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Abstract The purpose of this paper is to use a wavelet technique to generate accurate responses for models characterized by
the singularly perturbed generalized Burgers-Huxley equation (SPGBHE) while taking multi-resolution features into account. The
SPGBHE’s behaviours have been captured correctly depending on the dominance of advection and diffusion processes. It should
be noted that the required response was attained through integration and by marching on time. The wavelet method is seen to be
very capable of solving a singularly perturbed nonlinear process without linearization by utilizing multi-resolution features. Haar
wavelet method results are compared with corresponding results in the literature and are found in agreement in determining the
numerical behaviour of singularly perturbed advection–diffusion processes. The most outstanding aspects of this research are to
utilize the multi-resolution properties of wavelets by applying them to a singularly perturbed nonlinear partial differential equation
and that no linearization is needed for this purpose.

1 Introduction

Differential equations represent many physical processes arising in a vast range of science. The equations are of special importance
in modern scientific research and mathematical modelling. Advection usually dominates diffusion in various transport processes
represented by physical problems having a hyperbolic nature. Researchers have widely focused on establishing numerical methods
that produce stable responses to the physical environment of the advection-dominated behaviour. Involving the reaction of the
physical environment leads to spending extra effort, and the advection-dominant case is considered as the case of perturbative
behaviour of the physical region.

Frequently, problems of many physical behaviours could be reduced to the solution of a mathematical model of
advection–diffusion-reaction processes. Since they are more realistic, partial differential equations (PDEs) are particularly impor-
tant. The PDEs model physical, chemical, economic and biological processes almost perfectly. To shed light on the subject, one may
suggest various branches of physics, mathematical biology, traffic flow and so on as examples of such applied areas. However, more
realistic PDEs usually have two challenging aspects; namely, the first one is nonlinearity and the second one is a singular perturbation.
Moreover, most of such realistic PDEs do not own an analytical solution; or if the given PDE possesses an analytical solution it is
time-consuming to find this solution. Therefore, numerical treatments for such models involving both nonlinearity and singular per-
turbation are of special importance. A singularly perturbative problem can be remembered to be a parameter/parameters-dependent
problem in such a manner that solutions to the problem behave consistently for very small values of the parameter. Singularly
perturbed differential equations are encountered in many branches of applied sciences.

When a discretization approach is used for a problem involving a parameter, the parameter affects the behaviour of the approach.
For singularly perturbative behaviours represented by the model equation, traditional numerical methods usually give rise to dis-
cretization which is of serious limitations when the parameter is too small. That is why this article is interested in a wavelet method
that is expected to capture the perturbative behaviour even for tiny values of the parameter. An important review of singularly
perturbed PDEs was carried out by [3]. A guiding article on the singularly perturbative problems can be found in [4]. Although
singularly perturbed differential equations were studied in detail in the literature, at present, many things are still available to be
investigated in the corresponding ground.
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The present paper mainly proposes an effective method for solving one of the well-known singularly perturbed nonlinear PDEs,
namely the SPGBHE. The SPGBHE is stated as

ut + αuδux − εuxx � βu(1 − uδ)(uδ − γ ) (1.1)

where 0 ≤ x ≤ 1 and 0 ≤ t . Here α, β, δ, γ and ε are parameters such that ε > 0, β ≥ 0, δ > 0, γ ∈ (0, 1).
This equation describes advection-convection, diffusion effects and reaction mechanisms generally, and it also includes a sin-

gularly perturbative behaviour led by the parameter ε in front of the term uxx . The parameter ε is known as viscosity and 1/ε

sometimes is called Reynolds number. Viscosity is a notion in fluid dynamics that is characterizing the strength of a liquid against
fluidity. Therefore, the SPGBHE is of special importance in the study of viscous fluids or the study of Newtonian fluids with high
Reynolds numbers.

