micropolar flow through a microannulus. b Electroosmotic flow through a microannulus
along z-direction

where the operator D2 is defined as D2 � 1
r

d
dr

(
r d

dr

)
. The differential Eq. (3) is subject to the following boundary conditions:

ψ � ζi , r � σ (� a/b) and ψ � ζo, r � 1. (4)

In our subsequent analysis, we will explore both the thick and thin electric double-layer limits, excluding considerations of overlapped
EDL cases. The general solution of the differential Eq. (3) with the boundary condition (4) is given by [15]:

ψ � ζo(AI0(kr ) + BK0(kr )), (5)

where

A � δ(βK0(k) − K0(kσ )), B � δ(I0(kσ ) − β I0(k))

δ � (K0(k)I0(kσ ) − I0(k)K0(kσ ))−1.

}
(6)

Here In and Kn are the modified Bessel functions of the first and second kinds of order n, respectively, and β � ζi/ζo represents the
ratio of the zeta potentials of the inner cylindrical surface to the outer cylindrical surface of the annulus. In the extreme case where
σ � 0 and β � 0, this corresponds to the electrical potential of the EDL in a cylindrical microtube [20].

3 Electrokinetic micropolar field equations

The velocity field �u and the microrotation �ν of the microelements of an electrokinetic incompressible microstructure fluid of
micropolar model are governed by the unsteady Nowacki set of equations modified with electric field:

ρ f

(
∂ �u
∂t

+ (�u · ∇)�u
)

+ (η + ηr )∇ ∧ ∇ ∧ �u − 2ηr∇ ∧ �ν � ρe �E − ∇ p, (7)

ρ f j

(
∂�ν
∂t

+ (�u · ∇)�ν
)

+ (α + β + γ )∇(∇. �ν) − γ∇ ∧ ∇ ∧ �ν + 2ηr∇ ∧ �q − 4ηr �ν � 0, (8)

∇ · �u � 0, (9)

where we have neglected the external body couple, p is the pressure, (η, ηr ) are material viscosity coefficients, and (α, β, γ ) are
angular viscosity coefficients. The scalar quantities ρ f and j, representing the density of fluid and gyration coefficient, are considered
constant in this context. It effectively communicates that the field equations are supplemented with constitutive equations as specified
in reference [20]. The flow maintained by constant pressure gradient is assumed to be one-dimensional, time-periodic, and fully
developed; the body force is electric field force ρe �Ez(� Ez �ez) and the body couple effect is negligible as is often used in the
literature. Based on the above assumption, the velocity and microrotation of the fluid can be expressed as �u � (0, 0, w(r , t)) and
�ν � (0, ν(r , t), 0), respectively. Then, the continuity Eq. (9) is satisfied automatically, and the convective terms in the momentum
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Eqs. (7) and (8) vanish identically. The applied electric field, velocity, microrotation, and pressure of periodical electroosmosis can
be written in complex forms as:

Ez(t) � Re(Eze
iωt ), p(z, t) � Re(p(z)eiωt ),

w(r , t) � Re(w(r )eiωt ), ν(r , t) � Re(ν(r )eiωt ).

}
(10)

Here Ez is the amplitude of the applied electric field, w(r) is the complex amplitude of electroosmotic velocity, ν(r ) is the complex
amplitude of electroosmotic microrotation, and ω is angle frequency which equals to 2π f . In this case, the field Eqs. (7) and (8)
reduce, respectively, to:

ρ f iωw − (η + ηr )
1

r

d

dr

(
r
dw

dr

)
− 2ηr

1

r

d

dr
(rν) �ρeE0 − d

p
dz, (11)

ρ f iω jν + γ
d

dr

(
1

r

d

dr
(rν)

)
− 2ηr

d

w
d − 4ηrν �0. (12)

Indeed, our assumption in Eqs. (11) and (12) [28] is that the time-dependent electroosmotic flow does not exert an influence on the
charge distribution within the Debye layer. Again, we define a second set of non-dimensional quantities concerning the micropolar
fluid flow:

u p � −b2

η

d

p
dz, ue � −εkBT E0

ez0η
, w∗ � w

ue
, ν∗ � bν

ue
, �∗ � b

ηue
�, j∗ � j

b2 ,

m∗ � b2

βue
m, c � ηr

η
, s � b2ηr

γ
, ŝ � b2ηr

β
, α2 � ωb2ρ f

η
, û � u p

ue
,

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(13)

where u p is the pressure-driven velocity scale, ue is the electroosmotic velocity scale, û is the ratio of the pressure-driven characteristic
velocity to the electroosmotic velocity, E0 is the characteristic electric field, c is the micropolarity parameter, (s, ŝ) are couple stress
parameters, and α is frequency parameter. Again, for convenience, we drop asterisks in the subsequent analysis. It is important to
note that as c → 0 or (s, ŝ) → ∞, we get Newtonian classical fluids as a special case of micropolar fluids, where the microrotation
of particles is equal to fluid vorticity.

