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Abstract Characteristics of localized wave and consequent theoretical models can be very precious in various applications in
earthquake engineering, seismology, geophysics etc. The present paper deals with the localized wave (leaky Rayleigh waves)
propagation through a transversely isotropic thermoelastic half-space overlaid by an anisotropic elastic layer of arbitrary thickness.
The Lord–Shulman theory of generalized thermoelastic model is adopted for the analysis of thermal wave propagation into the
medium. Helmholtz decomposition technique is considered and it is presumed that the layer and half-space are bonded perfectly to
each other. A discretised form of numerical computations are performed to analyze nature of the various field functions of the wave.

1 Introduction

Rayleigh waves have enormous importance in the field of Geo-mechanics and Physics. As the Rayleigh waves are two-dimensional,
their energy is not dissipated as rapidly as that of the three-dimensional P-wave and S-wave. Hence, this type of waves is the most
destructive in earthquake tremors and has a particular significance in seismology. In the study of shear horizontal Rayleigh waves
in seismograms, in 1911, Love [2] discovered a wave propagating at the free surface of a layer in perfect contact with a half space.
Later on, Stoneley studied about the occurrences of waves localized at the surface of discontinuity between two materials [31]. In
contrast with Love, Stoneley found that wave motion that is greatest at the surface of separation of the two media. Whereas, Love’s
observation was the disturbances confined to the free surface. These waves are also termed as the generalized Rayleigh waves.
Stoneley concluded about the existence of the of the localized waves that “we can assert that when the wave-velocities are not too
widely different for two media, a wave of Rayleigh type can exist at the interface” [32].

Stoneley wave is a type of surface wave which propagates along the surfaces possessing their fields confined to neighbouring
surfaces [7,8]. This wave is different in nature than other type of primary waves. It can be generated in piezo-electric transduction,
non-destructive testing to find the defects, electromagnetics, hydrodynamics and also in many other fields. The importance of the
localized wave to non-destructive detection of various materials’ surface flaws is of great interest in the current era. The dispersion
of localized wave and depth of penetration may be influenced deeply by the type of surfaces because of presence of various boundary
conditions.

In the last few decades, many researchers have been investigated the behaviour of elastic medium in presence of the thermal
effects. Thermoelasticity theories relate the nature of elastic materials with effect of non-uniform temperature, in general it presents
the generalization of theory of elasticity. In the thermoelastic model owing to Fourier, the classical thermoelasticity theory, heat
conduction law governed by a parabolic type partial differential equation which admit infinite speed of propagation of thermal
signals. This paradox of speed of propagation of thermal signals happened due to parabolic type heat conduction equation. Biot [26]
proposed coupled thermoelastic model with the incorporation of strain related term in Fourier’s law of heat conduction. This theory
signify the finite speed of propagation of elastic waves but attains infinite speed of thermal signals. In later, to surmount the paradox
of speed of propagation of thermal signals a generalization of thermoelasticity theories was introduced. The spectacular success of
this generalization is attaining of finite speed of propagation of thermal signals.

