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Abstract Graph theory provides a strong framework for evaluating and comprehending atom and molecule connections and interac-
tions. Chemical compounds are represented as graphs with edges and vertices. Topological indices have a wide range of applications
in the world of research. Topological indices are used for the prediction of chemical compound’s properties (boiling point, strain
energy, distortion, and stability). The calculation of various indices and polynomials for a molecular graph of a super lattice demon-
strates the utilization of graph theory. In the characterization and analysis of molecular structures, including based on degrees, fifth
M-Zagreb indices, fifth hyper-M-Zagreb indices, fifth M2-Zagreb polynomials, fifth M1-Zagreb polynomials, and fifth M1-Zagreb
polynomials in general.

1 Introduction

Currently, graph theory seeks to advance and apply several contemporary scientific hypotheses in various branches of chemistry.
Typically, nodes and edges make up a graph [8]. A graph consists of vertices (also known as nodes) and edges, which are the lines
or arcs that connect any two or more vertices. T can be used to mathematically depict a graph. Assuming that the basic connected
graph T=(V , E) is given, V shows nodes or points in the graph. Each vertex is typically labeled with a unique identifier or value, and
E shows the connections or relationships between vertices in the graph. An edge connects two vertices and can be either directed
(with a specific direction) or undirected (without any direction). The quantity of elements in V and the quantity of elements in E,
respectively, determine the order and size of T [9]. The graph is finished, if all distinct pairs of vertices in T are in close proximity.
There are no isolated vertices, loops, or multiple edges in any of the finite, undirected graphs that are being considered. The vertex
degree in a graph (T ) refers to the count of directly connected vertices to a specific vertex or V (T ). Polynomials, matrices, and
integers can all be used to represent a graph.

Zhang et. al [10] computed the topological indices of generalized molecular graphs and products of chemical graphs. Shao et.al
[11] computed Zagreb indices for nanotubes. Gao et.al [12] provided the characterization of carbon graphite. Zhang et. al [13, 14]
discussed the physical analysis of heat for the formation and entropy of ceria oxide. Zhang et. al [15, 16] provides an analysis of
different molecular structures using topological indices. Liu et.al [27] discuss the smart grid graphs for topological analysis. Lu et.al
[28] provided the details about bipolar cubic fuzzy graphs and its chemical applications. Ma et.al [29] provided the classification of
integrating knowledge graphs with topological indices. Wu et.al [34] analyzed the application of graph theory teaching method in
ideological and political education.

Topological indices are used in chemical graph theory to analyze the molecular topological qualities of molecules. The computation
of topological indices in the domain of chemical research enables the examination of the molecular structure’s impact on the associated
chemical, pharmacological, and biological characteristics of pharmaceutical. By analyzing topological indices, researchers can gain
insights into the relationships between molecular topology and various properties and behaviors of pharmaceutical compounds [25].
The QSAR/QSPR research involved the integration of physiochemical characteristics and topological indices, such as the hyper-
Zagreb index (which is calculated by summing the square of the vertex degree within the graph), the first multiple Zagreb index
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(the molecular graph’s vertex pairs are multiplied together, and their degrees are summed to compute it), and the second multiple
Zagreb index (which is computed by summing the squares of the multiplication of the degrees of each pair of adjacent vertices in
the graph results in the product of their degrees). These indices were utilized to analyze the molecular structures of the compounds
being studied [26].

2 Motivation and interest of researchers

Topological indices are numerical descriptors that offer information about a molecule’s structure and behavior. Topological indices
based on sums of vertex degrees in a molecular network, in particular, are determined. Here are some reasons why you should use
sum degree-based topological indices:

1. Molecular structure–property relationships: Topological indices, which predict the characteristics and activities of molecules
based on their structure, have been widely employed in chemoinformatics and drug development. Sum degree-based topological
indices can give insights into molecular attributes such as boiling point, solubility, and biological activity by assessing the connectivity
and degree distribution of atoms in a molecule.

