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Abstract We investigate a mathematical model that delineates the nonlinear dynamics of tumor-immune interplay by considering
the roles of immunotherapy and chemotherapy. The proposed model explores a system of coupled nonlinear ordinary differential
equations (ODEs), involving tumor cells, cytotoxic T-lymphocytes (CD8+T cells), macrophages, dendritic cells, regulatory T-cells
(Tregs), IL-10, TGF-β, IL-12, IFN-γ and the concentration of chemotherapeutic drug. We use optimal control theory to understand
the dynamics under what conditions the immune system can eradicate tumor cells. The control problem is solved with an objective
functional that minimizes the tumor cell population and maximizes the immune components. The basic properties of optimal control
theory are established through the boundedness of solutions for each state variable. Our optimal control theory is characterized
by coupling the state variables with costates. Additionally, our study investigates the uniqueness property of the optimal control
problem within a small time window. Subsequently, we explored the methods employed to estimate the system parameters. Finally,
we demonstrate numerically that the optimal control strategy minimizes the burden of tumor cells and maximizes immune cell
populations under different scenarios. Moreover, we provide corresponding biological implications.

1 Introduction

Tumors arise from the abnormal proliferation and differentiation of cells in our body. Many benign tumors are under the effective
control of the immune system, and hence, they do not affect patients’ life. However, some malignant tumors (such as lymphoma,
meningioma, melanoma, mesothelioma, epithelial cancer, and so on) pose a serious threat to human life and can significantly impact
patients’ quality of life [1, 2]. As per report by the World Health Organization (WHO) [3], cancer is the second largest cause of
death globally, estimated to account for around 1 crore deaths in 2020. Nowadays, the most significant and demanding questions in
oncology are how the immune system prevents cancer growth and evolution [1, 4]. The interaction between tumor and the immune
system is a complicated process. So far, the underlying mechanisms are still not fully understood and have been the focus of
research in many disciplines including medicine and mathematics. Mathematical modeling has been proven to be an effective tool
for understanding the interaction and providing guidelines on controlling the growth of tumor [1, 2, 5, 6].

Our immune system is also a very complicated network composed of many cells, signals and proteins that defend our body against
tumor cells and foreign invaders or pathogens. Different kinds of B-cells, T-cells (CD8+T cells or CD4+T cells), macrophages, natural
killer cells (NK cells), antigen-presenting dendritic cells (such as dendritic cells, macrophages and Langerhans cells) and cytokines
(immuno-stimulatory) are primary components of our immune system. Macrophages, CD8+T cells and NK cells are generally
considered as effector cells. They can either destroy the tumor cell population or inhibit their proliferation. Meanwhile, tumor cells
can in turn neutralize immune-effector cells, leading to a competitive relationship among these two types of cells [7]. On the other
hand, in the presence of a tumor, it can promote the production of effector cells by releasing tumor antigens. In other words, the tumor
can promote the growth of effector cells to some extent. Thus, there is an interaction between the tumor and the immune system
analogous to the predator–prey relationship, with tumor cells as prey and effector cells as predators. [8]. As a result, models on the
tumor-immune system dynamics typically incorporate these relationships of competition and predation. To simplify the mechanism
underlying tumor-immune interactions and facilitate mathematical analysis, some dynamical models with effector cells and tumor
cells only are proposed [6, 9].

In the context of the described research paper on tumor-immune interactions, the mathematical model likely incorporates hypothe-
ses and assumptions regarding the relationships between cytokines and various immune and tumor cells. Cytokines are known to
play roles in stimulating or inhibiting the activities of immune cells. The hypotheses could suggest that particular cytokines boost
the functionality of cytotoxic T-lymphocytes (CD8+T cells) and macrophages playing a critical role in antitumor responses. Some
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cytokines such as TGF-β and IL-10 are often associated with immunosuppressive effects. Hypotheses may include the idea that
these cytokines contribute to regulatory T-cell (Treg) function and suppression of immune responses against tumor cells. The model
might hypothesize specific interactions between different cell types such as the activation of dendritic cells leading to the activation
of CD8+T cells or the inhibition of immune responses by Tregs. Hypotheses may consider the temporal dynamics of cytokine
production and cell responses. For instance, the model might assume that certain cytokines are produced rapidly in response to
tumor presence, influencing the immune response over time.

Despite medical improvements, many challenges remain in the prognosis and treatment of malignant tumors. The most effective
treatments for cancer patients are chemotherapy, surgery, hormone therapy, radiation therapy and so on [10]. The primary method of
treatment is used to determine the appropriate position, nature and stage of cancer. Immunotherapy stimulates our immune system
against cancer cell population to eliminate them. This type of treatment is effective in promoting an immune response and obstructing
the growth of the cancer cell population [11]. Chemotherapy has many harmful side effects, which can result in the patient becoming
susceptible to infections, and it also reduces the immune system’s ability to fight against the cancer cell population. Therefore, an
optimal control problem is used in the cancer growth model with chemotherapy to minimize the total drug dosage [5].

There are many research articles that focus on the tumor-immune interaction model [1, 2, 4, 6, 12–14], but few researchers
have applied optimal control theory to eliminate/eradicate the tumor cell population [5, 10, 11, 15–19]. G.W. Swan [20] studied a
mathematical model for tumor-immune interplays with cancer immunotherapy by applying optimal control problem. In this paper,
the author incorporated both experimental and clinical data to analyze the tumor cell population. In [21], the authors applied an
optimal control strategy to develop an optimal control technique for chemotherapeutic drugs. They applied chemotherapy to study
the qualitative behavior of three different cell-kill models. In each case, the authors aimed to minimize both the drug dosage and
the tumor cell burden. Fister and Donnelly [22] introduced optimal control theory to better understand under what circumstances
the tumor cells could be eradicated. They demonstrated that tumor cells exhibit a cyclic nature during therapy and established
the existence of bang-bang control in two linear optimal control problems. Burden et al. [10] applied optimal control theory to a
mathematical model involving the interaction between tumor cell populations, immune components and the immuno-stimulatory
cytokine IL-2, as originally explored by Kirschner and Panetta [2]. In their approach to treating cancer cells, the authors derived an
optimal treatment technique involving the external injection of adoptive cellular immunotherapy (ACI). de Pillis et al. [5] analyzed
a mathematical model of the interaction between tumor cells and immune cells and they introduced chemotherapy to minimize the
tumor cell burden. The authors established the existence property of optimal control problem and solved both the linear and quadratic
controls. An interesting thing in this paper is that graphical region on which the singular control is optimal. Khajanchi and Ghosh
[11] implemented an optimal control strategy in nonlinear dynamics of tumor-immune interaction system, which was described by
Kuznestov et al. [6]. A glioma-immune interaction system, incorporating the immune-therapeutic drug T11 target structure (T11TS),
was explored in the research paper by Khajanchi et al. [23]. In this study, the authors introduced an optimal control strategy into
their mathematical model to minimize the glioma burden and maximize the immune cells (CD8+T cells and macrophages).

In this paper, we have constructed a mathematical model of nine nonlinear ordinary differential equations (ODEs) that captured
different types of cell population and cytokines (immuno-stimulatory and immunosuppressive). By applying the quasi-steady-state
approximations [24] to the concentrations of cytokines, our mathematical model reduces to a system of four nonlinear coupled
ODEs, describing tumor cells, cytotoxic T-lymphocytes (CD8+T cells), macrophages and dendritic cells. Next, we incorporate
immunotherapeutic and chemotherapeutic drugs into our system. We utilize the optimal control theory in our model to understand
the dynamics and determine the conditions under which tumors can be eradicated. We also conduct a stability analysis of both
the tumor-free singular point and the interior singular point. To study the control theory, we construct an objective function for
minimizing the tumor cell burden and maximizing the immune cells. The main aim of this paper is to provide a better treatment
policy to eliminate the tumor cell population or at least to improve the patient’s quality of life.

The remaining portion of the research paper is described as follows. We describe the mathematical system with biological
justification in Sect. 2. In Sect. 3, we investigate the stability analysis around biologically feasible singular points of the given
system. We define the control problem in our stated model in Sect. 4. Section 5 describes the existence of the control problem. We
use Pontryagin’s Maximum Principle [25] to analyze the characteristics of the optimal control problem in Sect. 6. In Sect. 7, we
study the uniqueness property of the optimality system, in which the state variables are coupled with adjoint or costate system. In
Sect. 8, we have estimated the values of some parameters. Section 9 deals with extensive numerical simulations for our optimal
control problem. Finally, our research paper ends with a brief conclusion.

2 Deterministic model

In this section, we studied a mathematical model for nine coupled system of ordinary differential equations (ODEs) that take into
account the role of various cells and cytokines, namely tumor cells (T (t)), cytotoxic T-lymphocytes (L(t)), macrophages (M(t)),
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dendritic cells (D(t)), Tregs (Tg(t)), IL-10 (I10(t)), TGF-β (Tβ (t)), IL-12 (I12(t)) and IFN-γ (Iγ (t)). The mathematical model is
given by the following system of ODEs:

dT

dt
� rT T (1 − bT T ) − (α

′
T M + γ

′
T L)T

g
′
T + I10

,

dL

dt
� α

′
l I12

g
′
l + Tg

− δl L ,

dM

dt
� sm +

α
′
m Iγ

(g′
m + Iγ )

· 1

(g
′
m1 + Tβ )

− γmMT − δmM ,

dD

dt
� sd +

αdT

gd + T
− δd D,

dTg
dt

� αgL − δgTg ,

d I10

dt
� α10M − δ10 I10,

dTβ

dt
� sβ + αβT − δβTβ ,

d I12

dt
� α12D − δ12 I12,

d Iγ
dt

� αγ L − δγ Iγ . (1)

• The initial Eq. in (1) characterizes the tumor cell density at any given time t. The first term rT T (1 − bT T ) delineates the
logistic growth of tumor cells in the absence of any immune response [26]. Here, rT denotes the intrinsic growth rate and the
maximum carrying capacity for tumor cells is 1

bT
. The second term accounts for the removal of tumor cells due to interactions

with macrophages [4] and CD8+T cells [6], each exhibiting elimination rates α
′
T and γ

′
T , respectively. The term g

′
T represents

the half-saturation constant, where 1
g

′
T +I10

acts as a primary immunosuppressive factor influencing both macrophages and CD8+T

cells.
• The second Eq. in (1) characterizes the density of CD8+T cells, with the first term illustrating the activation of CD8+T cells

at a rate α
′
l . This activation is contingent upon the presence of CD4+T cells, which are enhanced by the cytokine IL-12 [27].