The generalized thermoelasticity theories posses hyperbolic type heat transport equation which predicts wave like thermal
signals propagate with finite speed. There are various types of model of generalized thermoelasticity which have been introduced
by various researchers, among those most acceptable models which are generally used, have been developed by Lord and Shulman
[21], Green and Lindsay [3], Green and Naghdi [4–6], Tzou [14,15]. The finite wave speed was verified under various kind of
conditions by Ignaczak and Ostoja-Starzewsk [24], Sherief and Dhaliwal [20], and Sherief [19]. A brief history regarding generalized
thermoelasticity is presented in the monographs given by Chandrasekharaiah [13], Ignaczak and Hetnarski [25].
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Thermal effects on transversely isotropic elastic half-space overlaid by a transversely isotropic elastic layer is a model finding
a large number of applications in seismology, geophysics etc. Measures of the mechanical properties of such layers supported by
transversely isotropic half-space plays a significant role in realizing the natures of these structures in applications. There are different
types of measurement methods among those, the method of guided wave is mostly used as it has non-destructive property and also
related to reduced cost, smaller inspection time and wider coverage. The Rayleigh wave is a type of guided wave which has versatility
and it is also a convenient tool. The frequency equation of Rayleigh wave without thermal effect was formulated by Haskell [27]
when both of half-space and layer are isotropic. Sotiropoulos [11] deduced the frequency equation taking both of the half-space
and layer orthotropic. Considering various cases, the frequency equation of Rayleigh wave in case of elastic half-spaces overlaid
by thin film, are derived by various author like steigmann and Ogden [12], Vinh and Linh [28], Pham and Vu [10]. Vinh et al [29]
deduced the secular equations of Rayleigh waves for the case of orthotropic elastic half-space overlaid by an orthotropic elastic
layer taking the compressible in-compressible cases into consideration. In the last decade several authors have works in numerous
occasion about Rayleigh wave propagation, among them we can mention, (Liu et al [16–18], Shaw and Othman [33]).

In the present model, thermoelastic responses of localized wave propagating in transversely isotropic half-space overlaid by a
layer, of arbitrary thickness, is investigated. To facilitate the thermal impact, one of the most accepted hyperbolic type thermoelastic
models due to Lord–Shulman is used. Numerical computations are made to analyse different characteristics of the wave like
attenuation coefficient, specific loss, phase velocity and frequency of wave. Numerical simulations are presented in figures and
observations are made for different cases. The investigations in the present work are worthwhile in real applications like earthquake
engineering, damage characterizations of materials, geophysics and seismology.

2 Statement of the problem

A transversely isotropic medium is a medium has a favored direction and is isotropic in the plane perpendicular to this direction.
Among crystalline media, all materials with a hexagonal crystal system belongs to this class: they obey elastically isotropic in the
plane perpendicular to the hexagonal axis.

A linear transversely isotropic medium is fully dependent by five elastic constants. For the definition of these constants, the elastic
moduli and coefficient of transverse contraction are used.

If the x1x2-plane is perpendicular to the favored direction of transversely isotropic medium in Cartesian coordinate system
(x1, x2, x3), the constitutive relations of the transversely isotropic materials are:

σ11 = c11u1,1 + c12u2,2 + c13u3,3 − β1T,

σ22 = c12u1,1 + c11u2,2 + c13u3,3 − β1T,

σ33 = c13

(
u1,1 + u2,2

)
+ c13u3,3 − β3T,

σ23 = c44

(
u2,3 + u3,2

)
,

σ31 = c44

(
u3,1 + u1,3

)
,

σ12 = c66

(
u1,2 + u2,1

)
,

(1)

where u1, u2, u3 are the components of displacements in x1, x2, x3 directions respectively; σi j represent the components of stress
tensor; ’T’ denotes the temperature increment. ci j and βi are elastic and thermal modules respectively. c66 = 1

2

(
c11 −c12

)
. ’Comma’

in the subscript denotes the derivative with respect to the spacial variable.
Here, we have considered a transversely isotropic elastic half-space x2 ≥ 0 overlaid by a transversely isotropic elastic layer under

a temperature field and with thickness h which occupy the domain −h ≤ x2 ≤ 0. The layer is assumed to be perfectly bonded to
the half-space. The surface x2 = −h is stress free and thermally insulated. The localized wave propagates along the interface of the
layer and half-space. Same symbols are used for the quantities pertaining to half-space and the layer but a bar is used if it belongs
to the layer (Fig. 1).

For the simplicity of the problem, we are interested in plane-strain problem parallel to x1x2-plane in which,

ui = ui (x1, x2, t), ūi = ūi (x1, x2, t), u3 = ū3 = 0

T1 = T1(x1, x2, t), T̄1 = T̄1(x1, x2, t); i = 1, 2.