By removing the microrotation ν from Eqs. (11) and (12) and incorporating the solution from (13), we derive a non-homogeneous
fourth-order differential equation, in non-dimensional form, that is fulfilled by w:

(D4 − λ2
1D

2 + λ2
2)w � M(AI0(kr ) + BK0(kr )) + Nû, (14)

where

λ2
1 � 4sc + iα2(c − js(1 + c))

c(1 + c)
, λ2

2 � α2s(4ic + α2 j)

c(1 + c)
,

M � k1(s(4 − iα2 jc−1) − k2), N � 4sc − iα2 js

c(1 + c)
, k1 � k2ζo

1 + c
.

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(15)

The microrotation component is thus given by:

ν � τ1

[ d

dr
(D2 + τ2)w + k1k(AI1(kr ) − BK1(kr ))

]
, (16)

where τ1 � 1+c

2 s
(
iα2 j−4c

) , τ2 � 4sc−iα2

1+c . The general solution of (14) is given by,

w �
2∑

i�1

(Ci K0(α1i r ) + Di I0(α2i r )) + K (AI0(kr ) + BK0(kr )) − iα−2û, (17)

where Ci , Di , i � 1, 2 are arbitrary constants to be determined, and

α1i � 1
2

√
λ2

1 ±
√

λ4
1 − 4λ2

2 , α2i � − 1
2

√
λ2

1 ±
√

λ4
1 − 4λ2

2 , i � 1, 2

K � k1(s(4 − iα2 jc−1) − k2)

k4 − λ2
1 k

2 + λ2
2

.

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(18)

Inserting (21), we obtain

ν � − τ1

2∑
i�1

(Ci α1i (α
2
1i + τ2)K1(αi r ) − Di α2i (α

2
2i + τ2)I1(α2i r ))

+ τ1k(K (k2 + τ2) + k1)(AI1(kr ) − BK1(kr )). (19)
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To determine the unknown constantsCi , Di , i � 1, 2, the boundary conditions at the surfaces of the microannulus must be specified.
As the micropolar electrolyte solution flows through a microannulus tube with hydrophobic surfaces, we must account for fluid
slippage at the surface of the microannulus. Velocity slip has been detected at the interface between solids and liquids in the case
of synthesized nanoparticles [24, 29–31], bacterial cells [32], and hydrophobic polystyrene particles [33]. There is spin velocity
slip due to microrotation in addition to the conventional velocity slip for micropolar fluids. These conditions take the following, in
non-dimensional, forms:

(i) At the hydrophobic inner surface of the microannulus r � σ ,

w � b1�r z , ν � b2mrθ , (20)

(ii) At the hydrophobic outer surface of the microannulus r � 1,

w � −b1�r z , ν � −b2mrθ , (21)

where b1andb2 are, respectively, the non-dimensional linear slip and the non-dimensional spin slip length and �r z and mrθ are,
respectively, the tangential stress and couple stress. In practical terms, dimensional slip lengths serve as a measure for quantifying slip
at a particular surface. For Newtonian fluids, slip length has been assessed across various physical conditions, reaching magnitudes
on the order of many microns [29]. Therefore, in the current analysis, incorporating slip boundary conditions on a small scale holds
high significance and contributes to achieving an ideal microtube wall design for accurately controlling flow in microtubes. Within
the existing literature, data for the spin slip length are currently unavailable. By implementing the boundary conditions (20) and
(21), we determine the unspecified constants in the form:

Ci � Ci1 + Ci2û, Di � Di1 + Di2û, i � 1, 2, (22)

where Ci j , i , j � 1, 2 are calculated by any program like Maple. The velocity w and microrotation ν profiles given, respectively,
by (18) and (19) which can be written as a sum of oscillating Poiseuille flow terms wP , νP and electrokinetic term wE , νE in the
following forms:

w � wE + wP û, ν � νE + νpû, (23)

where (wP , νP ) and (wE , νE ) are defined as:

wE �
2∑

i�1

(Ci1K0(α1i r ) − Di1 I0(α2i r )) + K (AI1(kr ) − BK1(kr )),

νE � − τ1

2∑
i�1

(Ci1α1i (α
2
1i + τ2)K1(α1i r ) − α2i (α

2
2i + τ2)Di1 I1(α2i r ))

+ τ1k(K (k2 + τ2) + k1)(AI1(kr ) − BK1(kr )) ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(24)

and

wP �
2∑

i�1

(Ci2K0(α1i r ) − Di2 I0(α2i r )) − i α−2,

νp � − τ1

2∑
i�1

(Ci2 α1i (α
2
1i + τ2)K1(α1i r ) − Di2 α2i (α

2
2i + τ2)I1(α2i r )).

