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Abstract We investigate the thermal effects on the baryon–quark phase transition (PT), utilizing the Maxwell construction (MC)
in an isentropic analysis. In order to model the structure and composition of hot hybrid neutron stars (HHNSs) with β-equilibrated
dense matter in the presence (absence) of trapped neutrinos, we use a statistical model which agrees with the Thomas–Fermi (TF)
approximation for the baryonic phase and the Nambu–Jona-Lasinio (NJL) model for the deconfined quark phase. Our results show
that neutrino trapping can provide a considerable softening of the equation of state EOS in the baryon–quark coexistence phase,
compared with the situation governed by untrapped (free-streaming) neutrinos. Having a weak dependence on the quark vector
coupling constant in the pure quark phase, the temperature meets its maximum value at the threshold baryonic density for the
occurrence of the baryon–quark PT. Based on the assumption of the conserved baryonic mass, all of our HHEOS lead to the stable
mass structures for a HHNS.

1 Introduction

A core-collapse supernova explosion is considered to be a unique natural laboratory in nuclear astrophysics so that one can test the
equation of state (EOS) of hot dense matter to probe the structure and characteristics of a newborn hot neutron star [1–4]. Under
such extreme conditions of density and temperature, the baryon–quark phase transition (PT) is expected to occur inside the stellar
core, leading to the formation of a hot hybrid neutron star (HHNS) [5–14]. Over the last few decades, the theoretical approaches
have been vastly developed in describing the EOS of baryonic [15–20] and quark [21–35] matter at different temperatures, while
playing an important role in simulation of heavy-ion collisions [36–39]. For baryonic matter, the mean-field (MF)-based models rely
on the phenomenological interactions whose parameters are fitted to the properties of the nuclear saturation point [40–49], while the
microscopic ones employ the interactions extracted from nucleon–nucleon scattering data [50–58]. Within the MF approximation,
the quark model of NJL can successfully illustrate different aspects of quantum chromo dynamics in both nonperturbative and
perturbative regimes [59–68]. In this study, we focus on an isentropic analysis of a HHNS, utilizing a statistical MF model for
baryonic matter, and the standard NJL model for quark matter to construct a hot hybrid EOS (HHEOS) via the Maxwell construction
(adopted as a limiting case of the finite-size effects with large values of the baryon–quark surface tension). Incorporating the
rearrangement effects by using the phase-space nucleon–nucleon interaction of Myers and Swiatecki (MS) [41, 69, 70], which is a
density-dependent inverse-momentum extension of the basic interaction given by Seyler and Blanchard [42, 71–73], we determine
the finite-temperature EOS of baryonic matter, based on a statistical approach that complies with the Thomas–Fermi approximation.
This baryonic formalism has shown its efficiency in studying various thermodynamic aspects of nuclear matter [49, 74, 75], modeling
a cold (hot) NS [76, 77] ([78–80]), and investigating the baryon–quark PT in a cold hybrid NS (CHNS) within the standard (local)
NJL EOS of quark matter [63, 64, 68] and its non-local extension [67]. Thus, such theoretical attempts can be developed to probe
the structure and composition of a HHNS. According to the comments mentioned above, we organize this manuscript as follows:
In Sec. 2, we present our statistical MF model for baryonic matter, and the finite-temperature EOS of the deconfined quark phase
within the standard NJL model. Sec. 3 is devoted to the discussion of our results obtained for HHNS matter in an isentropic picture
with the help of the MC construction. Finally, the summary and conclusions are given in Sec. 4.

a e-mail: ghazanfari@kashanu.ac.ir (corresponding author)

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjp/s13360-023-04611-z&domain=pdf
http://orcid.org/0000-0002-9341-4821
mailto:ghazanfari@kashanu.ac.ir


  970 Page 2 of 12 Eur. Phys. J. Plus         (2023) 138:970 

2 Formalism

In this section, we present the EOS of baryonic matter, using a statistical approach based on the TF approximation, in which the
state of each nucleon is determined by its momentum and position in the phase space. Moreover, the baryon–quark PT is illustrated
with the help of the MC by introducing the quark matter EOS of the standard NJL at finite temperatures.