In absence of body forces, the mechanical equilibrium equations for the layer are

σ̄11,1 + σ̄12,2 = ρ̄ ¨̄u1, σ̄12,1 + σ̄22,2 = ρ̄ ¨̄u2 (2)

123
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Fig. 1 Schematic diagram of the
problem

where σ̄i j are stress components and ρ̄ is material density of the layer. The stress–strain relations for transversely isotropic body
under thermal effect are given by

σ̄11 = c̄11ū1,1 + c̄12ū2,2 − β̄1T̄ ,

σ̄22 = c̄12ū1,1 + c̄11ū2,2 − β̄1T̄ ,

σ̄12 = 1

2
(c̄11 − c̄12)(ū1,2 + ū2,1),

(3)

where c̄i j are material constants; T̄ is the temperature increment, given by T̄ = T̄1 − T̄0 and T̄0 is initial temperature of the layer.
Substituting (3) in Eq. (2s) yield,

c̄11ū1,11 + 1

2
(c̄12 + c̄11)ū2,12 + 1

2
(c̄11 − c̄12)ū1,22 − β̄1T̄,1 = ρ̄ ¨̄u1,

1

2
(c̄11 + c̄12)ū1,12 + 1

2
(c̄11 − c̄12)ū2,11 + c̄11ū2,22 − β̄1T̄,2 = ρ̄ ¨̄u2.

(4)

The heat conduction equation in Lord–Shulman theory for transversely isotropic body in x1x2 plane is

K̄1(T̄,11 + T̄,22) =
(

1 + τ
∂

∂t

)
[ρ̄C̄v

˙̄T + T̄0β̄1
( ˙̄u1,1 + ˙̄u2,2

)] (5)

where C̄v is the specific heat, τ is the relaxation time, K̄1 is the thermal conductivity and β̄1 is defined as thermal modulo of the
layer. An over-headed dot represents the time derivative.

3 Solution procedure

The displacement vector
(
ū1, ū2

)
can be decomposed by using Helmholtz decomposition theorem, in-terms of φ̄(x1, x2, t) and

ψ̄(x1, x2, t) in the following manner:

ū1 = ∂φ̄

∂x1
+ ∂ψ̄

∂x2
,

ū2 = ∂φ̄

∂x2
− ∂ψ̄

∂x1
.

(6)

Now substituting (6) in (4) we get the following system of equations

c̄11φ̄,11 + c̄11φ̄,22 − β̄1T̄ = ρ̄ ¨̄φ,

1

2
(c̄11 − c̄12)ψ̄,11 + 1

2
(c̄11 − c̄12)ψ̄,22 = ρ̄ ¨̄ψ.

(7)

123
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The heat conduction equation becomes

K̄1(T̄,11 + T̄,22) =
(

1 + τ
∂

∂t

)
[ρ̄C̄v

˙̄T + T̄0β̄1

( ˙̄φ,11 + ˙̄φ,22

)
]. (8)

Now for the Stoneley wave propagating in x1 direction we shall find the solution of system of Eqs. (7) and (8) in the following form

φ̄ = φ̄∗(x2) exp(ik(x1 − ct)),

ψ̄ = ψ̄∗(x2) exp(ik(x1 − ct)),

T̄ = θ̄∗(x2) exp(ik(x1 − ct)),

(9)

where k and c are the wave number and phase velocity of the wave respectively.
Using (9) the system of Eq. (7) we get the following system of equations

c̄11
∂2φ̄∗

∂x2
2

+ k2(ρ̄c2 − c̄11)φ̄
∗ − β̄1θ̄

∗ = 0,

∂2ψ̄∗

∂x2
2

− τ0
2ψ̄∗ = 0,

(10)

where τ0
2 = k2(1 − 2ρ̄c2

c̄11−c̄12
).

From the heat conduction Eq. (8) we get the following equation

∂2θ̄∗

∂x2
2

− d2θ̄
∗ = −d3

(
∂2φ̄∗

∂x2
2

− k2φ̄∗
)

, (11)

where d2 = (
ikcρ̄C̄vd1

K̄1
− k2), d3 = ikcd1 T̄0β̄1

K̄1
and d1 = (1 − τ ikc).