2. Prediction of stereoselectivity and reactivity: The spatial arrangement of atoms in a molecule, particularly in chiral compounds,
is critical in determining biological activity and reactivity. Topological indices based on sum degrees can capture a molecule’s
symmetry and spatial information, making them valuable for forecasting reaction stereoselectivity.

This article discusses some established and recently developed degree-based topological indices [4, 17]. The graph invariants
now known as Zagreb indices were the first vertex-degree-based structure identifiers [18, 19]. A chemical structure called a graph,
denoted as T , is made up of a collection of vertices (V ) and a set of edges (E). The set of vertices includes all the nodes or points in
the graph, and the set of edges includes all the connections or links between the vertices. The quantity of edges at a vertex determines
its degree of incidence on it (denoted by degv). The collection of all vertices that are adjacent to v is known as the open neighborhood
N(v) vertex constructed the degree-based indices [2, 22]. The degree sum of a vertex’s neighbors is represented by the symbol ST (v),
this is the total of all degrees of a vertex’s neighbors[30].

3 Some features of superlattice structures

In solid-state physics and materials science, a superlattice is a specialized structure composed of alternating layers of two or more
different materials having distinct characteristics and crystal structures. Typically, these layered structures are created utilizing
sophisticated growth methods such as molecular beam epitaxy or chemical vapor deposition.

Superlattices have unique and controllable features not seen in the basic materials. Researchers can create and regulate a wide
range of physical phenomena by altering the thickness, content, and arrangement of the layers, making these structures very appealing
for a variety of technological applications. The confinement and interaction of charge carriers, photons, or phonons inside the layered
structure is the basic concept of a superlattice. This confinement causes quantum confinement effects, in which the characteristics
of particles are altered as a result of their confinement at nanoscale dimensions.

Superlattices have found use in a variety of sectors, including electronics, optoelectronics, thermoelectrics, quantum computers,
and photovoltaics. They have been utilized to improve electronic devices. For more details see Fig. 1.

Vertex sum degrees that are close to a vertex u is known as ST (u) according to Graovac et al [21]. In other words, the sum
of all the degrees of the vertices in the graph T that are directly related to vertex u is known as ST (u). Inspired by the Graovac
indices, V. R. Kulli [23, 24] introduced the general fifth M-Zagreb indices. For a molecular graph, these indices were created as
polynomials. In QSAR/QSPR research, the fifth M-Zagreb indices, a particular kind of topological index, are frequently employed
to examine the molecular structure of a chemical. These indices have shown their capacity to predict a number of physicochemical

Fig. 1 Superlattice structure
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properties of molecules, including surface area, boiling points, and melting points. They are created by computing the total of all of
the chemical network’s vertices’ degrees [1], The fifth M-Zagreb index (MZ5) is a graph-theoretic topological index that describes
the degree of branching of a molecule. It is a modification of the original Zagreb index, which sums the degrees of all vertices
in a molecule. Quantitative structure–property relationship (QSPR) models have also been created using it to predict a number of
molecular physical and chemical properties [5]. The following is a description of these indices.

M1G5(T ) �
∑

uvεE(T )

(§T (u) + §T (v)), (1)

M2G5(T ) �
∑

uvεE(T )

(§T (u)§T (v)). (2)

V. R. Kulli created the general fifth M-Zagreb indices and fifth hyper-M-Zagreb indices in reference to the aforementioned indices.
Here is a description of them:

Ma
1 G5(T ) �

∑

uvεE(T )

(§T (u) + §T (v))a , (3)

Ma
2 G5(T ) �

∑

uvεE(T )

(§T (u)§T (v))a , (4)

HM1G5(T ) �
∑

uvεE(T )

(§T (u) + §T (v))2, (5)

HM2G5(T ) �
∑

uvεE(T )

(§T (u)§T (v))2. (6)

Furthermore, they introduced a revised version of the Zagreb index, that is alternatively referred to as the third Zagreb index or the
fifth M3-Zagreb index,

M3G5(T ) �
∑

uvεE(T )

|§T (u) − §T (v)|. (7)

Corresponding the above indices, they defined the General fifth M1-Zagreb polynomial and the general fifth M2-Zagreb polynomial
of a molecular graph T .