2.1 Baryonic mode

By assuming that nucleons are in β-equilibrium with relativistic electrons and muons, our Yukawa-type nucleon–nucleon interaction,
given by Myers and Swiatecki [41, 69, 70], can be written as

V12 � −2Tbρ
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where g is assumed to be a Yukawa-type function in terms of the relative distance r12 for each pair of nucleons, and the mean density
ρ̄ is expressed as a function of the nucleon density at the corresponding position of the two-body nucleon–nucleon interactions in
phase space:
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Meanwhile, p12 is taken to be the relative momentum of the interacting particles. The adjustable parameters (a, α, β, γ , σ , ξ , ζ )
are fitted to the saturation properties of normal nuclear matter and the coefficients of the Weizsacher–Bethe semiempirical mass
formula as follows [69]:

a � 0.59294 fm, α � 1.94684, β � 0.15311, γ � 1.13672,

σ � 1.05, ξ � 0.27976, ζ � 0.55665. (3)

In this interaction, the normal nuclear matter radius r0 � 1.14 fm generates the saturation density ρ0 � ( 4
3πr3
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average nucleonic mass. According to this statistical model, the total nucleonic energy is given by
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by using the upper (lower) signs for the interaction between like (unlike) particles as

αl,u � 1

2
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2
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For the phase-space occupation number nb(p) of the bth nucleon, which minimizes the total thermodynamic potential ΩMS �
EMS − T

∑
b�n, p Sb −∑

b�n, p μbNb (with Sb and Nb being the associated entropy and particle number) at given temperature T
and chemical potential μb, we have [75]:

nb(p) � 1
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. (9)

The phase-space single-particle energy hb(p) � p2

2Bb
+ Ub(p) + m̄c2 is expressed in terms of the effective mass

Bb � m̄

1 + 2ρb
ρ0

βl +
2ρ

b
′

ρ0
βu

, (10)
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and the single-particle potential Ub(p). Finally, the nuclear EOS is obtained using the self-consistent relations between the density
ρb and the single-particle potential Ub(p) as follows:
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Employing the chemical potential of nucleons, and relativistic leptons including muons, electrons, and also trapped neutrinos, we
can determine the properties of charge-neutral dense matter under the β-equilibrium conditions:

μn0 − μp+ � μe− − μLe � μμ− − μLμ, (14)

ρp+ � ρe− + ρμ− . (15)

In the above, the electron (muon) lepton number chemical potential μLe(μ) distinguishes the neutrino-trapped case, where
μLe � μν0

e
(−μν̄0

μ
), from the neutrino-free one with μLe � 0 (μLμ � 0). The energy density of β-stable nuclear matter

e � eMS + eL + eγ includes the contributions from the nucleonic energy density eMS � EMS/V , the leptonic energy density
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(�c)3 obtained from the blackbody model [81–83]. Using the nucleonic and leptonic occupation
numbers, one can determine the entropy density in the presence of photons as:
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For the EOS of dense matter, one needs the free energy density f � e − T s to calculate the pressure according to

P �
∑

i�N ,L

(μiρi ) − f. (17)

2.2 Standard NJL model

We adopt the standard three-flavor NJL model, based on the following Lagrangian to derive the EOS of quark matter at finite
temperatures:
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In the above relation, q is the quark field, m0 � diag
(
m0
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)

denotes the current quark mass matrix, and the Gell-Mann
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2
3∞3×3. Here, Gs , K , and GV are the coupling
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constants of the scalar Kobayashi-Maskawa-’t Hooft, and vector interactions, respectively. Based on the MF approximation, the NJL
thermodynamic potential density ΩN J L , in which the regularization scheme is given by the ultraviolet cutoff parameter Λ, can be
written as

ΩN J L � −
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where the renormalized quark chemical potential μ̃q , and the dynamically generated quark mass Mq are found to be

μ̃q � μq − 4GV〈q†
qqq〉, (20)

Mq � mq − 4GS〈q̄qqq〉 + 2K 〈q̄q ′qq ′ 〉〈q̄q ′′qq ′′ 〉. (21)

In the so-called gap equation Eq. (21), (q , q ′, q ′′) stands for any permutation of (u, d, s) quarks. Pursuing the MF constraints
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For a neutral mixture of quarks and leptons, the β-equilibrium conditions can be read in terms of the baryonic chemical potential

μB � 2μd− + μu+
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In this work, we use the interaction parameters of the RKH set [60] mu+ =md− � 5.5 MeV,ms− � 140.7 MeV, Λ � 602.3 MeV,
Gs � 1.835