Simultaneously, the activation of CD8+T cells is suppressed by the influence of regulatory T-cells [28] at suppressive rate g
′
l . The

intrinsic mortality rate of CD8+T cells is denoted by δl .
• The third Eq. in (1) characterizes the density of macrophages. The term sm represents the constant source rate of macrophages

[29]. The recruitment rate of macrophages (α
′
m) is influenced by the direct presence of IFN-γ [4, 29]. Additionally, g

′
m signifies

the half-saturation constant. Meanwhile, the term 1
g

′
m1+Tβ

acts as an immunosuppressive factor for macrophages, where g
′
m1 is the

half-saturation constant. The third term outlines the inactivation of macrophages due to interactions with tumor cells at the rate
γm [4] and δm represents the natural death rate of macrophages.

• The fourth equation in (1) details the density of antigen-presenting dendritic cells. The term sd signifies the constant source rate
of dendritic cells [30]. The coefficient αd represents the activation rate of dendritic cells triggered by the direct presence of tumor
cells, with gd serving as the half-saturation constant following Michaelis-Menten kinetics [31]. The death rate of dendritic cells
is denoted by δd .

• The fifth equation in (1) elucidates the dynamics of regulatory T-cells (Tregs). Regulatory T-cells are generated from activated
CD8+T cells [32] with an activation term αg , while the natural degradation rate of Tregs is denoted by δg .

• The sixth equation in the model (1) depicts the density of the anti-inflammatory cytokine IL-10. IL-10 is activated by macrophages
[29] with an activation rate α10, and δ10 represents the decay rate of IL-10.

• The seventh equation in the model (1) describes the concentration of TGF-β. The term sβ denotes the constant source rate of
TGF-β [4]. The second term represents the source term, directly proportional to the size of the tumor cells, with αβ indicating the
release rate per tumor cell [33]. The final term accounts for the decay of the immunosuppressive cytokine TGF-β at a constant
rate of δβ .

• The eighth equation in the model (1) articulates the density of IL-12. IL-12 is activated by dendritic cells, with α12 representing
the release rate per single antigen-specific dendritic cell [27]. The degradation rate of IL-12 is denoted by δ12.

• The final equation in the system (1) describes the dynamics of IFN-γ . We postulate that IFN-γ is generated by CD8+T cells [4,
33] with a production rate αγ . The last term accounts for the degradation of IFN-γ at a constant rate of δγ .

To better understand the interactive dynamics of tumor-immune competitive system, we simplify our model system by utilizing the
quasi-steady-state approximations [24] for the concentrations of cytokines. Based on the hypothesis, the cytokine equations, that is,
from fifth to nine equations of (1) lead to
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Tg � αg

δg
L , I10 � α10

δ10
M , Tβ � sβ

δβ

+
αβ

δβ

T ,

I12 � α12

δ12
D, Iγ � αγ

δγ

L .

After substituting these cytokine expressions into the first to fourth equations of (1), we obtain the following four ordinary differential
equations for the tumor-immune interactive dynamics

dT

dt
� rT T (1 − bT T ) − (αT M + γT L)T

gT + M
,

dL

dt
� αl D

gl + L
− δl L ,

dM

dt
� sm +

αmL

(gm + L)
· 1

(gm1 + T )
− γmMT − δmM ,

dD

dt
� sd +

αdT

gd + T
− δd D, (2)

where

αT � δ10

α10
α

′
T , γT � δ10

α10
γ

′
T , gT � δ10

α10
g

′
T , αl � δg

αg

α12

δ12
α

′
l ,

gl � δg

αg
g

′
l , αm � δβ

αβ

α
′
m , gm � δγ

αγ

g
′
m , gm1 � δβ

αβ

g
′
m1 +

sβ
αβ

.

By employing the role of chemotherapeutic drug and introduce the optimal control theory, we obtain the following system of
ODEs (Fig. 1):

dT
dt � rT T (1 − bT T ) − (αT M+γT L)T

gT +M − kT (1 − e−ηT C )T ,

dL
dt � αl D

gl+L
− δl L + u2(t) − kl (1 − e−ηlC )L ,

dM
dt � sm + αm L

(gm+L) · 1
(gm1+T ) − γmMT − δmM + u3(t) − km(1 − e−ηmC )M ,

dD
dt � sdu4(t) + αd T

gd+T − δd D − kd (1 − e−ηdC )D,

dC
dt � − γC + vc(t),

(3)

with the following initial values:

T (0) �T0 ≥ 0, L(0) � L0 > 0, M(0) � M0 > 0, D(0) � D0 > 0, C(0) � C0 > 0. (4)

Here,

• the term rT T (1−bT T ) represents the logistic growth of tumor cell population without any immune response, where rT is intrinsic
growth rate and 1

bT
is carrying capacity of tumor cells.

• The function (αT M+γT L)T
gT +M is the clearance term of tumor cells due to macrophages and CD8+T cells with clearance rate αT and

γT , respectively. Here, gT is the Michaelis-Menten term and the term 1
gT +M represents the major immunosuppressive factor for

both macrophages and CD8+T cells.
• Last term of the first equation of system (3) represents the tumor death induced by chemotherapy, where kT is the rate of

chemotherapy induced tumor death, and ηT is the chemotherapy efficacy coefficient.
• First term of the second equation of system (3) is the activation term of CD8+T cells. It signifies that the presence of dendritic cells

contributes positively to the activation of CD8+T cells. As the population of dendritic cells increases, it enhances the activation
of CD8+T cells. αl is the activation rate, determining how fast CD8+T cells are activated in response to the presence of dendritic
cells. The term 1

gl+L
is the Michaelis-Menten term. In the context of this equation, it represents the saturation effect of CD8+T

cell activation. gl is the half-saturation constant, representing the level of CD8+T cells at which activation is half-maximal. In
summary, the term αl D

gl+L
captures the influence of dendritic cells on the activation of CD8+T cells, incorporating both positive

activation effects and saturation dynamics.
• The natural death rate of CD8+T cells is δl .
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Fig. 1 This schematic diagram
illustrates the interaction among
tumor cells, immune cells and
cytokines. Activation is denoted
by blue sharp arrows, while
deactivation is represented by red
dashed block arrows

• u2(t) serves as the control parameter regulating the CD8+T cell population. This parameter plays a pivotal role in implementing
an immunotherapeutic strategy aimed at enhancing the immune response. It represents a crucial factor in the design and execution
of immunotherapy. In this approach, the introduction of antigen-specific cytotoxic immune cells empowers the body’s immune
system to more effectively target and eliminate cancer cells.

• kl (1 − e−ηlC )L is the CD8+T cells death induced by chemotherapy, where kl is the rate of chemotherapy induced CD8+T cell
death, and ηl is the chemotherapy efficacy coefficient.

• sm is the constant source rate of macrophages. The function αm L
(gm+L) · 1

(gm1+T ) is activation term of macrophages. αm is the activation
rate of macrophages due to the presence of CD8+T cells, where gm is the half-saturation constant in Michaelis-Menten dynamics.

1
(gm1+T ) is the immunosuppressive factor of macrophages, and gm1 is the suppressive parameter.

• γm represents the loss of macrophages due to interaction of tumor cells.
• Natural death rate of macrophages is δm .
• u3(t) acts as a control parameter for macrophages, regulating various aspects of macrophage behavior and function within the

immune system. It plays a crucial role in directing the body’s immune response to cancer cells. The function of u3(t) can vary
depending on the specific biological context and the particular immune responses under consideration.

• km(1−e−ηmC )M is the macrophages death induced by chemotherapy, where km is the rate of chemotherapy induced macrophages
death and ηm is the chemotherapy efficacy coefficient.

• The variable u4(t) represents a control input or a control function that can be applied to modulate or regulate the constant source
rate of dendritic cells, sd . This implies that the production or supply of dendritic cells can be influenced externally. This control
input could be in the form of a signal, treatment, medication or any other intervention aimed at enhancing the immune response
against tumor cells. Dendritic cells play a crucial role in presenting antigens to activate the immune response. The introduction
of u4 as a control parameter allows for the modeling of scenarios, where the production of dendritic cells can be strategically
increased or decreased. This may represent the impact of external factors such as the administration of drugs or cytokines that
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influence dendritic cell production. Dendritic cells are central to initiating and regulating immune responses. Modulating their
production rate could reflect efforts to the immune system’s activity, possibly to avoid excessive inflammation or to enhance the
recognition of tumor antigens.

• The coefficient αd incorporates the activation rate of dendritic cells due to the direct presence of tumor cells, where gd is the
half-saturation constant following Michaelis-Menten term.