Ma
1 T5(T , z) �

∑

uvεE(T )

z(§T (u)+§T (v))a , (8)

Ma
2 G5(T , z) �

∑

uvεE(T )

z(§T (u)§T (v))a . (9)

The fifth M1-Zagreb polynomial and the fifth M2-Zagreb polynomial of a graph T are defined

M1G5(T , z) �
∑

uvεE(T )

z(§T (u)+§T (v)), (10)

M2G5(T , z) �
∑

uvεE(T )

z(§T (u)§T (v)). (11)

The fifth hyper-M1-Zagreb polynomial and the fifth hyper-M2-Zagreb polynomial of a graph T are defined

M1G5(T , z) �
∑

uvεE(T )

z(§T (u)+§T (v))2
, (12)

M2G5(T , z) �
∑

uvεE(T )

z(§T (u)§T (v))2
. (13)

References provide additional resources and literature pertaining to the study of topological indices [3, 6, 7, 20, 32].
In Fig. 2, we have presented the bibliometric analysis of the fifth Zagreb M-polynomial keywords in different manners. In this

analysis, it can be seen easily that fifth Zagreb M-polynomial keywords are mostly discuss in different forms.
In Fig. 3, we have presented the bibliometric analysis of the fifth Zagreb M-polynomial by different authors in world.
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Fig. 2 Bibliometric value of fifth Zagreb M-polynomial with respect to other topological indices

4 Main results

An arrangement of alternating layers of several materials is known as a superlattice. Phase-change memory technology employs
a material known as Ge-Sb-Te superlattice. It consists of alternating layers of germanium (Ge), antimony (Sb), and tellurium (Te)
atoms [31]. The usual superlattice is quite tiny, and these layers are commonly measured in nanometers. These structures are utilized
in the development of novel semiconductor forms that display characteristics distinct from those of the constituent materials. The
arrangement of atoms within the Ge-Sb-Te superlattice at the molecular level can be described as a series of crystalline layers, with
each layer composed of a repeating pattern of atoms[33]. The layers are arranged in a way that creates a specific atomic arrangement
that allows for rapid changes in electrical conductivity. Superlattice’s composition have 9n + 3 vertices and 13n edges see Table 1.

Theorem 4.1 Consider the superlattice structure, M1G5(T ) of fifth M-Zagreb index given a molecular graph, that is equivalent to:

M1G5(T ) � 258n − 108.

Proof Let T be the superlattice structure. From Eq. (1),

M1G5(T ) �
∑

uvεE(T )

(§T (u) + §T (v)).

Using the edge partition from Table 1

� 2(9) + 2(10) + 2(12) + (2n − 2)(13) + 8(15) + 2(19) + 2(18)

+ (2n + 2)(21) + (n − 2)(12) + (n − 2)(22) + (6n − 12)(23) + (n − 2)(18),

we have got, by making some calculations

=⇒ M1G5(T ) � 258n − 108.

�
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Fig. 3 Bibliometric analysis of M-polynomials by different authors

Theorem 4.2 The Superlattice structure, M2G5(T ) corresponds to the fifth M-Zagreb index polynomial for a given graph

M2G5(T ) � 1317n − 990.

Proof Let T be the superlattice structure. Eq. (2) can be applied using this partition to

M2G5(T ) �
∑

uvεE(T )

(§T (u)§T (v)),

Applying edge partition of Table 1

� 2(18) + 2(21) + 2(36) + (2n − 2)(42) + 8(54) + 2(84) + 2(81)

+ (2n + 2)(108) + (n − 2)(27) + (n − 2)(121) + (6n − 12)(132) + (n − 2)(77),

we have got, by making some calculations

=⇒ M2G5(T ) � 1317n − 990.