Λ2 , K � 12.36
Λ5 to perform the self-consistent calculations by considering the vector strength ratio ηV � GV/GS , adopted

as a free parameter because of the theoretical uncertainty. Despite lacking a stringent constraint on ηV, its value, which has a strong
impact on determining the critical point for the chiral phase transition, is estimated to lie in the range 0–1.1, as suggested by most
studies, including those on relativistic heavy ion collisions [84–87]. Consequently, the pressure of quark matter in β-equilibrium is
calculated by

P � PN J L + PL + Pγ , (30)

with

PN J L � Ω0
N J L − ΩN J L , (31)
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3
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In Eq. (31), Ω0
N J L ensures zero pressure in the vacuum. In addition, one can determine the free energy density f , and energy density

e by

f �
∑

k�Q,L

(μkρk) − P , (34)

e � T s + f , (35)

with the entropy density of β-stable quark matter s, given by

s �
∑
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−6

h3

{∫
d3 p1 [nq (p1)ln(nq (p1)) + (1 − nq (p1))ln(1 − nq (p1))]

}
+ sL + sγ . (36)

3 Results and discussion

This work aims to clarify the thermal effects on the baryon–quark PT in an isentropic analysis signified by the entropy per baryon
S � s

ρB
, according to the MC. We have employed the statistical approach, using the MS interaction for baryons, and the standard NJL

model for the deconfined quark phase to model the structure of HHNSs with β-equilibrated dense matter in the presence (absence) of
trapped neutrinos. When the finite-size effects are taken into account for a given temperature, the mixed-phase scenario approaches
the MC at sufficiently large values of the baryon–quark surface tension, which means both phases become close to being separately
charge-neutral with equal pressure and baryonic chemical potential, and therefore, a jump is induced in the thermodynamic quantities.
However, simulating HHNSs in an isentropic picture demands determining the thermodynamic quantities in the coexistence region
even if the MC is adopted [12]. Therefore, one can employ the baryonic volume fraction χ to linearly interpolate the mixed-phase
data at the constant entropy per baryon S in terms of the baryonic density ρB, according to

χs(BP) + (1 − χ)s(QP) � ρBS, (37)

χρ
(BP)
B + (1 − χ)ρ(QP)

B � ρB. (38)

Just after the core bounce of a proto-NS, which is a hot and lepton-rich newborn NS as a result of a supernova explosion, one can

assume the electron lepton number YLe � ρe− +ρ
ν0
e

ρB
is constant with the typical value YLe ∼ 0.4 [1, 2] across the stellar core, while the

electron lepton number YLμ � ρμ−−ρ
ν̄0
μ

ρB
vanishes. The diffusion of trapped neutrinos, taking place outwards from the stellar core,

gives rise to the deleponization (heating ) stage, characterized simultaneously by increasing the entropy per baryon, and decreasing
the lepton electron number. In this study, the core at the start (end) of this stage is considered to be made of neutrino-trapped
(neutrino-transparent) matter with YLe � 0.4 and S � 1 (μLe � 0 and S � 2).

Studying the PT from baryons to quarks requires extracting the EOS of each pure phase. For the occurrence of the baryon–quark
PT at a given temperature, the baryon and quark EOSs must intersect each other in the pressure-baryon chemical potential (P −μB)
plane. For this reason, P as a function of μB is shown in Fig. 1 for the neutrino-trapped matter and neutrino-free matter at various
temperatures. It is shown that all cases of neutrino-trapped (neutrino-free) matter lead to the baryon–quark PT. With increasing T ,
there is a tendency for the PT to occur at lower values of P and μB, while with rising the vector coupling strength ηV, the PT is
shifted to higher values of these quantities. In general, the PT is described in the neutrino-trapped case with smaller amounts of P
and μB.