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(25)

4 Rate of flow and streaming potential

The fluid’s volumetric flow rate is determined by integrating the axial velocity across a cross-sectional area of the microannulus.
The non-dimensional representation is expressed as Q � Q∗/πb2ue; dropping asterisks, then, Q � QE + QPû; we have:

QE � 2
∫ 1

σ

wE r dr, QP � 2
∫ 1

σ

wP r dr , (26)

where QE represents the electroosmotic rate of flow and QP represents the oscillating rate of flow due to the pressure driven.
Inserting wE given from (24) and wP given from (25) into (26), we obtain:

QE �2
2∑

i�1

[
Ci1 α−1

1i (σK1(α1iσ ) − K1(α1i )) + Di1 α−1
2i (σ I1(α2iσ ) − I1(α2i ))

]

+ 2Kk−1[A(σK1(kσ ) − K1(k)) + B(σ I1(kσ ) − I1(k))
]
, (27)
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QP �2
2∑

i�1

[
Ci2 α−1

1i (σK1(α1iσ ) − K1(α1i )) − Di2 α−1
2i (σ I1(α2iσ ) − I1(α2i ))

]

− iα−2(1 − σ 2). (28)

To investigate how dimensionless parameters impact the microrotation of micropolar fluids, we introduce the notion of dimensionless
microrotation strength across a cross-sectional area of the microannulus [17]. Again, the non-dimensional representation is expressed
as �∗ � �/πbue; dropping asterisks, then � � �E + �P û; we obtain:

�E � 2
∫ 1

σ

νE r dr, �P � 2
∫ 1

σ

νP r dr, (29)

where �E represents the oscillating electroosmotic microrotation strength and �P represents the oscillating microrotation strength
due to the pressure driven. Inserting νE given from (24) and νP given from (25) into (29), we obtain:

�E � τ1π

2∑
i�1

(
1

α1i
α1i (α

2
1i + τ2)

[
σK1(α1iσ )L0(α1iσ ) + σK0(α1iσ )L1(α1iσ )

− K1(α1i )L0(α1i ) − K0(α1i )L1(α1i )
]
Ci1 + 1

α2i
α2i (α

2
2i + τ2)

[
σ I1(α2iσ )L0(α2iσ )

−σ I0(α2iσ )L1(α2iσ ) − I1(α2i )L0(α2i ) + I0(α2i )L1(α2i )
]
Di1

) − 1
k2 τ1πk(K (k2 + τ2)

+ k1)(A
[
σ I1(kσ )L0(kσ ) − σ I0(kσ )L1(kσ ) − I1(k)L0(k) + I0(k)L1(k)

]

− B
[
σK1(kσ )L0(kσ ) + σK0(kσ )L1(σ ) − K1(k)L0(k) − K0(k)L1(k)

]
),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(30)

�P � τ1π

2∑
i�1

(
1

α1i
α1i (α

2
1i + τ2)

[
σK1(α1iσ )L0(α1iσ ) + σK0(α1iσ )L1(α1iσ )

− K1(α1i )L0(α1i ) − K0(α1i )L1(α1i )
]
Ci2 + 1

α2i
α2i (α

2
2i + τ2)

[
σ I1(α2iσ )L0(α2iσ )

−σ I0(α2iσ )L1(α2iσ ) − I1(α2i )L0(α2i ) + I0(α2i )L1(α2i )
]
Di2

)
,

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(31)

where Ln(.) is the modified Struve function of the first kind of order n. The electric current density along the microannulus can be
expressed, in dimensional form, as [17]:

I � 2πez0

∫ b

a
(n+w+ − n−w−)rdr. (32)

Here w+, w− are, respectively, the axial velocities of the cations and anions, which represent a combination of fluid advection
velocity and electromigrated velocity, which is given by w± � w ± ez0E0/ f̂ where f̂ is the constant ionic friction coefficient,
assumed to be the same for cations and anions [17]. By incorporating (3) and (30) into (29) and applying the Debye–Hückel
approximation, I � Is + Ic, we derive the following:

Is � −4πn0e2z2
0

kBT

∫ b

a
w ψ rdr, Ic � 2πn0e2z2

0E0

f̂
(b2 − a2), (33)

where Is and Ic are, respectively, the streaming current and conduction current. Define the non-dimensional currents as (i , is ,
ic) � (I , Is , Ic)

8πez0n0b2ue
. Therefore, the non-dimensional streaming and conduction currents are given, respectively, as:

is � − 1
2 ζo

∫ 1

σ

w (AI0(kr ) + BK0(kr )) rdr , ic � −1

4
(1 − σ 2)R. (34)

Hence, R � e2z2η

εkBT f̂
is the inverse ionic Péclet number and represents the ratio of the conduction current to the streaming current.