• The loss of dendritic cells is given by δd .
• Last term of the fourth equation of (3) represents the decay of dendritic cells induced chemotherapy. ηd is the chemotherapy

efficacy coefficient and kd is the rate of chemotherapy induced dendritic cells decay.
• Chemotherapy decays at a rate is proportional to its concentration γ [16].
• vc(t) is a dynamic control parameter that regulates the administration of chemotherapeutic drugs in a tumor-immune interaction

system. It is an important component of personalized cancer treatment strategies, aiming to strike a balance between effectively
targeting the tumor and minimizing harm to healthy tissues while considering the individual characteristics of patient and the
tumor’s behavior over time.

• The chemotherapy interacts each of the cell T , L, M and D through a term of the form KY (1 − e−ηY C )Y [17]. This term indicates
the fractional killing rate of the drug.

3 Dynamical overview

In this section, we shall study the stability analysis around the biologically feasible steady states to understand the dynamics of our
control system (3). To do this, we assumed that u2(t) � u2, u3(t) � u3, u4(t) � u4, vc(t) � vc, where u2, u3, u4 and vc are all
constants. The system has the following two steady states:

(i) Tumor-free singular point is E0(0, L0, M0, D0, C0), where

M0 � 1

δm + km(1 − e− ηm vc
γ )

[
sm + u3 +

αmL0

gm1(gm + L0)

]
,

D0 � sdu4

δd + kd(1 − e− ηd vc
γ )

,

C0 �vc

γ
,

and L0 is defined in following quadratic form:

n1(L0)2 + n2L
0 + n3 � 0, (5)

with

n1 � δl + kl(1 − e− ηl vc
γ ),

n2 � n1gl − u2,

n3 � − (u2gl + αl D
0).

Since n3 < 0, then, above second degree Eq. (5) has a unique positive root is given by

L0 �
−n2 +

√
n2

2 − 4n1n3

2n1
.

To know the dynamical nature around the singular point E(T , L, M, D, C), first, we calculate the Jacobian matrix JE is derived as

JE �

⎛
⎜⎜⎜⎜⎝

a11 a12 a13 0 a15
0 a22 0 a24 a25
a31 a32 a33 0 a35
a41 0 0 a44 a45
0 0 0 0 a55

⎞
⎟⎟⎟⎟⎠

,

where

a11 � rT − 2rT bT T − (αT M + γT L)

gT + M
− kT (1 − e−ηT C ),

a12 � − γT T

gT + M
,

a13 � − (gTαT − γT L)T

(gT + M)2 ,
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a15 � − ηT kT T e
−ηT C ,

a22 � − αl D

(gl + L)2 − δl − kl(1 − e−ηlC ),

a24 � αl

gl + L
,

a25 � − ηl kl Le
−ηlC ,

a31 � − αmL

(gm + L)(gm1 + T )2 − γmM ,

a32 � αmgm
(gm + L)2(gm1 + T )

,

a33 � − γmT − δm − km(1 − e−ηmC ),

a35 � − ηmkmMe−ηmC ,

a41 � gdαd

(gd + T )2 ,

a44 � − δd − kd(1 − e−ηdC ),

a45 � − ηdkd De−ηdC ,

a55 � − γ.

At the tumor-free singular point E0, the Jacobian matrix JE0 has the following eigenvalues

e0
1 � rT − αT M0+γT L0

gT +M0 − kT (1 − e− ηT vc
γ ),

e0
2 � − αl D0

(gl+L0)2 − δl − kl(1 − e− ηl vc
γ ),

e0
3 � − δm − km(1 − e− ηm vc

γ ),

e0
4 � − δd − kd(1 − e− ηd vc

γ ),

e0
5 � − γ.

All the eigenvalues are negative if e0
1 < 0. Therefore, the tumor-free singular point E0 is locally asymptotically stable (LAS) if

rT <
αT M0 + γT L0

gT + M0 + kT (1 − e− ηT vc
γ ).

(ii) Let us assume the interior singular point to be E1(T 1, L1, M1, D1, C1). To determine this interior singular point, we analyze
the conditions dT

dt � dL
dt � dM

dt � dD
dt � dC

dt � 0. Subsequently, we can express the values of T 1, L1, M1, D1 and C1 as follows

C1 � vc

γ
, D1 � sdu4(gd + T 1) + αdT 1

(gd + T 1)[δd + kd (1 − e
−ηd vc

γ )]
, M1 � γT L1 + kT gT (1 − e

−ηT vc
γ ) − gT rT (1 − bT T 1)

rT (1 − bT T 1) − αT − kT (1 − e
−ηT vc

γ )
,

L1 � u2 − δl gl − glkl (1 − e
−ηl vc

γ ) +

√
[δl gl − u2 + glkl (1 − e

−ηl vc
γ )]2 + 4(αl D1 + u2gl )[δl + kl (1 − e

−ηl vc
γ )]

2[δl + kl (1 − e
−ηl vc

γ )]
,

and

sm +
αmL1

(gm + L1)(gm1 + T 1)
+ u3 � [γmT

1 + δm + km(1 − e
−ηm vc

γ )]M1.

Obtaining the explicit form of the interior singular point E1 analytically from the provided expressions poses a significant challenge.
As a result, we determine the singular point through numerical simulation. To evaluate the stability of interior equilibrium point E1,
we proceed by calculating the variational matrix around the interior equilibrium point E1, is defined below

J (E1) � [ ji j ] �

⎡
⎢⎢⎢⎢⎣

j11 j12 j13 0 j15
0 j22 0 j24 j25
j31 j32 j33 0 j35
j41 0 0 j44 j45
0 0 0 0 j55

⎤
⎥⎥⎥⎥⎦

,
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where

j11 � rT − 2rT bT T
1 − (αT M1 + γT L1)

gT + M1 − kT (1 − e
−ηT vc

γ ),

j12 � − γT T 1

gT + M1 ,

j13 � − (gTαT − γT L1)T 1

(gT + M1)2 ,

j15 � − ηT kT T
1e

−ηT vc
γ ,

j22 � − αl D1

(gl + L1)2 − δl − kl (1 − e
−ηl vc

γ ),

j24 � αl

gl + L1 ,

j25 � − ηl kl L
1e

−ηl vc
γ ,

j31 � − αmL1

(gm + L1)(gm1 + T 1)2 − γmM
1,

j32 � αmgm
(gm + L1)2(gm1 + T 1)

,

j33 � − γmT
1 − δm − km(1 − e

−ηm vc
γ ),

j35 � − ηmkmM
1e

−ηm vc
γ ,

j41 � gdαd

(gd + T 1)2 ,

j44 � − δd − kd (1 − e
−ηd vc

γ ),

j45 � − ηdkd D
1e

−ηd vc
γ ,

j55 � − γ.

The characteristic equation at the interior singular point E1(T 1, L1, M1, D1, C1) is

φ5 + B1φ
4 + B2φ

3 + B3φ
2 + B4φ + B5 � 0,

where

B1 � −
5∑

i�1

jii , B2 �
5∑

i , j�1

jii j j j −
5∑

i , j�1

ji j j j i , B3 �
5∑

i , j , k�1

ji j j j i jkk −
5∑

i , j , k�1

jii j j j jkk −
5∑

i , j , k�1

ji j j jk jki ,

B4 �
5∑

i , j , k, l�1

jii j j j jkk jll +
5∑

i , j , k, l�1

ji j j j i jki jll −
5∑

i , j , k, l�1

ji j j j i jkl jlk −
5∑

i , j , k, l�1

ji j j j i jkk jll −
5∑

i , j , k, l�1

ji j j jk jkl jli ,

B5 � − det(J (E1)).

For all of the expressions mentioned above, it holds that i �� j �� k �� l. According to the Routh-Hurwitz condition, all roots of the
characteristic equation have negative or negative real parts if B1 > 0, B5 > 0, B1B2−B3 > 0, (B1B2−B3)B3−B1(B1B4−B5) > 0
and (B1B2 − B3)(B3B4 − B2B5) + (B1B4 − B5)(B5 − B1B4) > 0. If the eigenvalues have negative real parts, then, the interior
singular point is considered stable.

4 Optimal control problem

This section describes the control problem in our model (3) to minimize the tumor cell population and maximize the immune
components. Thus, we assume our control set U as follows

U � {u2(t), u3(t) , u4(t), vc(t) are piecewise continuous : 0 ≤ u2(t), u3(t) , u4(t), vc(t), ∀ t ∈ [0, t f ]}.
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We would like to maximize the immune components (CD8+T cells and macrophages) to eliminate the tumor cell population.
Therefore, we define the following objective functional

J (u2, u3 , u4, vc) �
∫ t f

0
[T (t) +

1

2
ε2u

2
2 +

1

2
ε3u

2
3 +

1

2
ε4u

2
4 +

1

2
εcv

2
c ]dt , (6)

where ε2, ε3, ε4 and εc are constants. We must have to show that J is concave and its minimum value can be obtained. We suggest
the objective functional J is a function of u, then, our main aim is to characterize the optimal control u∗(t) � (u∗

2(t), u∗
3(t) , u∗

4(t),
v∗
c (t)) in such a way that

J (u∗) � max
0≤u

{J (u2, u3 , u4, vc)}.

5 Existence of optimal control

In this section, we shall prove the existence property of optimal control for the given system with the control set U due to the method
described by Fleming & Rishel [18]. For this, we need to show that in a finite time interval, the solution of each state equations
of the system is bounded. Thus, we calculate the upper bounds (super-solutions) of T , L, M, D and C for the system (3). The first
equation of (3) can be written as

dT

dt
≤rT T (1 − bT T ),

which implies that

T ≤ m1
1
bT

m1 + e−rT t
, m1 being an arbitrary constant.

Then, we have

lim sup
t→∞

T (t) ≤ 1

bT
� Tmax (say).