The SPGBHE is important not only in fluid dynamics but also in various disciplines of science and engineering. By considering
δ � 1 and β � 0, Eq. (1.1) reduces to the well-known Burgers equation, which is important in shock wave studies. It is known that
the shock waves are generated due to a balance between the sharp behaviour of the convection process and the smoothing effect
of the diffusion process in the model. In that sense, the Burgers equation is of nonlinear behaviour represented by an equilibrated
relation between convection and diffusion phenomena. Equation (1.1) gives the Huxley equation, for the choices of α � 0 and
δ � 1, describing the propagation of some pulses in nerves. When ε � 1, Eq. (1.1) leads to the GBH equation; and with the initial
condition (IC)

u(x , 0) �
(γ

2
+

γ

2
tanh(a1x)

)1/δ

(1.2)

and boundary conditions (BCs)

u(0, t) �
(γ

2
+

γ

2
tanh(−a1a2t)

)1/δ

(1.3)

u(1, t) �
(γ

2
+

γ

2
tanh(a1(1 − a2t))

)1/δ

(1.4)

Equation (1.1) is of the following continuous solution

u(x , t) �
(γ

2
+

γ

2
tanh(a1(x − a2t))

)1/δ

(1.5)

where

a1 � −αδ + δ
√

α2 + 4β(1 + δ)

4(1 + δ)

a2 � αγ

1 + δ
− (1 + δ − γ )(−α +

√
α2 + 4β(1 + δ))

2(1 + δ)
.

The GBH equation was solved via a meshless method with the use of radial basis functions [5], a quadrature technique [6], a
high-order difference method [7], a version of the Chebyshev spectral collocation method[8], a wavelet method [9], a 2N-order
difference method [10]. Moreover, some analytical solutions of the GBH equation were found in [11–13] and [14].

When ε < 1, Eq. (1.1) does not have an exact solution, particularly, if ε � 1 the conventional methods usually fail to catch the
behaviour of the problem. In such cases, the importance of finding a numerical solution comes out. Recently, an operator splitting
method was utilized to solve the SPGBHE [15]. An error analysis through the properties of Sobolev spaces was also given in [15].
Variational iteration method [16], a lattice Boltzmann model [17], a three-step Taylor-Galerkin method [18], homotopy analysis
method [19] and a finite difference scheme including a time semi-discretization and space quasi-linearization [20] were utilized to
solve the SPGBHE.

In the literature, wavelet methods were used to solve such nonlinear PDEs because of their multi-resolution properties [21, 22].
Besides, the convergence theorem for the Haar wavelet method based on the approach introduced in [21] was proved in [1]. Majak
et.al. developed the higher order Haar wavelet method (HOHWM) and the order of convergence of the upgraded method is shown
to be four in [28]. The HOHWM was utilized to derive the numerical solutions of the Burgers’ equation, the Korteweg-de Vries
equation including the modified one, and the sine-Gordon equation [29]. The mentioned method is also used to get static responses
of a buckling beam [30, 31].

In light of previous works, we have applied Haar wavelets to a singularly perturbed nonlinear PDE, namely SPGBHE. To achieve
this, we have needed a time discretization and integrals of Haar wavelets. To understand this study, the tiny section below about
Haar wavelets will suffice, but enthusiasts may start with [23, 24] and [25].

This paper investigates solutions of the SPGBHE by utilizing Haar wavelets, tracking the way in [21]. As far as the authors of the
current paper know, the present methods have some difficulties in handling nonlinearity and singular perturbation at the same time.
This factor pushes us to use a wavelet method to catch singularly perturbative behaviours represented by nonlinear PDEs (Fig. 1).
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Fig. 1 Haar scaling function (left)
and wavelet function (right)

2 Haar wavelets

Haar wavelets are the earliest family of wavelets. The scaling function of the Haar family is

φ(x) �
{

1, x ∈ [0, 1].
0, otherwise.

(2.1)

and the wavelet function of Haar family is

ψ(x) �
⎧⎨
⎩

+1, 0 ≤ x ≤ 1/2.

−1, 1/2 ≤ x ≤ 1.