�

Theorem 4.3 Consider the Superlattice structure, Ma
1 G5(T ) of fifth M-Zagreb index, polynomial for a structural graph, that is

equal to:

Ma
1 G5(T ) � 2(9)a + 2(10)a + 2(12)a + (2n − 2)(13)a + 8(15)a

+ 2(19)a + 2(18)a + (2n + 2)(21)a + (n − 2)(12)a

+ (n − 2)(22)a + (6n − 12)(23)a + (n − 2)(18)a

.
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Table 1 Edge vertex degree based
on superlattices

(§T (u) : §T (v)) Frequencies (§T (u) : §T (v)) Frequencies

(3,6) 2 (9,9) 2

(3,7) 2 (9,12) 2n + 2

(6,6) 2 (3,9) n − 2

(6,7) 2n − 2 (11,11) n − 2

(6,9) 8 (11,12) 6n − 12

(7,12) 2 (11,7) n − 2

Proof Let T be the Superlattice structure. From Eq. (3),

Ma
1 G5(T ) �

∑

uvεE(T )

(§T (u) + §T (v))a ,

By implementing an edge partition on Table 1.

� 2(3 + 6)a + 2(3 + 7)a + (2)(6 + 6)a + (2n − 2)(6 + 7)a + 8(6 + 9)a

+ 2(7 + 12)a + 2(9 + 9)a + (2n + 2)(9 + 12)a + (n − 2)(3 + 9)a

+ (n − 2)(11 + 11)a + (6n − 12)(11 + 12)a + (n − 2)(11 + 7)a ,

we have got, by making some calculations

=⇒ Ma
1 G5(T ) � 2(9)a + 2(10)a + 2(12)a + (2n − 2)(13)a + 8(15)a

+ 2(19)a + 2(18)a + (2n + 2)(21)a + (n − 2)(12)a

+ (n − 2)(22)a + (6n − 12)(23)a + (n − 2)(18)a

.

�

Theorem 4.4 Consider the Superlattice structure Ma
2 G5(T ) of fifth M-Zagreb index as polynomial for a molecular graph, that is

equal to:

Ma
2 G5(T ) � 2(18)a + 2(21)a + 2(36)a + (2n − 2)(42)a + 8(54)a

+ 2(84)a + 2(81)a + (2n + 2)(108)a + (n − 2)(27)a

+ (n − 2)(121)a + (6n − 12)(132)a + (n − 2)(77)a

.

Proof Let T be the Superlattice structure. In Table 1, there is an frequency of T . From Eq. (4),

Ma
2 G5(T ) �

∑

uvεE(T )

(§T (u)§T (v))a ,

Through the utilization of edge partitioning with respect to Table 1

� 2(3 × 6)a + 2(3 × 7)a + (2)(6 × 6)a + (2n − 2)(6 × 7)a + 8(6 × 9)a

+ 2(7 × 12)a + 2(9 × 9)a + (2n + 2)(9 × 12)a + (n − 2)(3 × 9)a

+ (n − 2)(11 × 11)a + (6n − 12)(11 × 12)a + (n − 2)(11 × 7)a ,

we have got, by making some calculations

=⇒ Ma
2 G5(T ) � 2(18)a + 2(21)a + 2(36)a + (2n − 2)(42)a + 8(54)a

+ 2(84)a + 2(81)a + (2n + 2)(108)a + (n − 2)(27)a

+ (n − 2)(121)a + (6n − 12)(132)a + (n − 2)(77)a

.

�

Theorem 4.5 Consider the Superlattice structure HM1G5(T ) of fifth M-Zagreb index as polynomial for a chemical graph, that is
equal to:

HM1G5(T ) � 5346n − 3888.
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Proof Let T be the Superlattice structure. From Eq. (5),

HM1G5(T ) �
∑

uvεE(T )

(§T (u) + §T (v))2,

Through the use of Frequency as a means of partitioning table 1

� 2(3 + 6)2 + 2(3 + 7)2 + (2)(6 + 6)2 + (2n − 2)(6 + 7)2 + 8(6 + 9)2

+ 2(7 + 12)2 + 2(9 + 9)2 + (2n + 2)(9 + 12)2 + (n − 2)(3 + 9)2

+ (n − 2)(11 + 11)2 + (6n − 12)(11 + 12)2 + (n − 2)(11 + 7)2,

we have got, by making some calculations

=⇒ HM1G5(T ) � 5346n − 3888.