In contrast to an isothermal PT under the MC, the baryonic chemical potential μB and pressure P are not taken to be constant in
the mixed-phase region for an isentropic Maxwell-like PT. Figures 2 and 3 shows the isentropic behavior of μB (P) as an increasing

Fig. 1 Pressure as a function of
baryonic chemical potential for
neutrino-trapped matter (left
panel) and neutrino-free matter
(right panel) at the temperatures
T � 10, 30 and 50 MeV,
employing the MS baryonic
interaction and the NJL quark
model with the vector strength
ratios ηV � 0, 0.4. The crossing
points of the baryonic and quark
EOSs denote the baryon–quark PT
under the MC
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Fig. 2 Baryonic chemical
potential as a function of baryonic
density for neutrino-trapped
matter (left panel) and
neutrino-free matter (right panel),
utilizing the MS baryonic
interaction and the NJL quark
model with the vector strength
ratios ηV � 0, 0.02, 0.4. The
mixed-phase regions are denoted
by MP

Fig. 3 Pressure as a function of
baryonic density for
neutrino-trapped matter (left
panel) and neutrino-free matter
(right panel), using the MS
baryonic interaction and the NJL
quark model with the vector
strength ratios ηV � 0, 0.02, 0.4.
The mixed-phase regions are
denoted by MP

function of baryonic density. As seen in this figure, the mixed-phase EOS for neutrino-trapped matter is significantly softer than the
one for neutrino-free matter. It should be noted that increasing ηV changes dramatically the mixed-phase characteristics, pushing the
onset of the PT to higher baryonic densities, and enlarging the width of the mixed phase. Compared with neutrino-trapped matter,
the width of the coexistence region is larger for neutrino-free matter, and the PT emerges at lower baryonic densities.

In order to understand the composition of HHNSs, the number fraction of bth baryon (lth lepton) ρb(l)
ρB

and qth quark ρq
3 ρB

are
presented in Figs. 4 and 5 for neutrino-trapped matter and neutrino-free matter, respectively. In the pure baryonic phase, the neutrons
constitute the most abundant particles, and their relative fraction remains nearly constant with increasing baryonic density. The
quark degrees of freedom, which grow dramatically in the mixed-phase region, give rise to a considerable decrease of the electron
and muon abundances due to the charge neutrality condition, as this influence is observed more considerably in neutrino-trapped
matter than in neutrino-free matter. In neutrino-trapped matter for each ηV value, the muon anti-neutrino abundance, especially at
higher baryonic densities, turns out to be almost negligible because of the constraint YLμ � 0, while the electron neutrino abundance
(besides the meaningful contribution of electrons) is large enough so that it becomes comparable with the quark fractions at high
baryonic densities. Unlike neutrino-trapped matter, muons are taken into in the composition of neutrino-transparent matter at the
whole baryonic density range.

The adiabatic sound speed has particular significance in checking the causality condition and hydrodynamic stability for dense
stellar matter. We display in Fig. 6 the squared ratio of sound speed to the light speed (vs/c)2 � (∂ P/∂ e)S against baryonic density,
as it is less than one for all of the HHEOSs. Unlike the pure baryon and quark phases, the mixed-phase region indicates that the
sound speed is a decreasing function of baryonic density. With an increase in ηV of each HHEOS, the sound speed reaches larger
values, especially in the pure baryon (quark) phase of neutrino-trapped (neutrino-free) matter. In addition, the sensitivity of the
sound speed to ηV becomes weaker for neutrino-free matter, as the baryonic density increases in the pure quark phase region.

The adiabatic index ΓS � e
P ( vs

c )2, which can characterize an isentropic EOS as P ∝ eΓS to give a measure of its stiffness, is
shown in Fig. 7 as a function of baryonic density for all of the HHEOSs. It can be seen that the larger ΓS values are calculated in
the pure quark region of neutrino-free matter, while the lower ones belong to the mixed-phase region of neutrino-trapped matter. In
addition, increasing ηV cannot significantly alter the adiabatic index range.

In this isentropic picture of HHNS matter, it is crucial to clarify the behavior of temperature as a function of baryonic density
(see Fig. 8). According to this figure, neutrino-trapped matter shows a slower change of the temperature with the baryonic density
than neutrino-free matter. As can be found, the outcome of rising the pressure with the baryonic density in the mixed-phase region
is dropping the temperature, since one can conclude from Fig. 1 that decreasing the temperature leads to increasing the mixed-phase
pressure, i.e.,

(
∂ P
∂ T

)
MP < 0. As a consequence, the temperature reaches its maximum value at the threshold baryonic density for
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Fig. 4 Number fraction of leptons,
baryons, and quarks as a function
of baryonic density for
neutrino-trapped matter, utilizing
the MS baryonic interaction and
the NJL quark model with the
vector strength ratios ηV � 0,
0.02, 0.4. The shaded areas
indicate the mixed-phase regions

the PT onset. It should be mentioned that the temperature in the pure quark region demonstrates a weak dependence on the vector
coupling ratio ηV.