0, otherwise.
(2.2)

Then the set of wavelet functions {ψ j , k} j , k∈Z is a basis for L2(R). Here ψ j , k(x) � 2 j/2ψ(2 j x − k). For the sake of brevity, the
wavelet functions can be written as

hi (x) � ψ j ,k(x) � 2 j/2ψ(2 j x − k) (2.3)

where j ∈ N, k ∈ Z and i � 2 j + k + 1. Particularly, setting j � k � 0 we can obtain h2(x) � ψ(x). Here, notice also that h1(x)
stands for the scaling function φ(x). Since Haar functions are piecewise constants, integrals of them can be obtained as

pi ,1(x) �
∫ x

0
hi (x)dx , (2.4)

pi ,k(x) �
∫ x

0
pi ,k−1(x)dx (2.5)

In this study, we need only pi , 1(x) and pi , 2(x).

3 Numerical treatment of the SPGBHE

As far as PDEs are concerned, there exist many different articles in the literature connecting Haar wavelets and PDEs. But being
the simplest wavelet family, Haar wavelets have the main drawback: Haar wavelets are discontinuous functions, and hence, cannot
be used directly to solve partial differential Eqs. [22, 26, 27]. To utilize Haar wavelets, in the study of PDEs, consideration of
interpolating splines is to give one way in regularizing Haar wavelets [27] and the second way is to find Haar series expansion of
the highest derivative of the unknown function that is appearing in the equation rather than the function itself [21]. In the present
paper, we expand uxxt (x , t) into Haar series i.e.

uxxt (x , t) �
2J+1∑
k�1

ckhk(x) (3.1)

where J stands for the level of resolution. By integrating (3.1) once and twice with respect to time t and space x, the coming
expressions can be produced

uxx (x , t) �(t − ts)
2J+1∑
k�1

ckhk(x) + uxx (x , ts) (3.2)

ux (x , t) �(t − ts)
2J+1∑
k�1

ck pk,1(x) + ux (x , ts) − ux (0, ts) + ux (0, t) (3.3)

u(x , t) �(t − ts)
2J+1∑
k�1

ck pk,2(x) + u(x , ts) − u(0, ts) + x(ux (0, ts) − ux (0, t)) + u(0, t) (3.4)
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ut (x , t) �
2J+1∑
k�1

ck pk,2(x) + xuxt (0, t) + ut (0, t) (3.5)

Then using additional conditions u(x , 0) � f (x) and u(0, t) � g0(t) and u(1, t) � g1(t), one can find that

u(0, ts) � g0(ts), u(1, ts) � g1(ts), ut (0, ts) � g′
0(ts), ut (1, ts) � g′

1(ts) (3.6)

Moreover, using Eqs. (3.4) and (3.5), we can obtain

ux (0, t) − ux (0, ts) � − (t − ts)
2J+1∑
k�1

ck pk,2(1) + g1(t) − g1(ts) + g0(ts) − g0(t) (3.7)

uxt (0, t) � −
2J+1∑
k�1

ck pk,2(1) − g′
0(t) + g′

1(t) (3.8)

If Eqs. (3.7) and (3.8) are used in Eqs. (3.2) and (3.3); and the obtained equations are discritized as x → xl and t → ts+1, then we
have the following equations

uxx (xl , ts+1) � (ts+1 − ts)
2J+1∑
k�1

ckhk(xl ) + uxx (xl , ts) (3.9)

ux (xl , ts+1) � (ts+1 − ts)
2J+1∑
k�1

ck pk,1(xl ) − (ts+1 − ts)
2J+1∑
k�1

ck pk,2(1)

+ ux (xl , ts) + g1(ts+1) − g1(ts) + g0(ts) − g0(ts+1) (3.10)

u(xl , ts+1) � (ts+1 − ts)
2J+1∑
k�1

ck pk,2(xl ) + u(xl , ts) + g0(ts+1) − g0(ts)

− xl

⎛
⎝(ts+1 − ts)

2J+1∑
k�1

ck pk,2(1) − g1(ts+1) + g1(ts) − g0(ts) + g0(ts+1)