�

Theorem 4.6 Consider the Superlattice structure , HM2G5(T ) of fifth M-Zagreb index, polynomial for a structural formula of
graph is

HM2G5(T ) � 152699n − 177202.

Proof Let T be the Superlattice structure. From Eq. (6),

HM2G5(T ) �
∑

uvεE(T )

(§T (u)§T (v))2,

By employing an edge partitioning technique on Table 1

� 2(3 × 6)2 + 2(3 × 7)2 + (2)(6 × 6)2 + (2n − 2)(6 × 7)2 + 8(6 × 9)2

+ 2(7 × 12)2 + 2(9 × 9)2 + (2n + 2)(9 × 12)2 + (n − 2)(3 × 9)2

+ (n − 2)(11 × 11)2 + (6n − 12)(11 × 12)2 + (n − 2)(11 × 7)2

we have got, by making some calculations

=⇒ HM2G5(T ) � 152699n − 177202.

�

Theorem 4.7 Consider the Superlattice structure, M3G5(T ) of fifth M-Zagreb index as polynomial for a molecular graph, that is
equal to:

M3G5(T ) � 21n + 46.

Proof Let T be the Superlattice structure. By Eq. (7),

M3G5(T ) �
∑

uvεE(T )

|§T (u) − §T (v)|,

From Table 1

� 2|3 − 6|+2|3 − 7|+2|6 − 6|+(2n − 2)|6 − 7|+8|6 − 9|+2|7 − 12|
+ 2|9 − 9|+(2n + 2)|9 − 12|+(n − 2)|3 − 9|+(n − 2)|11 − 11|
+ (6n − 12)|11 − 12|+(n − 2)|11 − 7|,

we have got, by making some calculations

=⇒ M3G5(T ) � 21n + 46.

�

Theorem 4.8 Consider the Superlattice structure , Ma
1 G5(T , z) of fifth M-Zagreb index as polynomial, that is equal to:

Ma
1 G5(T , z) � 2z(9)a + 2z(10)a + 2z(12)a + (2n − 2)z(13)a + 8z(15)a

+ 2z(19)a + 2z(18)a + (2n + 2)z(21)a + (n − 2)z(12)a

+ (n − 2)z(22)a + (6n − 12)z(23)a + (n − 2)z(18)a

.
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Proof Let T be the Superlattice structure. Using Eq. (8),

Ma
1 G5(T , z) �

∑

uvεE(T )

z(§T (u)+§T (v))a .

By implementing an edge-based partitioning strategy for Table 1

� 2z(3+6)a + 2z(3+7)a + 2z(6+6)a + (2n − 2)z(6+7)a + 8z(6+9)a

+ 2z(7+12)a + 2z(9+9)a + (2n + 2)z(9+12)a + (n − 2)z(3+9)a

+ (n − 2)z(11+11)a + (6n − 12)z(11+12)a + (n − 2)z(11+7)a

.

we have got, by making some calculations

=⇒ Ma
1 G5(T , z) � 2z(9)a + 2z(10)a + 2z(12)a + (2n − 2)z(13)a + 8z(15)a

+ 2z(19)a + 2z(18)a + (2n + 2)z(21)a + (n − 2)z(12)a

+ (n − 2)z(22)a + (6n − 12)z(23)a + (n − 2)z(18)a

.

�

Theorem 4.9 Consider the Superlattice structure , Ma
2 G5(T , z) of fifth M-Zagreb index, polynomial for a structural formula of

given graph, that is equal to [24]:

Ma
2 G5(T , z) � 2z(18)a + 2z(21)a + 2z(36)a + (2n − 2)z(42)a + 8z(54)a

+ 2z(84)a + 2z(81)a + (2n + 2)z(108)a + (n − 2)z(27)a

+ (n − 2)z(121)a + (6n − 12)z(132)a + (n − 2)z(77)a

.