Third equation for the system (3) can be written as

dM

dt
�sm +

αm

gm1 + T
− αmgm

(gm + L)(gm1 + T )
− γmMT − δmM + u3 − km(1 − e−ηmC )M

≤sm +
αm

gm1
− δmM + u3,

which implies that

dM

dt
+ δmM ≤ (sm + u3)gm1 + αm

gm1
.

After solving above inequality, we have

M ≤ (sm + u3)gm1 + αm

gm1δm
+ m3e

−δmt , m3 being an arbitrary constant.

For t > 0, we get

lim sup
t→∞

M(t) ≤ (sm + u3)gm1 + αm

gm1δm
� Mmax (say).

Now, from the fourth equation of (3), we have

dD

dt
�(sdu4 + αd ) − αdgd

gd + T
− δd D,

which leads to

dD

dt
+ δd D ≤(sdu4 + αd ).

For t > 0, we get

lim sup
t→∞

D(t) ≤ sdu4 + αd

δd
� Dmax (say).

By using the upper bound of D(t), we get the following inequality
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dL

dt
≤αl Dmax

gl + L
− δl L + u2

dL

dt
+ δl L ≤αl Dmax

gl
+ u2.

Solving the above inequality for t > 0, we have

lim sup
t→∞

L(t) ≤αl Dmax + u2gl
glδl

� Lmax (say).

Again, the last equation of (3) implies that

dC

dt
≤vc.

If Cmax be an upper bound of solution of C then Cmax � vct + m5, (m5 being an arbitrary constant). By using the bounds of Tmax,
Lmax, Mmax, Dmax, Cmax, we have a set of upper bound solutions for the system (3). By denoting these notations T , L , M , D
and C , we have

dT
dt � rT T ,

dL
dt � αl D + u2,

dM
dt � sm + αmL + u3,

dD
dt � sdu4 + αdT ,

dC
dt � vc,

(7)

are bounded in a finite time interval. The above system can be written as
⎛
⎜⎜⎜⎜⎝

T
L
M
D
C

⎞
⎟⎟⎟⎟⎠

′

�

⎛
⎜⎜⎜⎜⎝

rT 0 0 0 0
0 0 0 αl 0
0 αm 0 0 0
αd 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

T
L
M
D
C

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎝

0
u2

sm + u3

sdu4

vc

⎞
⎟⎟⎟⎟⎠

.

We found a linear system with bounded coefficients, then the super-solutions T , L , M , D, C are uniformly bounded. Now, we
use the boundedness of solutions of each state variables for established the existence of an optimal control.

Theorem 1 For the given optimal control problem and the objective functional J (u2, u3 , u4, vc) � ∫ t f
0 [T (t) + 1

2ε2u2
2 + 1

2ε3u2
3 +

1
2ε4u2

4 + 1
2εcv

2
c ]dt, with the control set

U � {u2(t), u3(t), u4(t), vc(t) are piecewise continuous : ≤ u2(t), u3(t), u4(t), vc(t), ∀ t ∈ [0, t f ]},
subject to state equations with initial solutions T (0) � T0, L(0) � L0, M(0) � M0, D(0) � D0, C(0) � C0, there exists an
optimal control u∗(t) ∈ U, which minimizes J (u∗), that is,

J (u∗) � max
0≤u

{J (u2, u3, u4, vc)},

given by the following conditions are satisfied:

(1) The admissible control set U, the optimal control u(t) with initial solutions along with each of the given state variables are
non-empty.

(2) The admissible optimal control set U is closed and convex.
(3) By adding the sum of bounded control, right hand side of given system (3) is continuous and bounded above and state equation

can be expressed as a linear function of u with coefficients depend on sufficient time interval and the state variables.
(4) The integrand of objective functional J(u) is concave on U and bounded by c1 + c2|u2|2+c3|u3|2+c4|u4|2+cc|vc|2.
Proof Due to the theory developed by Fleming and Rishel [18], we prove the above theorem.

(1) An optimal control set U is continuous and the coefficients of given model are bounded. Also, in the finite time interval,
solutions of the given system are bounded.
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(2) By definition, U is closed and convex.
(3) The right hand side of given optimal control system is continuous. Let σ (t , X ) be the right hand side of (3) excluding terms of

u2, u3, u4, vc. Then,

H (t , X , u2, u3, u4, vc) �σ (t , X ) +

⎛
⎜⎜⎜⎜⎝

0
u2

u3

sdu4

vc

⎞
⎟⎟⎟⎟⎠

,

where X � [T (t), L(t), M(t), D(t), C(t)]T . Considering the upper bounds of solutions, we get

|H (t , X , u2, u3, u4, vc)|≤

∣∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎜⎝

rT 0 0 0 0
0 0 0 αl 0
0 αm 0 0 0
αd 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

T
L
M
D
C

⎞
⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣

0
u2

u3

sdu4

vc

∣∣∣∣∣∣∣∣∣∣
≤H1(|X |+|u|),

with H1 depends on the coefficients of the system.
(4) It can be noted that in U, the integrand of J(u) is concave. Also, T (t) + 1

2ε2u2
2 + 1

2ε3u2
3 + 1

2ε4u2
4 + 1

2εcv
2
c ≤ c1 +

c2|u2|2+c3|u3|2+c4|u4|2+cc|vc|2, where c1 is the upper bound of T (t) and depends on T (t), L(t), M(t), D(t), C(t) and
cc � εc

2 , ci � εi
2 for i � 2, 3, 4.

Hence, all conditions of the theorem are proved. �

6 Characterization of optimal control

We use the theory of calculus of variation for prove the necessary conditions of given optimal control problem. To determine the
characterization of optimal control, we employ the Pontryagin’s Maximum Principle [25]. To perform the necessary conditions, at
first, we define the Hamiltonian as

H � T (t) +
1

2
εc(vc(t))

2 +
1

2
ε2(u2(t))2 +

1

2
ε3(u3(t))2 +

1

2
ε4(u4(t))2 + A1

[
rT T (1 − bT T ) − (αT M + γT L)T

gT + M

− kT (1 − e−ηT C )T
]

+ A2

[ αl D

gl + L
− δl L + u2(t) − kl (1 − e−ηlC )L

]
+ A3

[
sm +

αmL

(gm + L)
· 1

(gm1 + T )

− γmMT − δmM + u3(t) − km(1 − e−ηmC )M
]

+ A4

[
sdu4(t) +

αdT

gd + T
− δd D − kd (1 − e−ηdC )D

]

+ A5[−γC + vc(t)].

Since the controls u2(t), u3(t), u4(t) and vc(t) are bounded, we define the Lagrangian as

L � H + Q1(t)vc(t) − Q2(t)(1 − vc(t)) + Q3(t)u2(t) − Q4(t)(1 − u2(t)) + Q5(t)u3(t) − Q6(t)(1 − u3(t))

+ Q7(t)u4(t) − Q8(t)(1 − u4(t)),

where Ai (t) (i � 1, 2, 3, 4, 5) are adjoint variables and the penalty multipliers Qi (t) ≥ 0 satisfy the equations

Q1(t)vc(t) �0,

Q2(t)(1 − vc(t)) �0,

at the optimal control v∗
c (t);

Q3(t)u2(t) �0,

Q4(t)(1 − u2(t)) �0,

at the optimal control u∗
2(t);

Q5(t)u3(t) �0,

Q6(t)(1 − u3(t)) �0,

at the optimal control u∗
3(t) and

Q7(t)u4(t) �0,
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Q8(t)(1 − u4(t)) �0,

at the optimal control u∗
4(t).

Theorem 2 For the control u∗ with corresponding solutions of state variables at interior steady state E1(T 1, L1, M1, D1, C1)
that minimizes the objective functional J(u), there exists costates Ai (t); (i � 1–5) satisfying the following equations

A
′
1 � −

[
1 + A1

{
rT (1 − 2bT T ) − αT M+γT L

gT +M − kT (1 − e−ηT C )
}

− A3

{
αm L

(gm+L)·(gm1+T )2 + γmM
}

+ A4
αd gd

(gd+T )2

]
,

A
′
2 � −

[
− A1

γT T
gT +M − A2

{
αl D

(gl+L)2 + δl + kl (1 − e−ηlC )
}

+ A3
αmgm

(gm+L)2(gm1+T )

]
,

A
′
3 � −

[
− A1

(αT gT −γT L)T
(gT +M)2 − A3(γmT + δm + km(1 − e−ηmC ))

]
,

A
′
4 � −

[
A2

αl
gl+L

− A4(δd + kd (1 − e−ηdC )
]
,

A
′
5 � A1ηT kT T e−ηT C + A2ηl kl Le−ηlC + A3ηmkmMe−ηmC + A4ηdkd De−ηdC + A5γ ,

(8)

where Ai (t f ) � 0; (i � 1–5) known as transversality terminal conditions. Also, v∗
c , u∗

2, u∗
3, u∗

4 are represented by

v∗
c � min

(
1,

(−A5

εc

)+)
,

u∗
2 � min

(
1,

(−A2

ε2

)+)
,

u∗
3 � min

(
1,

(−A3

ε3

)+)
,

u∗
4 � min

(
1,

(−A4sd
ε4

)+)
.

Proof We use Pontryagin’s Maximum Principle [25], to obtain the costates and transversality conditions. By differentiating
Lagrangian L with reference to given state equations, we get A

′
1 � − ∂L

∂T , A
′
2 � − ∂L

∂L , A
′
3 � − ∂L

∂M , A
′
4 � − ∂L

∂D , A
′
5 � − ∂L

∂C . To

obtain the optimal controls of v∗
c , u∗

2, u∗
3, u∗

4, we set ∂L
∂vc

� ∂L
∂u2

� ∂L
∂u3

� ∂L
∂u4

� 0. Then, we have

εcvc + A5 + Q1(t) + Q2(t) �0,

ε2u2 + A2 + Q3(t) + Q4(t) �0,

ε3u3 + A3 + Q5(t) + Q6(t) �0,

ε4u4 + A4sd + Q7(t) + Q8(t) �0.