Here we observed that the first equation of (10) and Eq. (11) are coupled system of equations. The second equation of (10) is in
decoupled form. Solving these two sets of equations we obtain:

φ̄∗ = B1 cosh b̄1x2 + B2 sinh b̄1x2 + B3 cosh b̄2x2 + B4 sinh b̄2x2,

ψ̄∗ = A1 cosh τ0x2 + A2 sinh τ0x2,

θ̄∗ = ᾱ1(B1 cosh b̄1x2 + B2 sinh b̄1x2) + ᾱ2(B3 cosh b̄2x2 + B4 sinh b̄2x2),

(12)

where A1, A2, Bi are arbitrary constants and b̄1, b̄2, ᾱ1, ᾱ2 are given by

b̄1 =
√

S̄ −
√
S̄2 − 4P̄

2
, b̄2 =

√
S̄ +

√
S̄2 − 4P̄

2
(13)

ᾱ1 = c̄11b̄2
1 + k2(ρ̄c2 − c̄11)

β̄1
, ᾱ2 = c̄11b̄2

2 + k2(ρ̄c2 − c̄11)

β̄1
(14)

with

S̄ = k2(c̄11 − ρc2) − c̄11d2 − β̄1d3

c̄11
, (15)

P̄ = k2d2(ρ̄c2 − c̄11) − k2β̄1d3

c̄11
. (16)

Therefore, the displacement components are given by

ū1 = U1(x2)exp(ik(x1 − ct)), (17)

ū2 = U2(x2)exp(ik(x1 − ct)), (18)

where

U1(x2) = [ik(B1 cosh b̄1x2 + B2 sinh b̄1x2 + B3 cosh b̄2x2 + B4 sinh b̄2x2)

+τ0(A1 sinh τ0x2 + A2 cosh τ0x2)]exp(ik(x1 − ct)),

U2(x2) = [b̄1(B1 sinh b̄1x2 + B2 cosh b̄1x2) + b̄2(B3 sinh b̄2x2 + B4 cosh b̄2x2)

−ik(A1 cosh τ0x2 + A2 sinh τ0x2)]exp(ik(x1 − ct)).

123
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The stress components are

σ̄12 = �1(x2)exp(ik(x1 − ct)), (19)

σ̄22 = �2(x2)exp(ik(x1 − ct)), (20)

where

�1(x2) = μ̄1(B1 sinh b̄1x2 + B2 cosh b̄1x2) + μ̄2(B3 sinh b̄2x2 + B4 cosh b̄2x2)

+ η̄1(A1 cosh τ0x2 + A2 sinh τ0x2),

�2(x2) = γ̄1(B1 cosh b̄1x2 + B2 sinh b̄1x2) + γ̄2(B3 cosh b̄2x2 + B4 sinh b̄2x2)

+ η̄2(A1 sinh τ0x2 + A2 cosh τ0x2).

In which,
μ̄1 = ikb̄1(c̄11 − c̄12), μ̄2 = ikb̄2(c̄11 − c̄12),

η̄1 = (c̄11−c̄12)(τ 2
0 +k2)

2 , η̄2 = −ikτ0(c̄11 − c̄12),
γ̄1 = c̄11b2

1 − k2c̄12 − β̄1ᾱ1, γ̄2 = c̄11b2
2 − k2c̄12 − β̄1ᾱ2.

Boundary conditions:

The mechanical boundary condition: The surface x2 = −h is stress free, hence we have

σ̄12|x2=−h = 0, σ̄22|x2=−h = 0.