⎞
⎠ (3.11)

ut (xl , ts+1) �
2J+1∑
k�1

ck pk,2(xl ) − xl

⎛
⎝

2J+1∑
k�1

ck pk,2(1) − g′
1(ts+1) + g′

0(ts+1)

⎞
⎠ + g′

0(ts+1) (3.12)

where xl � (l − 0.5)/2J+1, l � 1, 2, . . . , 2J+1. Then plugging (3.9)-(3.12) into (1.1), we can find u(x , ts+1) iteratively by time
marching. Throughout the calculations, the time step was considered to be 0.001. To illustrate the relative error (RE) of the computed
solution we use the following relative error formula

RE �
√√√√

∑2J+1−1
k�1 |u(xl+1, ts+1) − u(xl , ts+1)|2

∑2J+1

k�1 |u(xl , ts+1)|2
(3.13)

The convergence theorem for the Haar wavelet method was proved in [1] and the order of convergence of the method is computed to
be two. Also, following the methodology in [2], the numerical rate of convergence of the present method could be depicted as two.

4 Numerical illustrations

In most applications of wavelet theory, the error is proportional to O(2−J ). Therefore, when the density of the mesh, i.e., J , increases,
the error diminishes rapidly. Moreover, the rate of convergence of the Haar wavelet method has been proven to be two in the literature
[1]. In the following examples, we can observe this truth experimentally. On the other hand, when both the effects of nonlinearity
and singular perturbation are dominant, the method may suffer from high errors, and there are some numerical jumps in the errors.
The reason for this loss of accuracy can be explained by the accumulation of errors that have come out during iterations. Another
reason for this situation can be the cumulative error in the application of Newton’s method, which is considered to solve the derived
nonlinear system. In all circumstances, we do not need any linearization in the present method, and we observe a fast decay in the
propagation of error. Hence, a trend of decrease in the relative errors can be observed in the tables when the elapsed time becomes
large.

123



Eur. Phys. J. Plus          (2024) 139:91 Page 5 of 10    91 

Table 1 REs for Example 1 at
t � 0.9 for various values of δ, ε

and J

ε � 2−2 ε � 2−4 ε � 2−6 ε � 2−8 ε � 2−12 ε � 2−16

δ � 1/2 J � 3 0.18499 0.19596 0.20132 0.23548 1.07106 1.09487

J � 4 0.09616 0.10811 0.11365 0.08771 0.91372 1.10992

J � 5 0.04896 0.05658 0.07445 0.02825 0.64050 1.00776

δ � 1 J � 3 0.18386 0.19232 0.16411 0.51538 1.04697 1.05598

J � 4 0.09527 0.10176 0.12012 0.19249 0.93295 1.09318

J � 5 0.04844 0.05223 0.06781 0.06212 0.05777 0.04839

δ � 2 J � 3 0.18347 0.18610 0.20247 0.20450 0.84441 0.88309

J � 4 0.09505 0.09643 0.10966 0.12320 0.10485 0.87560

J � 5 0.04832 0.04902 0.05682 0.07256 0.06328 0.85587

δ � 4 J � 3 0.18338 0.18371 0.18935 0.20737 0.54237 0.60589

J � 4 0.09502 0.09512 0.09767 0.10668 0.12244 0.34753

J � 5 0.04831 0.04834 0.04955 0.05404 0.06511 0.24896

δ � 8 J � 3 0.18337 0.18339 0.18364 0.18444 0.18638 0.18678

J � 4 0.09502 0.09502 0.09509 0.09540 0.09629 0.09650

J � 5 0.04831 0.04831 0.04833 0.04846 0.04889 0.04900

Fig. 2 x vs u(x, t) graphs for Example 1 with J � 3 and t � 0.1 (upper left), J � 3 and t � 0.9 (upper right), J � 3 and ε � 2−1 (bottom left), J � 4 and
ε � 2−6 (bottom right)

Example Take the model ut + uδux − εuxx � (1 − uδ)(uδ − 0.5)u under BCs u(0, t) � u(1, t) � 0, 0 ≤ t ≤ T and IC u(x ,
0) � sin(πx), 0 ≤ x ≤ 1. As seen from Table 1, the REs have been presented at t � 0.9 for variation of the parameters δ, ε and for
various resolutions J (Figs. 2, 3, 4).