Calculate the integral in (34) and write the result in the form, i � iE + iP û, such that:

iE � − 1
2 ζo

2∑
i�1

[
(Ci1χ1 + Di1χ3)A + (Ci1χ2 + Di1χ4)B

+ K (χ5(A2 + B2) + χ6 AB)
] − 1

4
(1 − σ 2)R, (35)

iP � − 1
2 ζo

2∑
i�1

[
(Ci2χ1 + Di2χ2 − iα−2χ7)A + (Ci2χ3 + Di2χ4 − iα−2χ8)B

]
. (36)

Here the integrals χi , i � 1, 2, ...8 are evaluated by using the Maple Program.
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5 Results and discussions

Various dimensionless parameters outlined earlier characterize the overall flow characteristics of periodic electroosmosis of
microstructure fluids of micropolar type in a cylindrical microannulus. These parameters include micropolar viscosity factors
(c, s, ŝ, j) electrical factors (k, β, ζ0, û) along with the periodical EOF electric oscillating parameter and the ratio of the inner
radius to the outer radius of the annulus. The velocity distributions of periodic EOF flow within the annular region and the other
physical quantities are predominantly influenced by these parameters. The following figures depict the relationship between the real
part of the dimensionless amplitude of electroosmotic flow (EOF) complex velocity (−w(r )) and the amplitude of EOF microrota-
tion ν(r ) on pertinent parameters at transient times corresponding to t � 2πn, where n � 0, 1, 2, . . . [15]. During our numerical
calculations, we incorporate a non-dimensional gyration parameter j � 0.1 and ŝ � 0.2.

(i) Ranges of the flow control parameters
Here, we record the physical values of the control parameters utilized in our analysis and ensuing discussions. The typical
parameter σ � a/b is constrained within the range of 0 < σ < 1. The non-dimensional zeta potential ζ0 of the outer
cylindrical wall is considered as ζ0 � −1. The scale of the outer cylinder is 100μm. We have the viscosity coefficients
η ≈ 10−3kgm−1s−1 and ηr ≈ 1.38 × 10−4 − 3 × 10−3kgm−1s−1 and the angular viscosity coefficients γ range from
4.8×10−3kgms−1 to 4.8×10−6kgms−1. Hence, according to the previously provided definitions, the micropolarity parameter
c varies between 0.1 and 3, while s and ranges from 1.38 × 10−10 to 0.62 × 102 [17]. Based on the experimental findings by
Bouzigues et al. [31], we can deduce approximate values for the dimensional lengths of b1 which vary from b1 � 0 ± 10nm
(hydrophilic, glass) to b1 � 38 ± 6nm (hydrophobic, octadecyl-trichloro-silane, OTS). Consequently, the non-dimensional
slip length spans from 0 to 0.5 [17]. While there are currently no available data for the slip length b2, it is anticipated to have
values lower than those of b1. At ambient temperature, the ionic Péclet number R varies between 0.1 to 10 [34]. It should
be noted here that, with constant fluid density ρ f and viscosity η, and a fixed outer cylindrical radius b, a higher frequency
parameter α(� √

ωbρ f /η) corresponds to an increased electric oscillating frequency.
(ii) Effect of micropolarity and Verification of solutions

Figure 2 shows the electroosmotic flow versus dimensionless distance, due to only the electric field û � 0 with no slip
and no spin at the walls of the microannulus. The plots in these figures for c � 0 are in perfect agreement with the results
of Jian et al. [15]. It indicates that at low permeability parameters, such as α � 0.628, implying a low electric oscillating
frequency, the EOF velocity amplitude exhibits a square plug-like profile for larger, k as illustrated in Fig. 2a. This means that
the introduction of micropolarity among fluid particles results in a reduction in velocity compared to Newtonian fluids. This
reduction is attributed to the depletion of fluid momentum caused by the microrotation of fluid particles. The electroosmotic
velocity rises as micropolarity parameters. The results illustrate a decrease in EOF amplitudes near the two solid walls as the
micropolarity increases and reverse this behavior at the center of the annulus. The periodic electric force is primarily localized
within the EDL adjacent to the walls of the microannulus. Noticeable decreases in EOF amplitudes are observed outside the
EDL. As the frequency parameter increases further, such as α � 62.8, indicating a high electric oscillating frequency, the
driving effect of the electric force diminishes rapidly away from the two cylindrical walls (see Fig. 2b). Fluids in the central
region of the channel exhibit minimal movement when both the electric frequency and micropolarity parameters are elevated.
Additionally, Fig. 2 shows that the choice of β � 1 results in velocity profiles displaying symmetric characteristics around
the mid-ring plane r � 0.7 when σ � 0.4. Across the entire micropolarity spectrum, Fig. 2a shows that, as anticipated, the
EOF amplitudes tend to transition into a plug-type behavior with an increase in electrokinetic width k.
Figure 3a indicates that for low frequency parameters, the velocity amplitudes have the usual parabolic profile and increase as
the micropolarity parameter increases with maximum values for the Newtonian fluids (s → ∞). The frequency parameter has a
significant effect on velocity amplitudes as indicated in Fig. 3b, velocity amplitudes increase near the wall of the microannulus
and decrease at the center. The velocity slip at the walls decreases as the frequency parameter increases. Figure 4 illustrates
the profiles of EOF microrotation as a function of dimensionless distance for various values of the micropolarity parameter.
Here also the magnitudes of the spin slip at the walls decrease as the frequency parameter increases. In general, the values of
the magnitudes of microrotation amplitudes are very low when compared with the velocity amplitude.