The global structure of HHNS can be studied using the well-known hydrostatic equilibrium equations of Tolman–Oppen-
heimer–Volkoff (TOV) [88, 89], given by

dP(r )

dr
� −mG (r )e(r )

r2

[
1 + P(r )

e(r )

][
1 + 4πr3P(r )

mG (r )

]

1 − 2mG (r )
r

, (39)

dmG (r )

dr
� 4πr2e(r ), (40)

with P, e, mG being the pressure, energy density, and enclosed gravitational mass at the distance r from the star center. In addition,
one can employ simultaneously the TOV equations with the following relation to calculate the baryonic mass of a HHNS:

dmB(r )

dr
� 4πr2 ρBm̄√

1 − 2mG (r )
r

. (41)

Our HHEOSs, which constitute the basic inputs for Eqs. (39)–(41), are joined to the EOS of a cold solid crust given in Ref. [90]
([91]) for the inner (outer) crust. The output results for the gravitational and baryonic masses vs. the central baryonic density are
displayed in Fig. 9. It can be seen that the baryonic mass is always greater than the gravitational mass. The gravitational (baryonic)
mass of each case of HHNS matter is specified by a maximum value, which becomes larger as ηV increases. These maximum masses
are slightly affected by neutrino trapping. Moreover, a HHNS can be formed with higher values of the central baryonic density in
neutrino-trapped matter than in neutrino-free matter.

In Fig. 10, we show a roughly linear relation between the gravitational and baryonic masses. The acceptable ranges for a stable
mass structure of a HHNS can be understood via the maximum baryonic mass of a CHNS since the baryonic mass must be conserved
in the cooling process of a new-born NS. As a result, the mass structures for each ηV are found to be stable up to the maximum mass
structure because of not exceeding the baryonic mass of a CHNS, while adopting the pure baryonic EOS of MS as an input in the
TOV equations can lead to the unstable structures for neutrino-free matter (see Ref. [80]).

Our results for the mass-radius relation of a HHNS, compared with those obtained for a CHNS, are depicted in Fig. 11. In addition
to the larger values of the gravitational mass, smaller radii are allowed with strengthening the quark vector interaction. Within our
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Fig. 5 Same as Fig. 4 but for
neutrino-free matter

Fig. 6 Squared speed of sound (in
units of the speed of light) as a
function of baryonic density for
neutrino-trapped matter (left
panel) and neutrino-free matter
(right panel), employing the MS
baryonic interaction and the NJL
quark model with the vector
strength ratios ηV � 0, 0.02, 0.4

Fig. 7 Adiabatic index as a
function of baryonic density for
neutrino-trapped matter (left
panel) and neutrino-free matter
(right panel), using the MS
baryonic interaction and the NJL
quark model with the vector
strength ratios ηV � 0, 0.02, 0.4
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Fig. 8 Temperature as a function
of baryonic density for
neutrino-trapped matter (left
panel) and neutrino-free matter
(right panel), using the MS
baryonic interaction and the NJL
quark model with the vector
strength ratios ηV � 0, 0.02, 0.4.
The mixed-phase regions are
denoted by MP. The plus signs
indicate the central temperature
and density of a HHNS at the
maximum mass configuration

Fig. 9 Gravitational (baryonic)
mass (in units of the solar mass
M�) as a function of central
baryonic density for
neutrino-trapped matter (left
panel) and neutrino-free matter
(right panel), utilizing the MS
baryonic interaction and the NJL
quark model with the vector
strength ratios ηV � 0, 0.02, 0.4.
The maximum masses are denoted
by the filled circles

Fig. 10 Gravitational mass (in
units of the solar mass M�) as a
function of baryonic mass (in
units of the solar mass M�) for
neutrino-trapped matter (left
panel) and neutrino-free matter
(right panel), utilizing the MS
baryonic interaction and the NJL
quark model with the vector
strength ratios ηV � 0, 0.2, 0.4.
The filled circles denote the
maximum mass structures, and the
dashed vertical lines indicate the
maximum baryonic mass of a
CHNS, corresponding to
MB � 2.23, 2.35, 2.39 M� for
the quark vector strength ratios
ηV � 0, 0.02, 0.4, respectively

isentropic study, a HHNS can be described by the slightly smaller radii as a result of neutrino trapping. According to the present
approach, the gravitational constraints J0740+6620 and J0030 + 0451 are also fulfilled for a CHNS, which can be predicted by the
smaller radii. For the sake of completeness, Table 1 demonstrates the maximum mass properties of a HHNS for all HHOSs, as the
maximum gravitational masses are in the range 1.94−2.05 M� (1.90−2.06 M�) for neutrino-trapped (neutrino-free) matter. As
also indicated in Fig. 8, the neutrino trapping can lead to the appearance of the pure quark phase in the stellar core, when the vector
coupling ratio ηV approaches zero.