By using standard optimality condition, we have

v∗
c � min

(
1,

(−A5

εc

)+)
,

u∗
2 � min

(
1,

(−A2

ε2

)+)
,

u∗
3 � min

(
1,

(−A3

ε3

)+)
,

u∗
4 � min

(
1,

(−A4sd
ε4

)+)
,

where the notation is

s+ �
{

s, if s ≥ 0
0, if s < 0.

Hence, the proof. �
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After getting the explicit expression of the optimal controls u∗
2, u∗

3, u∗
4, v∗

c , the adjoint or costate equations coupled with the
state system including transversality conditions, we obtain optimality system as follows

dT
dt � rT T (1 − bT T ) − (αT M+γT L)T

gT +M − kT (1 − e−ηT C )T ,

dL
dt � αl D

gl+L
− δl L + min

(
1,

(−A2
ε2

)+)
− kl (1 − e−ηlC )L ,

dM
dt � sm + αm L

(gm+L) · 1
(gm1+T ) − γmMT − δmM + min

(
1,

(−A3
ε3

)+)
− km(1 − e−ηmC )M ,

dD
dt � sd

(
min

(
1,

(−A4sd
ε4

)+))
+ αd T

gd+T − δd D − kd (1 − e−ηdC )D,

dC
dt � − γC + min

(
1,

(−A5
εc

)+)
,

A
′
1 � −

[
1 + A1

{
rT (1 − 2bT T ) − αT M+γT L

gT +M − kT (1 − e−ηT C )
}

− A3

{
αm L

(gm+L)·(gm1+T )2 + γmM
}

+ A4
αd gd

(gd+T )2

]
,

A
′
2 � −

[
− A1

γT T
gT +M − A2

{
αl D

(gl+L)2 + δl + kl (1 − e−ηlC )
}

+ A3
αmgm

(gm+L)2(gm1+T )

]
,

A
′
3 � −

[
− A1

(αT gT −γT L)T
(gT +M)2 − A3(γmT + δm + km(1 − e−ηmC ))

]
,

A
′
4 � −

[
A2

αl
gl+L

− A4(δd + kd (1 − e−ηdC ))
]
,

A
′
5 � A1ηT kT T e−ηT C + A2ηl kl Le−ηlC + A3ηmkmMe−ηmC + A4ηdkd De−ηdC + A5γ ,

(9)

where T (0) � T0, L(0) � L0, M(0) � M0, D(0) � D0, C(0) � C0 and Ai (t f ) � 0 for i � 1–5.

7 Uniqueness of optimal control

By the boundedness property of the given optimal control system, the state equations and adjoint or costate equations both have
bounded coefficients. For the small time interval, we shall prove the uniqueness of solution of the optimal system (3).

Theorem 3 The solution of the optimal control system is unique for sufficient small time interval t f .

Proof Let us consider (T , L , M , D, C , A1, A2, A3, A4, A5) and (T , L , M , D, C , A1, A2, A3, A4, A5) are
two distinct solutions of the optimal system. Suppose, λ > 0 be such that T � eλt p1, L � eλt p2, M � eλt p3, D � eλt p4,
C � eλt p5 A1 � e−λt q1, A2 � e−λt q2, A3 � e−λt q3, A4 � e−λt q4, A5 � e−λt q5, T � eλt p1, L � eλt p2, M � eλt p3,
D � eλt p4, C � eλt p5, A1 � e−λt q1, A2 � e−λt q2, A3 � e−λt q3, A4 � e−λt q4, A5 � e−λt q5.

Also, we consider

v∗
c (t) � min

(
1,

(−e−λt q5

εc

)+)
, v∗

c (t) � min
(

1,
(−e−λt q5

εc

)+)
;

u∗
2(t) � min

(
1,

(−e−λt q2

ε2

)+)
, u∗

2(t) � min
(

1,
(−e−λt q2

ε2

)+)
;

u∗
3(t) � min

(
1,

(−e−λt q3

ε3

)+)
, u∗

3(t) � min
(

1,
(−e−λt q3

ε3

)+)
;

u∗
4(t) � min

(
1,

(−e−λt q4sd
ε4

)+)
, u∗

4(t) � min
(

1,
(−e−λt q4sd

ε4

)+)
.

We use T � eλt p1 in first equation of the optimality system (9); then, the state equation leads to

ṗ1 + (λ − rT )p1 � − rT bT e
λt p2

1 − αT p1 p3eλt

gT + eλt p3
− γT p1 p2eλt

gT + eλt p3
− kT p1(1 − e−ηT p5eλt

),

with ṗ ≡ dp
dt . Similarly, after putting A1 � e−λt q1 in sixth equation of (9), we have

−q̇1 + λq1 � eλt + q1

{
rT (1 − 2bT e

λt p1) − (αT p3 + γT p2)eλt

gT + eλt p3
− kT (1 − e−ηT p5eλt

}
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− eλt q3

{ αm p2

(gm + eλt p2)(gm1 + eλt p1)2 + γm p3

}
+

q4αd gd
(gd + eλt p1)2

]
.

At first, the equations of T and T , L and L , M and M , D and D, C and C , A1 and A1, A2 and A2, A3 and A3, A4 and A4, A5 and A5
are subtracted. The resulting equations are multiplied by a suitable difference of functions and integrated from 0 to t f . After that,
we add all 10 integral equations and estimates to find the uniqueness of the optimality system. As for example, some integrals are
listed as

1

2
(p1 − p1)2(t f )+(λ − rT + kT )

∫ t f

0
(p1 − p1)2dt ≤ rT bT

∫ t f

0
eλt (p1 + p1)(p1 − p1)2dt

+αT

∫ t f

0
eλt (p1 − p1)

[gT (p1 p3 − p1 p3) + eλt p3 p3(p1 − p1)

(gT + eλt p3)(gT + eλt p3)

]
dt

+γT

∫ t f

0
eλt (p1 − p1)

[gT (p1 p2 − p1 p2) + eλt (p1 p2 p3 − p1 p2 p3)

(gT + eλt p3)(gT + eλt p3)

]
dt

+kT

∫ t f

0
e−ηT p5eλt

(p1 − p1)2dt.

Now, we shall obtain the bounds on the right hand sides of the integral equations. Since pi , pi ≥ 0 (i � 1–5), we estimate

(gT + eλt p3) ≥gT ,

(gT + eλt p3) ≥gT .

Then, we obtain

1

2
(p1 − p1)2(t f ) + (λ − rT + kT )

∫ t f

0
(p1 − p1)2dt ≤2μ1rT bT

∫ t f

0
eλt (p1 − p1)2dt

+
αT

gT

∫ t f

0
eλt (p1 − p1)(p1 p3 − p1 p3)dt

+
αTμ2

3

g2
T

∫ t f

0
e2λt (p1 − p1)2dt

+
γT

gT

∫ t f

0
eλt (p1 − p1)(p1 p2 − p1 p2)dt

+
γT

g2
T

∫ t f

0
e2λt (p1 p2 p3 − p1 p2 p3)(p1 − p1)dt

+kT

∫ t f

0
e−ηT p5eλt

(p1 − p1)2dt ,

where μ1, μ2, μ3, μ4 and μ5 are upper bounds of p1, p2, p3, p4 and p5, respectively. Now, we shall analyze the term∫ t f
0 (p1 p2 p3 − p1 p2 p3)(p1 − p1)dt explicitly. To evaluate this estimate, we apply the Cauchy-Schwarz inequality to separate linear

terms from quadratic terms. It can be observed that

(p1 p2 p3 − p1 p2 p3) �(p1 p2 − p1 p2)p3 − p1 p2(p3 − p3),

and we get∫ t f

0
(p1 p2 p3 − p1 p2 p3)(p1 − p1)dt ≤

∫ t f

0
p3(p1 − p1)(p1 p2 − p1 p2)dt +

∫ t f

0
p1 p2(p1 − p1)(p3 − p3)dt

≤μ3

∫ t f

0
(p1 − p1)(p1 p2 − p1 p2)dt + μ1μ2

∫ t f

0
(p1 − p1)(p3 − p3)dt

≤μ1μ2

2

∫ t f

0
(p3 − p3)2dt +

μ1μ3

2

∫ t f

0
(p2 − p2)2dt

+
μ1μ2 + 2μ2μ3 + μ1μ3

2

∫ t f

0
(p1 − p1)2dt.

Again, we can write that

1

2
(q1 − q1)2(t f ) + (λ − rT + kT )

∫ t f

0
(q1 − q1)2dt ≤

∫ t f

0
2rT bT e

λt (p1q1 − p1q1)(q1 − q1)dt

+
∫ t f

0
αT e

λt
{ p3q1

gT + eλt p3
− p3q1

gT + eλt p3

}
(q1 − q1)dt
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+
∫ t f

0
γT e

λt
{ p2q1

gT + eλt p3
− p2q1

gT + eλt p3

}
(q1 − q1)dt

+
∫ t f

0
αme

λt
{ p2q3

(gm + eλt p2)(gm1 + eλt p1)2

− p2q3

(gm + eλt p2)(gm1 + eλt p1)2

}
(q1 − q1)dt

+
∫ t f

0
γme

λt (p3q3 − p3q3)(q1 − q1)dt

+
∫ t f

0
αdgd

{ q4

(gd + eλt p1)2 − q4

(gd + eλt p1)2

}
(q1 − q1)dt

+kT

∫ t f

0
e−ηT p5eλt

(q1 − q1)2dt.