(iii) Influence of slippage
In this section, we discuss the influence of slippage at the surface of a microannulus on the electrokinetic phenomena of
micropolar fluids. The plots in Fig. 5 describe the velocity amplitude profile versus the non-dimensional distance due to an
oscillating pressure gradient without any electrical effect. It should be noted here that this microstructure motion has not
been addressed in prior literature, especially in cases where the pressure gradient is periodic, and the microannulus wall is
hydrophobic in nature. Here, we present the notion of amplitude velocity slip, referring to the amplitude velocity slip value at
the microannulus walls. Similarly, we extend this concept to encompass the amplitude of microrotation slip. For low values of
frequency parameters such as α � 0.628 (see Fig. 5a), and for all values of micropolarity and slip parameters, the amplitudes
of the velocity profile exhibit the usual parabolic shape. Also, for low values of the frequency parameter, the amplitude of
velocity increases with the increase in slippage parameters and decreases with the decrease in micropolarity. Again, the plots
in Fig. 3 illustrate a general reduction in velocity amplitude with an increase in the frequency parameter. The heightened
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Fig. 2 Comparisons of the dimensionless amplitude of EOF velocity profiles versus the dimensionless distance r for different values of parameter c, different
electrokinetic width k and frequency parameter α with the solution given by Jian et al. [15] under the same dimensionless parameters s � 1.0, ζ0 � −1.0,
β � 1.0, and û � 0.0 a α � 0.628, b α � 62.8

Fig. 3 Dimensionless amplitude of EOF velocity profiles versus the dimensionless distance r for different micropolarity swith c � 0.1, 1, and b1 � b2 � 0.1,
ζo � −1, β � 1, û � 1, k � 10 a α � 0.628, b α � 62.8

scale at the annulus wall corresponds to the velocity slip value. For significantly higher frequency parameters, the velocity
is observed to be nearly zero in the annulus center (Fig. 5b). The plots in Fig. 6 represent the velocity amplitudes for the
case in the absence of pressure gradient, û � 0, and the case when the pressure gradient is twice the driven electric field,
uP � 2ue. Clearly, for the second case, the direction of motion is reversed and we note a symmetry between the plots of
û � 0 and û � 2. Figure 6a exhibits the limiting steady state α � 0, it shows that the magnitude of the velocity amplitudes
decreases as the distance increases and the velocity slip increases with the slippage parameters. As the frequency parameter
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Fig. 4 Dimensionless amplitude of EOF microrotation profiles versus the dimensionless distance r for different micropolarity s with c � 0.1, 1, and b1 �
b2 � 0.1, ζo � −1, β � 1, û � 1, k � 10 a α � 0.628, b α � 62.8

Fig. 5 Velocity amplitude profile versus the non-dimensional distance when the flow is driven only by pressure gradient for different values of micropolarity
and slip parameters with s � 1.0, û � 1.0 a α � 0.628, b α � 62.8

increases, the velocity amplitudes show the same behavior as seen in the previous plots. Figure 7 exhibits the dimensionless
amplitude of EOF microrotation profiles at various radial distances for different values of frequency parameters including
again the steady-state case. The microrotation also shows the same behavior with the same parameters as illustrated in Fig. 7
of the velocity profile.