Example ut + uδux � εuxx under homogeneous Dirichlet BCs u(0, t) � u(1, t) � 0, 0 ≤ t ≤ T and IC u(x , 0) � x(1 − x2),
0 ≤ x ≤ 1. In terms of the REs, effects of the advection and diffusion processes have been observed both qualitatively and
quantitatively in Table 2 and Figs. 5, 6 at t=0.9 with various values of the parameters δ, ε and J . Simultaneous effects of the viscosity
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Fig. 3 3D graph (left) and contour
plot (right) of u(x, t) for Example 1
with J � 3 and ε � 2−6

Fig. 4 REs for Example 1 with
various levels of resolution and
δ � 1/2

Table 2 REs for Example 2 at
t � 0.9 for various values of δ, ε

and J

ε � 2−2 ε � 2−4 ε � 2−6 ε � 2−8 ε � 2−12 ε � 2−16

δ � 1/2 J � 3 0.18494 0.19536 0.16404 0.68131 0.99837 1.05626

J � 4 0.09622 0.10509 0.12064 0.26261 0.81011 1.00202

J � 5 0.04901 0.05437 0.06989 0.06175 0.41263 0.93574

δ � 1 J � 3 0.18366 0.18767 0.19690 0.20164 0.19267 1.01723

J � 4 0.09535 0.09819 0.10950 0.10929 0.65986 0.92167

J � 5 0.04852 0.05014 0.05743 0.06930 0.27131 0.87198

δ � 2 J � 3 0.18334 0.18404 0.18761 0.19261 0.20610 0.23096

J � 4 0.09515 0.09567 0.09824 0.10234 0.10775 0.11100

J � 5 0.04841 0.04871 0.05018 0.05260 0.05570 0.05712

δ � 4 J � 3 0.18332 0.18352 0.18416 0.18466 0.18411 0.18385

J � 4 0.09514 0.09535 0.09599 0.09668 0.09693 0.09685

J � 5 0.04840 0.04854 0.04893 0.04939 0.04966 0.04965

δ � 8 J � 3 0.18332 0.18350 0.18395 0.18406 0.18309 0.18280

J � 4 0.09514 0.09534 0.09587 0.09635 0.09643 0.09634

J � 5 0.04840 0.04854 0.04887 0.04922 0.04942 0.04940

and resolution on the solution have been exhibited in Fig. 7. When the diffusion is non-dominant, the steep behaviour of the physical
process has properly been seen in the figures.

Example Selection of ε � 1 and α � 0 in Equation (1.1) leads to the GH equation. Tables 3-4 give absolute errors (AEs) and REs
for variation of the parameters x, t, J � 3, α, β and δ. The exact and the Haar wavelet solutions have been compared in Table 3.
Effects of the resolution J has been exhibited quantitatively in Tables 5 and 6. Also, the current results and the CFD6 results in [7]
have been compared. Even when we have used relatively large time steps (
t � 10−3) and relatively low resolution (J � 3), the
obtained solutions have been found to be slightly more precise than the solutions of [7].
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Fig. 5 3D graph (left) and contour
plot (right) of u(x, t) for Example 2
with J � 3 and ε � 2−9

Fig. 6 x vs u(x, t) graphs for Example 2 with J � 5 and t � 0.1 (upper left), J � 5 and t � 1.5 (upper right), J � 3 and ε � 2−3 (bottom left), J � 5 and
ε � 2−12 (bottom right)