For thermodynamic boundary condition; we consider

T̄ + mT̄,2 = 0

Now, stress free conditions and m → ∞ yield following system of homogeneous equations

− μ̄1B1 sinh ε1 + μ̄1B2 cosh ε1 − μ̄2B3 sinh ε2 + μ̄2B4 cosh ε2 + η̄1A1 cosh δ

− η̄1A2 sinh δ = 0,

× γ̄1B1 cosh ε1 − γ̄1B2 sinh ε1 + γ̄2B3 cosh ε2 − γ̄2B4 sinh ε2 − η̄2A1 sinh δ

+ η̄2A2 cosh δ = 0,

− b̄1ᾱ1B1 sinh ε1 + b̄1ᾱ1B2 cosh ε1 − b̄2ᾱ2B3 sinh ε2 + b̄2ᾱ2B4 cosh ε2 = 0,

(21)

where ε1 = b̄1h, ε2 = b̄2h and δ = τ0h.
Now putting x2 = 0 in U1(x2),U 2(x2), θ̄

∗(x2) and in σ̄12, σ̄22, T̄,2 one can get the following relations:

U1(0) = ik(B1 + B3) + τ0A2,

U 2(0) = b̄1B2 + b̄2B4 − ik A1,

θ̄∗(0) = ᾱ1B1 + ᾱ2B3,

�1(0) = μ̄1B2 + μ̄2B4 + η̄1A1,

�2(0) = γ̄1B1 + γ̄2B3 + η̄2A2,

θ̄∗
,2(0) = b̄1ᾱ1B2 + b̄2ᾱ2B4,

(22)

Solving system of Eq. (22) the values of the constants are obtained as

A1 = �1(0) − ik(c̄11 − c̄12)U 2(0)

ξ̄

A2 = ik[ᾱ]�2(0) − [ᾱ; γ̄ ]U1(0) − ik[γ̄ ]θ̄∗(0)

ik[ᾱ]η̄2 − [ᾱ; γ̄ ]τ0

B1 = ᾱ2η̄2U 1(0) − τ0ᾱ2�2(0) + (τ0γ̄2 − ikη̄2)θ̄
∗(0)

ik[ᾱ]η̄2 − [ᾱ; γ̄ ]τ0

B2 = ikᾱ2�1(0) − ξ̄ θ̄∗
,2(0) + η̄1ᾱ2U2(0)

b̄1[ᾱ]ξ̄
B3 = (ikη̄2 − γ̄1τ0)θ̄

∗(0) − ᾱ1η̄2U1(0) + τ0ᾱ1�2(0)

ik[ᾱ]η̄2 − [ᾱ; γ̄ ]τ0

123



 1019 Page 6 of 15 Eur. Phys. J. Plus        (2023) 138:1019 

B4 = ξ̄ θ̄∗
,2(0) − ikᾱ1�1(0) − η̄1ᾱ1U2(0)

b̄2[ᾱ]ξ̄
where ξ̄ = η̄1 − k2(c̄11 − c̄12) and for simplicity following notations are used

[ f ] = ( f2 − f1), [ f ; g] = ( f2g1 − f1g2)

Now using the above obtained values of A1,A2,B1,B2,B3,B4 in the system of Eq. (21) we get the following system of equations

a11�1(0) + a12�2(0) + a13U1(0) + a14U2(0) + a15θ̄
∗(0) + a16θ̄

∗
,2(0) = 0

a21�1(0) + a22�2(0) + a23U1(0) + a24U2(0) + a25θ̄
∗(0) + a26θ̄

∗
,2(0) = 0

a31�1(0) + a32�2(0) + a33U1(0) + a34U2(0) + a35θ̄
∗(0) + a36θ̄

∗
,2(0) = 0

(23)

where

a11 = k2(c̄11 − c̄12)[cosh ε; ᾱ] + η̄1[ᾱ] cosh δ

[ᾱ]ξ̄ ,

a12 = τ0[ᾱ; μ̄ sinh ε] − ikη̄1[ᾱ] sinh δ

ik[ᾱ]η̄2 − [ᾱ; γ̄ ]τ0
,

a13 = η̄2[μ̄ sinh ε; ᾱ] + η̄1[ᾱ; γ̄ ] sinh δ

ik[ᾱ]η̄2 − [ᾱ; γ̄ ]τ0
,

a14 = ik(c̄11 − c̄12)η̄1([ᾱ; cosh ε] − [ᾱ] cosh δ)