(iv) Effect of zeta potentials ratio

123



  575 Page 10 of 18 Eur. Phys. J. Plus         (2024) 139:575 

Fig. 6 Dimensionless amplitude of EOF velocity profiles versus the dimensionless distance r for different frequency parameter α and different slippage
parameters in the cases of c � s � 1, k � 1.0, ζ0 � −1.0, β � 1.0, and a α � 0.0 (steady state), b α � 62.8

Fig. 7 Dimensionless amplitude of EOF microrotation profiles versus the dimensionless distance r for different frequency parameter α and different slippage
parameters in the cases of c � s � 1, k � 1.0, ζ0 � −1.0, β � 1.0, and a α � 0.0 (steady state), b α � 62.8

The electroosmosis flow arises from the interplay between the applied electric field and the electric double layer. Consequently,
the wall zeta potential ratio β(� ζi/ζo) exerts a noteworthy impact on the EOF, as illustrated in Fig. 8 for various electric
oscillating frequencies under the condition of a small electrokinetic width k � 10 and a radius ratio approaching 1 (σ � 0.9).
It is important to highlight that Fig. 8 includes the case of Newtonian fluids discussed in Jian et al. [15], albeit with the inclusion
of the pressure gradient. Figure 8a–b shows that for micropolar fluids, when the two cylindrical walls possess opposite charges
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Fig. 8 Dimensionless amplitude of EOF velocity profiles versus the dimensionless distance r for different zeta potential ratios of the inner to the outer
cylindrical wall and different frequency parameter α for the cases of c � 0.1, with no slip and no spin and s � 1, ζ0 � −1, û � 1. The case of narrow gap
σ � 0.9, k � 10 a α � 0.628, b α � 62.8

β < 0, the orientation of the electroosmotic flow in the microannulus is closely linked to the polarity of the charged channel
wall. This finding aligns with the conclusions for Newtonian fluids drawn in [15]. Now, contemplate a special case in which
β equals 1 and σ equals 0.9, indicating a minimal separation between the two cylinders. The magnitudes of velocities are
primarily influenced by the frequency of electric and pressure gradient oscillations. For the lower frequency of oscillation
with c � 1, refer to Fig. 8a, where the electroosmotic flow velocity profile closely resembles that obtained for Newtonian flow
c � 0 by Jian et al [15]. As the oscillating frequency rises, as depicted in Figs. 8b, the velocity amplitudes for micropolar and
Newtonian fluids progressively diminish and approach zero away from the two electric double layers along the cylindrical
walls.
Similar to Figs. 8, 9 illustrates the profiles of EOF velocity as a function of dimensionless distance for various values of
zeta potential and various parameters of electric oscillating frequency, excluding the case where the inner to outer cylindrical
radius ratio is 0.1 (σ � 0.1) and the electrokinetic width is large k � 100. Figure 9 illustrates that as the inner cylindrical zeta
potential increases, the velocity experiences a rapid rise from zero at the wall to a maximum velocity within the inner EDL
region. Subsequently, the velocity diminishes with distance from the inner cylindrical wall and gradually increases within
the outer EDL region. Finally, the velocity reaches zero at the outer cylindrical wall. These phenomena can be explained by
the flow being propelled by electrical forces arising from the interaction between an externally applied electric field and the
EDL field. In the situation where β equals 0 and σ equals 0.1, it signifies the extreme condition depicting electroosmotic
flow (EOF) within a circular microchannel. The velocities predominantly concentrate in the outer electric double-layer (EDL)
regions, irrespective of whether the electric oscillating frequency parameter is low or high and whether the flow is micropolar
or Newtonian. Figure 7b shows that at high frequencies, the time scale for diffusion is significantly longer than the period of
oscillation. As a result, there is not enough time for the flow momentum to spread extensively into the gap between the two
cylindrical walls, and the variations in electroosmotic flow velocity are confined to a thin layer near the two solid surfaces.
For low and moderate frequencies up to at least α � 20 under the condition of a small electrokinetic width k � 10.0 and a radius
ratio approaching 1, the magnitudes of the microrotation amplitude increase with the decrease of the micropolarity parameter
(Fig. 10a). For high frequencies, it increases with the increase of the micropolarity parameter (Fig. 10b). Additionally, Fig. 7
indicates that the magnitudes of the microrotation amplitude have greater values for β < 0 when compared with β > 0.
When the micropolar parameter c � 0.0, the microrotation vanishes as expected. Figure 11 illustrates the profiles of EOF
microrotation as a function of dimensionless distance for various values of zeta potential and various parameters of electric
oscillating frequency, for the case where the inner to outer cylindrical radius ratio is 0.1 and the electrokinetic width is large
k � 100. Figure 11 demonstrates that as the zeta potential increases within the inner cylinder, the magnitudes of microrotation
amplitudes undergo a rapid escalation from zero at the wall to a peak microrotation within the inner electric double-layer region.
Subsequently, microrotation diminishes as the distance from the inner cylindrical wall increases and gradually rises within the
outer EDL region. Ultimately, microrotation returns to zero at the outer cylindrical wall. These observations can be elucidated
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Fig. 9 Dimensionless amplitude of EOF velocity profiles versus the dimensionless distance r for different zeta potential ratios of the inner to the outer
cylindrical wall and different frequency parameter α for the cases of c � 0.1, with no slip and no spin and s � 1, ζ0 � −1, û � 1. The case of narrow gap
σ � 0.9, k � 100 a α � 0.628, b α � 62.8