Fig. 7 REs for Example 2 with
various levels of resolution and
δ � 2
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Table 3 AEs and REs for
Example 3 with various values of
x, t when ε � 1, J � 3, α � 0,
β � 1, γ � 0.001 and δ � 1

x t Exact CFD6 [7] Present AEs REs

0.1 0.05 0.000500030 0.000500020 0.000500022 8.3E−09 1.7E−05

0.10 0.000500043 0.000500028 0.000500031 1.2E−08 2.4E−05

1.00 0.000500268 0.000500245 0.000500247 2.1E−08 4.1E−05

0.5 0.05 0.000500101 0.000500078 0.000500078 2.3E−08 4.5E−05

0.10 0.000500113 0.000500075 0.000500080 3.3E−08 6.6E−05

1.00 0.000500338 0.000500276 0.000500281 5.7E−08 1.1E−04

0.9 0.05 0.000500172 0.000500161 0.000500163 8.3E−09 1.7E−05

0.10 0.000500184 0.000500169 0.000500172 1.2E−08 2.4E−05

1.00 0.000500409 0.000500386 0.000500388 2.1E−08 4.1E−05

Table 4 AEs and REs for
Example 3 with various values of
x, t when ε � 1, J � 3, α � 1,
β � 1, γ � 0.001 and δ � 1

x t Exact CFD6 [7] Present AEs REs

0.1 0.05 0.000500019 0.000500011 0.000500013 6.2E−09 1.2E−05

0.10 0.000500025 0.000500014 0.000500016 9.1E−09 1.8E−05

1.00 0.000500137 0.000500121 0.000500122 1.6E−08 3.1E−05

0.5 0.05 0.000500069 0.000500051 0.000500052 1.7E−08 3.4E−05

0.10 0.000500075 0.000500046 0.000500050 2.5E−08 5.0E−05

1.00 0.000500187 0.000500141 0.000500144 4.3E−08 8.6E−05

0.9 0.05 0.000500119 0.000500111 0.000500113 6.2E−09 1.2E−05

0.10 0.000500125 0.000500114 0.000500116 9.1E−09 1.8E−05

1.00 0.000500237 0.000500221 0.000500222 1.6E−08 3.1E−05

Table 5 AEs for Example 3 with
various values of x, t, J when
ε � 1, α � 1, β � 1, γ � 0.001
and δ � 1

x t AEs (J � 2) AEs (J � 3) AEs (J � 4)

0.1 0.05 6.3E−09 6.2E−09 6.6E−9

0.10 9.1E−09 9.1E−09 9.2E−9

1.00 1.6E−08 1.6E−08 1.6E−8

0.5 0.05 1.7E−08 1.7E−08 1.5E−8

0.10 2.5E−08 2.5E−08 2.3E−8

1.00 4.3E−08 4.3E−08 4.2E−8

0.9 0.05 6.3E−09 6.2E−09 6.6E−9

0.10 9.1E−09 9.1E−09 9.2E−9

1.00 1.6E−08 1.6E−08 1.5E−8

Table 6 REs for Example 3 with
various values of x, t, J when
ε � 1, α � 1, β � 1, γ � 0.001
and δ � 1

x t REs (J � 2) REs (J � 3) REs (J � 4)

0.1 0.05 1.3E−05 1.2E−05 1.3E−5

0.10 1.8E−05 1.8E−05 1.8E−5

1.00 3.1E−05 3.1E−05 3.1E−5

0.5 0.05 3.4E−05 3.4E−05 3.0E−5

0.10 5.0E−05 5.0E−05 4.5E−5

1.00 8.7E−05 8.6E−05 8.5E−5

0.9 0.05 1.3E−05 1.2E−05 1.3E−5

0.10 1.8E−05 1.8E−05 1.8E−5

1.00 3.1E−05 3.1E−05 3.1E−5

5 Conclusions and recommendations

This article has explored the utility of wavelet theory based on multi-resolution properties in capturing the behaviour of singularly
perturbative processes represented by the SPGBHE. Thus, exploiting the multi-resolution properties of wavelets, the steep behaviour
of the model equation has also been observed more clearly. In this context, quite accurate numerical behaviour of the model has
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been held back even for relatively high Reynolds numbers and at severe nonlinearities. This has been achieved by using relatively
large time steps at considerably low-resolution levels. For future research, other wavelet families may deserve to be put in use to
produce the behaviour of various singularly perturbed nonlinear processes.
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