4 Summary and conclusion

In this work, we have paid the main attention to an isentropic analysis of thermal effects on the baryon–quark PT in neutrino-trapped
(neutrino-transparent) β-stable matter within the MC, adopting a statistical MF model which is consistent with the TF approximation
for the baryonic EOS, and the standard NJL model for the deconfined quark phase to model the structure and composition of a HHNS.
According to our results, the pressure and baryonic chemical potential are increasing functions of the density in the mixed-phase
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Fig. 11 Mass-radius diagrams of
neutrino-trapped matter at S � 1,
and neutrino-free matter at S � 2
for a HHNS and S � 0 for a
CHNS, utilizing the MS baryonic
interaction and the NJL quark
model with the vector strength
ratios ηV � 0, 0.02, 0.4. The
filled circles denote the maximum
mass structures. The observational
mass constraint from PSR
J0740+6620 [92], the gravitational
mass inferred for the light
component of [93], and the area of
the mass-radius limits deduced
from the NICER measurements of
PSR J0030+0451 [94, 95] are
displayed, while the region on the
top-left of this figure is excluded
by causality [96]

Table 1 Characteristics of a HHNS at the maximum mass configuration for the EOS of neutrino-trapped matter (the cases with S � 1) and neutrino-free

matter (the cases with S � 2), given by the mixed-phase baryonic density range ρ
(MP)
B , in terms of the central baryonic density ρ

(c)
B , the central energy

density e(c), the central pressure P(c), the gravitational (baryonic) mass MG (MB) (in units of the solar mass M�), the stellar radius R, and the central
temperature Tc , employing the MS baryonic interaction and the NJL quark model with the vector strength ratios ηV � 0, 0.02, 0.4

ρ
(MP)
B ρ

(c)
B e(c) P(c) MG MB R Tc

(fm−3) (fm−3) (MeV fm−3) (MeV fm−3) (M�) (M�) (km) (MeV)

S � 1

ηV � 0.0 0.75−1.05 1.07 1323.94 283.97 1.94 2.17 11.80 13.35

ηV � 0.2 0.88-1.31 1.16 1524.90 430.79 2.02 2.29 11.29 17.40

ηV � 0.4 1.02-1.53 1.14 1553.60 632.70 2.05 2.34 10.81 26.89

S � 2

ηV � 0.0 0.57-1.31 0.93 1137.35 246.64 1.90 2.14 12.33 42.84

ηV � 0.2 0.68-1.48 0.98 1237.82 350.37 2.00 2.29 11.88 54.46

ηV � 0.4 0.79-1.64 1.02 1323.94 464.37 2.06 2.37 11.50 68.25

The bold data indicate the emergence of a pure quark phase in the stellar core under the MC

zone, while the temperature shows a decreasing behavior. Meanwhile, trapped neutrinos make the mixed-phase EOS significantly
softer than free-streaming neutrinos do. Stiffening the HHEOS by strengthening the quark vector interaction has a strong effect on
the characteristics of the coexistence phase, delaying the onset of the PT to higher baryonic densities, and broadening the density
range of the mixed phase. We have also checked the causality condition in hot dense stellar matter by calculating the sound velocity
in units of the light velocity, which is always less than one for all of our HHEOSs. For each HHEOS, the temperature reaches its
maximum value at the threshold baryonic density for the PT onset. Moreover, the temperature demonstrates a weak dependence on
the vector coupling ratio ηV in the pure quark region. For the neutrino-trapped case, the pure quark phase can be allowed to occur
in the core of a HHNS, as the vector coupling ratio ηV is varied toward zero. The predicted mass structures for a HHNS are found
to be gravitationally stable because the maximum baryonic masses cannot exceed the maximum baryonic mass of a CHNS.
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