Proof Let T be the Superlattice structure. From Eq. (9),

Ma
2 G5(T , z) �

∑

uvεE(T )

z(§T (u)§T (v))a .

Applying edge partition from Table 1

� 2z(3×6)a + 2z(3×7)a + 2z(6×6)a + (2n − 2)z(6×7)a + 8z(6×9)a

+ 2z(7×12)a + 2z(9×9)a + (2n + 2)z(9×12)a + (n − 2)z(3×9)a

+ (n − 2)z(11×11)a + (6n − 12)z(11×12)a + (n − 2)z(11×7)a

.

we have got, by making some calculations

=⇒ Ma
2 G5(T , z) � 2z(18)a + 2z(21)a + 2z(36)a + (2n − 2)z(42)a + 8z(54)a

+ 2z(84)a + 2z(81)a + (2n + 2)z(108)a + (n − 2)z(27)a

+ (n − 2)z(121)a + (6n − 12)z(132)a + (n − 2)z(77)a

.

�

Theorem 4.10 Consider the Superlattice structure , M1G5(T , z) of fifth M-Zagreb index as polynomial for given graph, equal to:

M1G5(T , z) � 2z(9) + 2z(10) + 2z(12) + (2n − 2)z(13) + 8z(15)

+ 2z(19) + 2z(18) + (2n + 2)z(21) + (n − 2)z(12)

+ (n − 2)z(22) + (6n − 12)z(23) + (n − 2)z(18)

.
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Proof Let T be the Superlattice structure. By Eq. (10),

M1G5(T , z) �
∑

uvεE(T )

z§T (u)+§T (v).

From Edge segmentation of T Table 1

� 2z(3+6) + 2z(3+7) + 2z(6+6) + (2n − 2)z(6+7) + 8z(6+9)

+ 2z(7+12) + 2z(9+9) + (2n + 2)z(9+12) + (n − 2)z(3+9)

+ (n − 2)z(11+11) + (6n − 12)z(11+12) + (n − 2)z(11+7)

.

we have got, by making some calculations

=⇒ M1G5(T , z) � 2z(9) + 2z(10) + 2z(12) + (2n − 2)z(13) + 8z(15)

+ 2z(19) + 2z(18) + (2n + 2)z(21) + (n − 2)z(12)

+ (n − 2)z(22) + (6n − 12)z(23) + (n − 2)z(18)

.

�

Theorem 4.11 Consider the Superlattice structure, M2G5(T , z) of fifth M-Zagreb index polynomial for a chemical graph, that is
equal to:

M2G5(T , z) � 2z(18) + 2z(21) + 2z(36) + (2n − 2)z(42) + 8z(54)

+ 2z(84) + 2z(81) + (2n + 2)z(108) + (n − 2)z(27)

+ (n − 2)z(121) + (6n − 12)z(132) + (n − 2)z(77)

.

Proof Let T be the Superlattice structure. Through Eq. (11),

M2G5(T , z) �
∑

uvεE(T )

z§T (u)§T (v).

By use of Table 1

� 2z(3×6) + 2z(3×7) + 2z(6×6) + (2n − 2)z(6×7) + 8z(6×9)

+ 2z(7×12) + 2z(9×9) + (2n + 2)z(9×12) + (n − 2)z(3×9)

+ (n − 2)z(11×11) + (6n − 12)z(11×12) + (n − 2)z(11×7)

.

we have got, by making some calculations

=⇒ M2G5(T , z) � 2z(18) + 2z(21) + 2z(36) + (2n − 2)z(42) + 8z(54)

+ 2z(84) + 2z(81) + (2n + 2)z(108) + (n − 2)z(27)

+ (n − 2)z(121) + (6n − 12)z(132) + (n − 2)z(77)

.