Fig. 10 Dimensionless amplitude of EOF microrotation profiles versus the dimensionless distance r for different zeta potential ratio of the inner to the outer
cylindrical wall and different frequency parameter α for the cases of c � 0.1, 1, with no slip and no spin and s � 1, ζo � −1, û � 1. The case of narrow
gap σ � 0.9, k � 10 a α � 0.628, b α � 62.8

by the flow being driven by electrical forces resulting from the interaction between an externally applied electric field and
the EDL field. In cases where β equals 0 and 0.1 equals 0.1, this indicates an extreme condition representing electroosmotic
flow within a circular microchannel. The microrotation predominantly concentrates in the outer electric double-layer regions,
irrespective of whether the electric oscillating frequency parameter is low or high.

123



Eur. Phys. J. Plus         (2024) 139:575 Page 13 of 18   575 

Fig. 11 Dimensionless amplitude of EOF microrotation profiles versus the dimensionless distance r for different zeta potential ratio of the inner to the outer
cylindrical wall and different frequency parameter α for the cases of c � 0.1, 1, with no slip and no spin and s � 1, ζo � −1, û � 1. The case of wide gap
σ � 0.1, k � 100 a α � 0.628, b α � 62.8

Fig. 12 Dimensionless EOF velocity profiles as a function of the radial distance r with no slippage for different frequency parameter α and different phase
ωt in the cases of k � 10.0, s � 1, û � 1.0, s � 1.0, ζo � −1.0, β � 1.0, and a α � 0.628, b α � 62.8

(v) Effect of time
The variation in velocity and microrotation over time stands out as a crucial flow attribute in the context of periodic elec-
troosmosis within a microannulus. The instantaneous velocity and microrotation profiles within a period of a time cycle are
presented in Figs. 12 and 13, respectively, for different frequency parameters and for the micropolarity parameters c � 0, 1.
These outcomes can be achieved by applying time-independent Eqs. (24–25) and the equation for time-periodic electroosmotic
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Fig. 13 Dimensionless EOF microrotation profiles as a function of the radial distance r with no slippage for different frequency parameter α and different
phase ωt in the cases of k � 10.0, s � 1, û � 1.0, s � 1.0, ζo � −1.0, β � 1.0, and a α � 0.628, b α � 62.8

velocity and microrotation (14). Figures 12 and 13 show that at lower oscillating frequencies, the electric double layer (EDL)
expands extensively in the vicinity of the two annulus walls. Additionally, the velocity and microrotation profiles exhibit rapid
variations under the influence of the applied periodic electric field.

(vi) Rate of flow and microrotation strength
Figure 14a, b depicts plots illustrating the relationship between dimensionless volume flow rateQ and the frequency parameter
for various electrokinetic width k values. The plots consistently reveal that across the entire parameter k, c, b1, b2 range, the
flow rate exhibits a decreasing monotonic trend as the frequency parameter increases. With an increase in the electrokinetic
width k, the rate of flow Q increases for a given value of the frequency parameter. For large values of the electrokinetic width
k and a fixed frequency parameter α, the rate of flow Q decreases as the micropolarity parameter c increases. Conversely, for
low values of k where the rate of flow may either decrease or increase, the trend is determined by the increase of micropolarity
parameter c, contingent on whether the frequency parameter α is less than or greater than, say, α � 5, respectively. Figure 14b
shows that augmenting the slippage parameter boosts the flow rate, whereas elevating the micropolarity parameter diminishes
the flow rate. Figure 14c, d presents the rate of flow versus the radii ratio of the microannulus. For all micropolarity parameter
c, s values, the flow rate Q consistently decreases as the ratio σ increases, and it diminishes entirely, as anticipated, when
c → 1, see Fig. 14c. The plots in Fig. 14d illustrate the flow rate for different values of the zeta potential ratio. They reveal
that the flow rate reaches a maximum at some point in the middle of the microannulus and then decreases to zero. The flow
rate increases with the rising zeta potential ratio. Figure 15 depicts plots illustrating the relationship between dimensionless
amplitude of the microrotation strength across the sectional area of the microannulus versus the frequency parameter α for
different values of micropolarity parameter c electrokinetic width k, and slippage parameters b1, b2. It indicates that the
amplitude of the microrotation strength increases with the widening of the electrokinetic width k. In general, the amplitude of
the microrotation strength increases to a maximum at a certain value of the frequency parameter, then decreases with further
increases in the frequency parameter. The amplitude of the microrotation strength increases, as expected, with the increase of
the slip and spin slip parameters, see Fig. 15a–d.