It is to be noted that
∫ t f

0
αT e

λt
{ p3q1

gT + eλt p3
− p3q1

gT + eλt p3

}
(q1 − q1)dt ≤αT

gT

∫ t f

0
eλt (p3q1 − p3q1)(q1 − q1)dt

+
αT

g2
T

∫ t f

0
e2λt p3 p3(q1 − q1)2dt.

Again, we have
∫ t f

0
αme

λt
{ p2q3

(gm + eλt p2)(gm1 + eλt p1)2 − p2q3

(gm + eλt p2)(gm1 + eλt p1)2

}
(q1 − q1)dt

≤ αm

gmg2
m1

∫ t f

0
eλt (p2q3 − p2q3)(q1 − q1)dt

+
2αm

gmg3
m1

∫ t f

0
e2λt (p2q3 p1 − p2q3 p1)(q1 − q1)dt

+
αm

gmg4
m1

∫ t f

0
e3λt (p2q3 p

2
1 − p2q3 p

2
1)(q1 − q1)dt

+
αm

g2
mg

2
m1

∫ t f

0
e2λt (p2q3 p2 − p2q3 p2)(q1 − q1)dt

+
2αm

g2
mg

3
m1

∫ t f

0
e3λt (p2q3 p1 p2 − p2q3 p1 p2)(q1 − q1)dt

+
αm

g2
mg

4
m1

∫ t f

0
e4λt (p2q3 p

2
1 p2 − p2q3 p

2
1 p2)(q1 − q1)dt.

To obtain the specific expression, we consider
∫ t f

0
(p2q3 p

2
1 p2 − p2q3 p

2
1 p2)(q1 − q1)dt ≤

∫ t f

0
p2

1 p2(p2q3 − p2q3)(q1 − q1)dt

+
∫ t f

0
p2q3(p2

1 p2 − p2
1 p2)(q1 − q1)dt

≤μ1μ
2
2ν3

∫ t f

0
(p1 − p1)2dt + μ2

1μ2ν3

∫ t f

0
(p2 − p2)2dt

+
2μ2

1μ2ν3 + μ2
1μ

2
2 + 2μ1μ

2
2ν3

2

∫ t f

0
(q1 − q1)2dt

+
μ2

1μ
2
2

2

∫ t f

0
(q3 − q3)2dt ,

where νi are the upper bounds of qi (i � 1–5), respectively. We add all the integrals of (pi − pi ) (for i � 1–5) and (q j − q j ) (for
j � 1–5) for proving uniqueness of optimal control system. Since maximum fraction of killing rate by chemotherapeutic drug is 1,
then |e−ηT p5eλt |< 1. Thus, we have the following inequality:

1

2
(p1 − p1)2(t f )+

1

2
(p2 − p2)2(t f ) +

1

2
(p3 − p3)2(t f ) +

1

2
(p4 − p4)2(t f ) +

1

2
(p5 − p5)2(t f )
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+
1

2
(q1 − q1)2(t f ) +

1

2
(q2 − q2)2(t f ) +

1

2
(q3 − q3)2(t f ) +

1

2
(q4 − q4)2(t f )

+
1

2
(q5 − q5)2(t f ) + (λ − rT + kT )

∫ t f

0
(p1 − p1)2dt + (λ + δl + kl )

∫ t f

0
(p2 − p2)2dt

+(λ + δm + km)
∫ t f

0
(p3 − p3)2dt + (λ + δd + kd )

∫ t f

0
(p4 − p4)2dt

+(λ + γ )
∫ t f

0
(p5 − p5)2dt + (λ − rT + kT )

∫ t f

0
(q1 − q1)2dt

+(λ + δl + kl )
∫ t f

0
(q2 − q2)2dt + (λ + δm + km)

∫ t f

0
(q3 − q3)2dt

+(λ + δd + kd )
∫ t f

0
(q4 − q4)2dt + (λ + γ )

∫ t f

0
(q5 − q5)2dt

≤C1e
4λt

∫ t f

0
[(p1 − p1)2 + (p2 − p2)2 + (p3 − p3)2 + (p4 − p4)2 + (p5 − p5)2

+(q1 − q1)2 + (q2 − q2)2 + (q3 − q3)2 + (q4 − q4)2 + (q5 − q5)2]dt.

We use the nonnegativity of the variables at the initial and final time and simplifying; then, the above inequality is reduced to the
following expression:

(λ − C2 − C1e
4λt )

∫ t f

0
[(p1 − p1)2+(p2 − p2)2 + (p3 − p3)2 + (p4 − p4)2 + (p5 − p5)2 + (q1 − q1)2

+(q2 − q2)2 + (q3 − q3)2 + (q4 − q4)2 + (q5 − q5)2]dt ≤ 0;

where C1, C2 depend on the coefficients and their bounds of the state variables. If we choose that λ > C2 + C1, then we have

λ −C2 −C1e4λt > 0. Since logarithm is increasing function, thus t f < 1
4λ

ln ( λ−C2
C1

), then pi � pi (for i � 1–5) and q j � q j (for

j � 1–5). Therefore, in the small time interval, the solution of (9) is unique.
From the mathematical perspective, we can assert that the uniqueness of the solution of the control system satisfied for a sufficiently

small time interval, where the state system has initial solutions and the adjoint or costate system has the final time conditions. The
given optimal controls u∗

2, u∗
3, u∗

4 and v∗
c are characterized in terms of the unique solution of the optimal system. �

8 Parameter estimation

The system parameters have a significant impact on the behavior and analysis of the mathematical model. In this section, we will
discuss how we estimated certain parameters of our system (1) based on information available in the existing literature. Our approach
to parameter estimation is outlined below.

Degradation rate of CD8+T cells, denoted as δl : The estimated half-life of CD8+T cells, denoted as L, is approximately 3.9
days according to the findings in [34]. We can determine the death rate δl of CD8+T cells using the following equation

1

2
L(0) �L(0)e(−δl t L1/2)

.

This equation yields the value of δl as

δl � ln 2

3.9
day−1

≈ 0.178 day−1.

Degradation rate of macrophages, denoted as δm : The value of δm can be calculated using the data provided by Wacker et al.
[35], who observed a half-life of 12.4 days for macrophages. This can be expressed as

δm � ln 2

12.4 day

≈ 0.056 day−1.

Death rate of dendritic cell, denoted as δd : The half-life of dendritic cells is reported to range from 3 to 4 days according to Holt
et al. [36]. For our calculations, we assume a median half-life of 4 days. As a result, the death rate δd can be calculated as follows

δd � ln 2

4 day
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≈ 0.17 day−1.

Activation rate of dendritic cells, denoted as αd : The parameter representing the half-saturation constant for tumor cells is denoted
as gd . This can be expressed as

T

gd + T
� 1

2
.

Based on the findings by Coventry et al. [37], where the density of dendritic cells in breast cancer patients is noted as D � 4 × 10−4

cells and by considering the steady state of the fourth equation in (1), we can derive the equation

αd
T

gd + T
� δd D,

which can be rearranged to calculate the value of αd as

αd � 1.36 × 10−4 cell/day.

Constant source rate of dendritic cells, denoted as sd : Constant source rate sd is influenced by the presence of tumor cells. In a
healthy person, the presence of tumor cells results in the absence of dendritic cell production. Therefore, at a steady state, we can
express this relation as

sd � δd D

� 0.68 × 10−4 cell/day.

Natural degradation rate of Tregs, denoted as δg: As reported by Q. Tang [38], the half-life of regulatory T-cells is 32 h, which
is approximately equivalent to 1.3 days. Therefore, we can calculate the death rate δg as follows

δg � ln 2

1.3
day−1

≈ 0.53 day−1.

Activation rate of Tregs, denoted as αg: According to Q. Tang [38], the estimated average count of circulating regulatory T-cells
in an adult human is approximately 0.25 × 109 pg · ml−1. Additionally, we assume that the density of CD8+T cells is 2 × 107

cells/ml. By considering the steady state of the fifth equation in (1), we derive the equation following as

αgL − δgTg �0,

which implies that

αg �δgTg
L

.

Substituting the known values, we have

αg �0.53 × 0.25 × 109(day−1.pg.ml−1)

2 × 107(cell.ml−1)
.

This simplifies to

αg �6.62 pg.day−1.cell−1.

Degradation rate of interleukin-10, denoted as δ10: The half-life of interleukin-10, denoted as I10, is reported to be 4.5 h according
to Huhn et al. [39], which is approximately equivalent to 0.1875 days. Therefore, we can calculate the degradation rate δ10 as follows

δ10 � ln 2

0.1875
day−1

≈ 3.696 day−1.

Activation rate of interleukin-10, denoted as α10: Toossi et al. [40] found that 106 alveolar macrophages produce, in vitro, 3,200
pg/mL of interleukin-10 (I10). Utilizing the steady-state equation from the sixth equation in (1), we can write that

α10M − δ10 I10 �0,

which implies

α10 �3.696 × 3200

106 (day−1.pg.ml−1)/(cell.ml−1).

Simplifying this expression, we find
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α10 �0.01182 pg.day−1.cell−1.

Death rate of TGF-β,denoted as δβ : We assume that estimated median half-life of TGF-β is approximately 20 h, equivalent to
0.83 days. Consequently, the death rate of TGF-β can be calculated as follows

δβ � ln 2

0.83
day−1 ≈ 0.832 day−1.

Source rate of TGF-β, denoted as sβ : Peterson et al. [41] reported a TGF-β (Tβ ) density of 609 pg/ml. It is observed that in a
healthy person the concentration of TGF-β is 10 times less than a cancer patient. Assuming a cerebral spinal fluid volume of 150 ml,
in the absence of cancer-induced TGF-β production, we can observe at steady state that

sβ �δβTβ

�0.832 day−1 × 150 ml × 60.9 pg · ml−1

�7.6 × 103 pg · day−1.