�

Theorem 4.12 Consider the Superlattice structure, M1G5(T , z) of fifth M-Zagreb index as polynomial for a chemical graph, that
is equal to:

M1G5(T , z) � 2z(81) + 2z(100) + 2z(144) + (2n − 2)z(169) + 8z(225)

+ 2z(361) + 2z(324) + (2n + 2)z(441) + (n − 2)z(144)

+ (n − 2)z(484) + (6n − 12)z(529) + (n − 2)z(324)

.
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Proof Let T be the Superlattice structure. From Eq. (12),

M1G5(T , z) �
∑

uvεE(T )

z(§T (u)+§T (v))2
.

By applying the concept of edge frequency to Table 1.

� 2z(3+6)2
+ 2z(3+7)2

+ 2z(6+6)2
+ (2n − 2)z(6+7)2

+ 8z(6+9)2

+ 2z(7+12)2
+ 2z(9+9)2

+ (2n + 2)z(9+12)2
+ (n − 2)z(3+9)2

+ (n − 2)z(11+11)2
+ (6n − 12)z(11+12)2

+ (n − 2)z(11+7)2

.

we have got, by making some calculations

=⇒ M1G5(T , z) � 2z(81) + 2z(100) + 2z(144) + (2n − 2)z(169) + 8z(225)

+ 2z(361) + 2z(324) + (2n + 2)z(441) + (n − 2)z(144)

+ (n − 2)z(484) + (6n − 12)z(529) + (n − 2)z(324)

.

�

Theorem 4.13 Consider the Superlattice structure, M2G5(T , z) of fifth M-Zagreb index polynomial for a molecular graph, which
is equal to:

M2G5(T , z) � 2z(324) + 2z(441) + 2z(1296) + (2n − 2)z(1764) + 8z(2916)

+ 2z(7056) + 2z(6561) + (2n + 2)z(11664) + (n − 2)z(729)

+ (n − 2)z(14641) + (6n − 12)z(17424) + (n − 2)z(5929)

.

Proof Let T be the Superlattice structure. From Eq. (13),

M2G5(T , z) �
∑

uvεE(T )

z(§T (u)§T (v))2
.

Through Table 1.

� 2z(3×6)2
+ 2z(3×7)2

+ 2z(6×6)2
+ (2n − 2)z(6×7)2

+ 8z(6×9)2

+ 2z(7×12)2
+ 2z(9×9)2

+ (2n + 2)z(9×12)2
+ (n − 2)z(3×9)2

+ (n − 2)z(11×11)2
+ (6n − 12)z(11×12)2

+ (n − 2)z(11×7)2

.

we have got, by making some calculations

=⇒ M2G5(T , z) � 2z(324) + 2z(441) + 2z(1296) + (2n − 2)z(1764) + 8z(2916)+

2z(7056) + 2z(6561) + (2n + 2)z(11664) + (n − 2)z(729)+

(n − 2)z(14641) + (6n − 12)z(17424) + (n − 2)z(5929)

.

�

The numerical and graphical representation if above computed results are depicted in Table 2 and Fig. 4, respectively.
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Table 2 The Fifth Zagreb Indices,
both general and degree-based of
Superlattice Network forn � 1 to
10 with comparison of numbers

n M1G5(T) M2G5(T) M3G5(T) HM2G5(T) HM1G5(T)

1 150 327 67 1458 − 24503

2 408 1644 88 6804 128196

3 666 2961 109 12150 280895

4 924 4278 130 17496 433594

5 1182 5595 151 22842 586293

6 1440 6912 172 28188 738992

7 1698 8229 193 33534 891691

8 1956 9546 214 38880 1044390

9 2214 10863 235 44226 1197089

10 2472 12180 256 49572 1349788

Fig. 4 Numerical values of indices

5 Conclusion

In this paper, the analysis of superlattice structure with the help of fifth M-Zagreb polynomials and fifth M-Zagreb indices provides
a deeper understanding of the structural and chemical and physical properties i. e such as boiling and melting points, refractive
index, and dielectric constant of the superlattice. The fifth M-Zagreb polynomials and indices provide a quantitative measure of the
degree of branching of the molecules in the superlattice. Using the fifth M-Zagreb polynomials and indices can provide valuable
insights into the degree of branching and topological properties of the material.
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