(vii) Electric current density
Figure 16 shows the dimensionless electric current density i versus the frequency parameter α for the values of electrokinetic
width k � 1, 2. It indicates that as the electrokinetic width increases, the electric current density i also increases, while an
increase in micropolarity c leads to a decrease in electric current density see Fig. 16a. Figure 16b indicates that, for all values
of the zeta potential ratio, the magnitude of electric current density decreases with an increasing frequency parameter. For a
given value of the frequency parameter, the magnitude of electric current density increases as the zeta potential ratio decreases.
For small values electrokinetic width k � 1, 2 and β � 0.5, the magnitude of electric current density i increases with the
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Fig. 14 Variation of dimensionless volume flow rate Q versus a the frequency parameter α for different c and k, with b1 � b2 � 0.0, σ � 0.1, û � 1.0,
ζo � −1,β � 1.0 b Radii ratio of the annulus σ for different zeta potential β with b1 � b2 � 0.1, α � 5, û � 2, ζo � −1, c � s � 1

increase of ionic Péclet number R see Fig. 16c. Figure 16d indicates that, given a fixed value of the frequency parameter with
k � 1 and β � 1, the magnitude of electric current density i decreases as the ionic Péclet number R decreases. However, for
k � 2, it decreases with an increase in R.

6 Conclusions

This article explores the time-periodic electrokinetic flow of a microstructured fluid using the micropolar model, as it passes through
a hydrophobic microannulus. The concept of spin slip, attributed to the microrotation of the microelements, is introduced in addition
to the velocity slip at the walls of the microannulus. The novelty of the presented analysis lies in studying the effect of micropolarity
parameters and examining the influence of velocity slip and spin velocity slip on the time-periodic electrokinetic motion of the fluid
under a pressure gradient and the imposed time-periodic electric field. The field equations of oscillating micropolar fluids, combined
with the Poisson–Boltzmann equation under the Debye–Hückel approximation, have been solved. Exact expressions for the complex
velocity and complex microrotation distributions are determined. The volumetric rate of flow, microrotation strength, and electric
current density are then calculated and plotted for various physical parameters, with a comparison to the case of Newtonian fluids.
The key observations of the current study can be summarized as follows:

• The findings demonstrate a decline in EOF amplitudes in proximity to the two walls with an increase in micropolarity, and this
trend is reversed at the center of the annulus. The periodic electric force is predominantly confined within the electric double layer
(EDL) near the microannulus walls. Observable reductions in EOF amplitudes are noted beyond the EDL boundaries.

• The amplitude of velocity increases with the increase in slippage parameters and decreases with the decrease in micropolarity.
• In contrast to the flow rate reductions caused by the micropolarity of fluid particles, the velocity slip and spin velocity slip, when

compared to Newtonian fluids, represent a counteractive mechanism that tends to augment the flow rate.
• At significantly higher frequency parameters, the velocity is noted to approach zero at the center of the microannulus.
• At high frequencies, there is minimal pinning observed in the central region of the microannulus for microrotation. It is interesting

to note that at lower frequencies, the microrotation decreases as the electrokinetic width expands.
• Microrotation is primarily focused on the outer regions of the electric double layer, regardless of whether the electric oscillating

frequency parameter is low or high.
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Fig. 15 Variation of dimensionless microrotation strength across sectional area of the microannulus versus the frequency parameter α for different values of
c and k a b1 � b2 � 0.0, b b1 � b2 � 0.1 c b1 � b2 � 0.3, and d b1 � b2 � 0.5. Here σ � 0.1, û � 1, s � 1, ζo � −1, β � 1

• As anticipated, the amplitude of microrotation strength rises with an increase in slip and spin slip parameters.
• The electric current density diminishes as the frequency parameter rises. Conversely, for a constant frequency parameter, the

electric current density magnitude escalates as the zeta potential ratio decreases.
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Fig. 16 Variation of dimensionless electric current density i (Eqs. (35–36)) along the microannulus versus the frequency parameter α a b1 � b2 � 0.1,
β � 1, R � 1 for different values of c and k b b1 � b2 � 0.5, k � 2, c � 1, R � 1 for different values of β c b1 � b2 � 0.1, β � 0.5 for different values
of R and k and d b1 � b2 � 0.1, β � 1 for different R and k. Here c � 0.1, û � 1, ζo � −1, σ � 0.9, s � 0.1

This study holds numerous applications in medical and engineering fields, such as the use of electroosmotic flow through a microan-
nulus for the chemical remediation of contaminated soil. Additionally, the annulus geometry serves as an innovative microfluidic
approach for effectively mixing chemical and biological fluids.
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