Release rate of TGF-β by tumor cells, denoted as αβ : The average concentration of the immunosuppressive cytokine TGF-β
(Tβ ) is determined to be 609 pg/ml × 150 ml � 91350 pg based on the findings by Peterson et al. [41], which relates to high-grade
glioblastoma patients. Utilizing the seventh equation from the system (1) at an equilibrium state, we can derive that

αβ �δβTβ − sβ
T

�91350 pg × 0.832 day−1 − 7.6 × 103 pg · day−1

106 cell
�0.0684 pg.day−1.cell−1.

Degradation rate of interleukin-12, denoted as δ12: The half-life of interleukin-12 (I12) is reported to be 30 h, equivalent to 1.25
days, as documented in the study by Carreno et al. [42]. Therefore, the degradation rate of interleukin-12 (I12) can be calculated as
follows

δ12 � 0.693

1.25 day

≈0.55 day−1.

Release rate of IL-12 by dendritic cells, denoted as α12: In the case of a breast cancer patient, the concentration of interleukin-12
in the blood serum is measured at 1.5 × 10−10 pg/ml, as indicated by Derin et al. [43]. Additionally, the concentration of dendritic
cells stands at 4 × 10−4 cell/ml, based on the findings of Coventry et al. [37]. Thus, at the steady state of the eighth equation of (1),
we can deduce that

α12 �δ12 I12

D

�1.5 × 10−10 pg · ml−1 × 0.55 day−1

4 × 10−4 cell · ml−1

�2.06 × 10−7pg.day−1.cell−1.

Decay rate of IFN-γ , denoted as δγ : The median half-life of IFN-γ is determined to be 6.8 h, which is approximately equivalent
to 0.283 days, as reported by Turner et al. [44]. Consequently, the decay rate of IFN-γ can be calculated as follows

δγ � ln 2

0.283
day−1

≈2.45 day−1.

Production rate of IFN-γ by CD8+T cells, denoted as αγ : In a specific experimental study, Kim et al. [45] reported that CD8+T
cells produce 200 pg/ml of IFN-γ . Based on this data, we assume that the concentration of CD8+ T cells is 2×107 cell/ml. Therefore,
by utilizing the steady state of the ninth equation in (1), we can determine

αγ �δγ Iγ
L

�200 pg · ml−1 × 2.45 day−1

2 × 107cell · ml−1

�2.45 × 10−5 pg.day−1.cell−1.

Table 1 provides a summary of all the model parameters.
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Table 1 The parameter values
employed for simulating the
tumor-immune interaction model
are as follows

Par. Description Value Units Source

rT Intrinsic growth rate of tumor cells 0.5822 day−1
[46]

bT 1/bT is carrying capacity of tumor cells 1.25 × 10−6 cell−1
Fit to data

α
′
T Tumor cells elimination rate by macrophages 1.5 pg.day−1.cell−1

[4]

γ
′
T Tumor cells elimination rate by CD8+T cells 2.4 pg.day−1.cell−1

[47]

g
′
T Half-saturation constant 104

pg [48]

α
′
l CD8+T cells activation due IL-12 3.5 cell.day−1

[49]

g
′
l Tregs reduce parameter for CD8+T cell production 102

pg [50]

δl CD8+T cells death rate 0.178 day−1
Est.

sm Constant source rate of macrophages 5.42 × 102 cell.day−1
[51]

α
′
m Recruitment rate of macrophage by IFN-γ 0.69 pg.cell.day−1

[52]

g
′
m Half-saturation constant of IFN-γ 1.05 × 104

pg [4]

g
′
m1 TGF-β reduce parameter for macrophages 104

pg [4, 41]

γm Macrophages inactivation rate due to tumor cells 0.4656 cell−1.day−1
[4]

δm Natural death rate of macrophages 0.056 day−1
Est.

sd Constant source rate of dendritic cells 0.68 × 10−4 cell.day−1
Est.

αd Dendritic cells activation rate 1.36 × 10−4 cell.day−1
Est.

gd Half-saturation constant 106
cell [2, 6]

δd Dendritic cells death rate 0.17 day−1
Est.

αg Activation rate of Tregs due to CD8+T cells 6.62 pg.day−1.cell−1
Est.

δg Tregs degradation rate 0.53 day−1
Est.

α10 Activation rate of IL-10 due to macrophages 0.01182 pg.day−1.cell−1
Est.

δ10 IL-10 degradation rate 3.696 day−1
Est.

sβ Constant source rate of TGF-β 7.6 × 103 pg.day−1
Est.

αβ Release rate of TGF-β by tumor cells 0.0684 pg.day−1.cell−1
Est.

δβ TGF-β decay rate 0.832 day−1
Est.

α12 Release rate of IL-12 by dendritic cells 2.06 × 10−7 pg.day−1.cell−1
Est.

δ12 IL-12 degradation rate 0.55 day−1
Est.

αγ Activation rate of IFN-γ due to CD8+T cells 2.45 × 10−5 pg.day−1.cell−1
Est.

δγ IFN-γ decay rate 2.45 day−1
Est.

kT Chemotherapy induced tumor death rate 0.8 Day−1
[16, 19]

ηT Chemotherapy efficacy coefficient 0.1 Liter.mg−1
Fit to data

kl Chemotherapy induced CD8+ T cell decay rate 0.6 Day−1
[16, 19]

ηl Chemotherapy efficacy coefficient 0.1 Liter.mg−1
Fit to data

km Chemotherapy induced macrophages decay rate 0.4 Day−1
Fit to data

ηm Chemotherapy efficacy coefficient 0.1 Liter.mg−1
Fit to data

kd Chemotherapy induced dendritic cell decay rate 0.6 Day−1
Fit to data

ηd Chemotherapy efficacy coefficient 0.1 Liter.mg−1
Fit to data

γ Decay rate for chemotherapeutic drug 0.9 Day−1
[16]

9 Numerical results

This section provides a detailed description of extensive numerical illustrations aimed at validating our theoretical analysis, covering
aspects such as stability and the implementation of various treatment strategies. We generated numerical plots of our optimal control
model using MATLAB, selecting appropriate parameters value, which can be found in Table 1. To assess the impact of these
treatment strategies, we conducted a comparative analysis, contrasting the numerical illustrations with and without the application
of treatment strategies for the proposed control model (3).

9.1 Numerical results without treatment strategy

In this subsection, we study numerical behavior of (3) without implementation treatment strategy. In view of this, at first, we check
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Fig. 2 The figure shows that the comparison of the state variables without introduction of treatment strategy and with the implementation of single control

the existence of biologically feasible singular point(s) in absence of any control (that is, u2 � u3 � u4 � vc � 0). We calculate the
tumor-free steady state E0 (0, 0, 9678.57, 0, 0), and the corresponding eigenvalues are −0.9, − 0.865109, − 0.178, − 0.17,
− 0.056. Since all the eigenvalues are negative, then we can say that tumor-free singular point E0 is locally asymptotically stable.
It is quite difficult to find the explicit form of interior singular point E1(T 1, L1, M1, D1, C1). So, we calculate interior singular
point by numerically using the parameters value given in Table 1. There are two types of tumor-presence singular point. One is
low tumor-presence singular point, and another is high tumor-presence singular point. From the parameters in Table 1, the low
tumor-presence steady state El is (0.179273, 1.05623×10−17, 3886.15, 1.43419×10−10, 0) and the corresponding eigenvalues
are −0.9, − 0.300816, − 0.178, − 0.17, 0.161346, which shows that low tumor-presence singular point El is unstable in
nature. On the other hand, high tumor-presence steady state Eh is (800000, 2.61855 × 10−11, 0.00145511, 0.0003555, 0) and
the corresponding eigenvalues are −372480, − 0.9, − 0.5822, − 0.178, − 0.17. Since all of the eigenvalues are negative, then
we can say that high tumor-presence steady state Eh is asymptotically stable.

9.2 Numerical results with treatment strategy

In this subsection, we will explore our proposed model with the application of various treatment strategies. We have introduced four
distinct treatment strategies, specifically u2(t), u3(t), u4(t) and vc(t), designed to target and eliminate the tumor cell population. Our
approach involves conducting numerical simulations for the state variables using the Runge–Kutta forward method and solving the
equations for the adjoint or costate variables using the Runge–Kutta backward method. To perform the numerical illustrations, we
consider the initial values T (0) � 0.01, L(0) � 0.2×10−7, M(0) � 3000, D(0) � 0.0002 and time window 200 days with taking
parameters value are specified in Table 1. To better know the treatment techniques, we consider the following control strategies.

Strategy I: Implementation of only one treatment strategy.
Strategy II: Implementation of two different treatment strategies.
Strategy III: Implementation of three different treatment strategies.
Strategy IV: Implementation of four different treatment strategies.
Figure 2 illustrates the impact of tumor cells, CD8+T cells, macrophages and dendritic cells in the presence of a single treatment

strategy, denoted as (u2(t), u3(t), u4(t), vc(t)), as well as in the absence of any treatment strategy (that is, u2(t) � u3(t) � u4(t) �
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Fig. 3 The figure describes that the comparison of the state variables without implementation of any treatment strategy and with the application of two
treatment strategies

vc(t) � 0). In Fig. 2, the red curve represents the state variables without any optimal control strategy, while the black curve describes
the state variables with only one treatment strategy, specifically u2(t) � 0.8. The blue, green and magenta curves correspond to each
of the state variables when u3(t) � 0.8, u4(t) � 0.8 and vc(t) � 0.8, respectively. From the time series plot (see Fig. 2), it is evident
that without application of any control strategy in our proposed model, the reduction in tumor cells takes more time than when a
single control strategy is employed. Additionally, we observe that effector cells initially increase but decrease as time progresses.
The utilization of a single control strategy proves to be more effective than administering no control at all.

Figure 3 illustrates the impact of various state variables under the influence of two optimal control strategies. These strategies
are denoted as follows: u2(t), vc(t); u3(t), vc(t); u4(t), vc(t); u2(t), u3(t); u3(t), u4(t); u2(t), u4(t); and a scenario without any
control strategy. In this visualization, the red curve represents the state variables when no control strategy is employed, while the
black curve signifies the state variables when two control strategies are implemented, specifically u2(t) � vc(t) � 0.8. The blue
curve illustrates the state variables with the application of two control strategies, namely u3(t) � vc(t) � 0.8. The green curve
indicates the state variables when two different controls are utilized, that is, u4(t) � vc(t) � 0.8. The magenta curve represents
the state variables under the influence of two control strategies, where u2(t) � u3(t) � 0.8. The crayon curve depicts the state
variables with two treatment strategies, specifically u3(t) � u4(t) � 0.8. Finally, the maroon curve explores the state variables with
two treatment strategies, where u2(t) � u4(t) � 0.8. Analyzing the time series plot shown in Fig. 3, it becomes obvious that when
employing two different optimal control strategies, the tumor cells rapidly reach their equilibrium point. Meanwhile, the immune
components initially experience an increase but eventually saturate over time. Consequently, We can conclude that employing two
control strategies is more effective compared to a scenario with no treatment strategies.

The figure describes that the comparison of the state variables without implementation of any treatment strategy and with the
application of two treatment strategies

The time series plot in Fig. 4 illustrates the roles of tumor cells, CD8+T cells, macrophages and dendritic cells in the presence
of three control strategies: u2(t), u3(t), vc(t); u3(t), u4(t), vc(t); u2(t), u3(t), u4(t) and without the introduction of any control
strategy. The red curve represents the state variables without any control strategy, while the black curve depicts the state variables
under three different treatment strategies, specifically u2(t) � u3(t) � vc(t) � 0.8. The blue curve shows the state variables under
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Fig. 4 The figure indicates that the comparison of the state variables without introduction of any treatment strategy and with the application of three diferent
control strategies

three distinct control strategies, where u3(t) � u4(t) � vc(t) � 0.8. Finally, the green curve illustrates the state variables when three
control strategies are introduced, with u2(t) � u3(t) � u4(t) � 0.8. Figure 4 clearly demonstrates that employing a combination of
three control strategies proves more effective when compared to the scenario with no treatment strategy.

The time series plot in Fig. 5 depicts the application of four different control strategies alongside the scenario without any control
strategy for the state variables. To visualize these four treatment strategies, we set the control variables as follows: u2(t) � u3(t) �
u4(t) � vc(t) � 0.8. From the time series plot in Fig. 5, it is evident that implementing four different treatment strategies is more
effective than using no treatment strategy, a single treatment strategy (Fig. 2), two different treatment strategies (Fig. 3) or three
different treatment strategies (Fig. 4). Additionally, in Fig. 5, it is noticeable that tumor cells are rapidly eliminated and immune
components are maximized upon the implementation of these four distinct control strategies.

To visualize the dynamics of the adjoint or costate variables A1, A2, A3 and A4 with the implementation of four different control
strategies, we have drawn Fig. 6. To do this, we consider the values of the control variables as follows: u2(t) � u3(t) � u4(t) �
vc(t) � 0.8. The plot clearly illustrates that the costate variables are directly linked to changes in the values of the Lagrangian. The
time derivatives of the costate variables are negative with respect to the corresponding partial derivatives of the Lagrangian.

To visualize the dynamic behavior of the controls, we plot the control parameters in the Fig. 7. The plot of the four graphs represents
the optimal control functions with the implementation of four control strategies, namely u2(t) � u3(t) � u4(t) � vc(t) � 0.8. From
the Fig. 7, it can be noticed that control values decreased and eventually reach 0. The control parameters vanish before 40 days due
to the fact that our adjoint or costate variables vanish.

The model is closely tied to the study of optimal control strategies within the context of tumor cell dynamics and the immune
response. It explores into various control approaches, including the manipulation of tumor cell levels and key immune components
(such as CD8+T cells, macrophages and dendritic cells), all with the aim of achieving specific biological outcomes. Our immune sys-
tem, with its pivotal role in identifying and eliminating abnormal cells, including cancer cells, stands as a critical factor. Investigating
how these control strategies impact the immune response can provide valuable insights into fortifying the body’s inherent defenses
against cancer. The significance of control parameters like u2(t), u3(t), u4(t) and vc(t) cannot be overstated, as they are intricately
linked to immune components such as CD8+T cells, macrophages, dendritic cells and chemotherapeutic drugs. Their relevance lies
in their potential to augment the immune response against cancer cells, thereby potentially enhancing the body’s capacity to identify
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Fig. 5 The figure shows that the comparison of the state variables without implementation of any treatment strategy and with the implementation four diferent
treatment strategies

and eliminate cancer cells. Through comparisons of the efficacy of diverse control strategies (ranging from single to four treatments)
in reducing tumor cell proliferation and maximizing the immune response, this model serves as a valuable tool for identifying the
most promising avenues in cancer treatment. The control parameters represent the capacity to deploy multiple treatment strategies
either individually or in combination. Moreover, the adaptability of these control parameters allows for a personalized approach to
cancer treatment. Their biological significance is underscored by the ability of treatment strategies to individual patients, accounting
for unique tumor characteristics and immune system profiles. Each of these parameters exerts a distinct influence on the dynamics
of tumor cells and the immune response. Their biological significance lies in their potential to preserve precise control over tumor
growth, ultimately suppressing the proliferation of cancer cells and potentially leading to tumor regression or even elimination.

10 Conclusion

Nowadays, it is very important and challenging question in immunology and oncology research is to understand how the immune
system influences tumor progression and development. This study explores the dynamic behavior of a nonlinear tumor-immune
interaction model using the theory of optimal control. Various scenarios for implementing different treatment strategies to eliminate
the tumor cell population are considered. Here, we construct a mathematical model of nine nonlinear coupled ordinary differen-
tial equations (ODEs) by introducing different cells and cytokines, namely tumor cells, cytotoxic T-lymphocytes (CD8+T cells),
macrophages, dendritic cells, tregs, IL-10, TGF-β, IL-12 and IFN-γ . Next, we simplify the proposed model into a system of four
ODEs, which represent tumor cells, CD8+T cells, macrophages and dendritic cells, using the quasi-steady-state approximations
method [24].

In this paper, we analyzed a mathematical model for tumor-immune interaction with treatment strategies. Our goal is to provide
an improved treatment strategy by eliminating the tumor cell population using both chemotherapeutic and immunotherapeutic drugs.
To do this, we introduce four control parameters, namely u2(t), u3(t), u4(t) and vc(t). To minimize the tumor cells and maximize
the immune cells, we define an objective functional J (u∗). We prove the existence of control by applying the boundedness of
super-solutions of the system. Additionally, we determine the characterization of the control by employing Pontryagin’s Maximum
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Fig. 6 The figure shows that the nature of the adjoint or costate variables with the implementation of four diferent treatment strategies

Principle. We calculate the variation of the Lagrangian function to delineate the maximization of our optimal controls u∗
2(t), u∗

3(t),
u∗

4(t) and v∗
c (t). Finally, we establish the uniqueness of the solution for the given optimal control system holds for a sufficient small

time interval t f . Next, we estimated value of several parameters for our system (1) based on existing literature.
We conducted a numerical study of our control system (3) under various conditions, including scenarios without a control strategy,

with a single treatment strategy, with two treatment strategies, with three treatment strategies and with four treatment strategies.
In Fig. 2, we observed that a single control strategy proves more efficient than having no treatment strategy. Similarly, in Fig. 3,
the implementation of two treatment strategies led to a rapid attainment of equilibrium in the tumor cell population compared to
using a single treatment strategy or having no treatment strategy. Furthermore, the combination of three and four treatment strategies
yielded remarkable results in minimizing the tumor cell burden, eventually leading to its complete elimination. This is demonstrated
in Figs 4 and 5, respectively. Simultaneously, the immune components, including CD8+T cells, macrophages and dendritic cells,
reached their maximum levels, as shown in Figs 4 and 5. In summary, our results indicate that the utilization of different treatment
strategies, including one, two, three or four control strategies, is effective for rapidly reducing the tumor burden compared to scenarios
without any treatment strategy. Additionally, this approach maximizes the presence of immune components, such as CD8+T cells,
macrophages and dendritic cells, surpassing the results achieved by the alternative control strategies.

The innovative method we employ to understand and manage tumor-immune interactions is what sets our research apart. By sys-
tematically evaluating multiple treatment strategies and optimizing their effectiveness, we have provided a comprehensive framework
for addressing a complex and pressing challenge in immunology and oncology. Our findings are not only underscore the signifi-
cance of having structured control strategies but also highlights the potential of combining multiple treatment strategies to achieve
unprecedented results in tumor elimination. This novel perspective not only contributes to the theoretical foundations of the field
but also holds great promise for practical applications in cancer treatment.

We expect that the outcomes from our mathematical model will prove valuable to future researchers engaged in the study of
tumor-immune interaction systems, particularly those applying optimal control theory. This study can offer significant assistance to
researchers seeking to implement optimal control theory in various areas of research. Furthermore, we aspire to contribute to the
improvement of cancer patient treatment by presenting a mathematical model that incorporates tumor cells and the immune system,
potentially offering a more effective approach for the management of cancer patients.
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Fig. 7 The figure shows the optimal controls as a function of time corresponding to the implementation of the single control u2(t), u3(t), u4(t) and vc(t)
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