[ᾱ]ξ̄ ,

a15 = −ikη̄2[μ̄ sinh ε] − τ0[γ̄ ; μ̄ sinh ε] + ikη̄1[γ̄ ] sinh δ

ik[ᾱ]η̄2 − [ᾱ; γ̄ ]τ0
,

a16 = ik(c̄11 − c̄12)[cosh ε]
[ᾱ] ,

a21 = ik[γ̄ sinh ε; ᾱb̄] − b̄1b̄2[ᾱ] sinh δ

b̄1b̄2[ᾱ]ξ̄ ,

a22 = τ0[γ̄ cosh ε; ᾱ] + ikη̄2[ᾱ] cosh δ

ik[ᾱ]η̄2 − [ᾱ; γ̄ ]τ0
,

a23 = η̄2([ᾱ; γ̄ cosh ε] − [ᾱ; γ̄ ] cosh δ)

ik[ᾱ]η̄2 − [ᾱ; γ̄ ]τ0
,

a24 = η̄1[γ̄ sinh ε; ᾱb̄] + ikη̄2b̄1b̄2[ᾱ](c̄11 − c̄12) sinh δ

b̄1b̄2[ᾱ]ξ̄ ,

a25 = −τ0γ̄1γ̄2[cosh ε] + ikη̄2[γ̄ cosh ε] − ikη̄2[γ̄ ] cosh δ

ik[ᾱ]η̄2 − [ᾱ; γ̄ ]τ0
,

a26 = [b̄; γ̄ sinh ε]
b̄1b̄2[ᾱ] ,

a31 = −ikᾱ1ᾱ2[cosh ε]
[ᾱ]ξ̄ ,

a32 = −τ0ᾱ1ᾱ2[b̄ sinh ε]
ik[ᾱ]η̄2 − [ᾱ; γ̄ ]τ0

,

a33 = ᾱ1ᾱ2η̄2[b̄ sinh ε]
ik[ᾱ]η̄2 − [ᾱ; γ̄ ]τ0

,

a34 = −η̄1ᾱ1ᾱ2[cosh ε]
[ᾱ]ξ̄ ,

a35 = τ0[b̄ᾱ sinh εγ̄ ] − ikη̄2[b̄ᾱ sinh ε]
ik[ᾱ]η̄2 − [ᾱ; γ̄ ]τ0

,

a36 = [ᾱ cosh ε]
[ᾱ] .

(24)

Since the layer and half-space are assumed to be perfectly bonded at the interface x2 = 0.
Thus, we have the conditions of continuity:

ū1 = u1, ū2 = u2, σ̄12 = σ12, σ̄22 = σ22, T̄ = T, T̄,2 = T,2

123
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at x2 = 0.
Using these conditions in the system of Eq. (23) we get the following system of equations

a11�1(0) + a12�2(0) + a13U1(0) + a14U2(0) + a15θ
∗(0) + a16θ

∗
,2(0) = 0

a21�1(0) + a22�2(0) + a23U1(0) + a24U2(0) + a25θ
∗(0) + a26θ

∗
,2(0) = 0

a31�1(0) + a32�2(0) + a33U1(0) + a34U2(0) + a35θ
∗(0) + a36θ

∗
,2(0) = 0

(25)

where U1(0),U2(0) and �1(0),�2(0) are amplitudes of displacements and stresses of the half-space at the interface x2 = 0.

4 Frequency equation

We consider the propagation of the localized waves along the surface x2 = 0 of the half-space possessing velocity c and have the
wave number k in the direction of x1.

The displacement components u1 and u2 in the half -space x2 > 0 are given by

u1 = U1(x2) exp(ik(x1 − ct), u2 = U2(x2) exp(ik(x1 − ct)) (26)

where

U1(x2) = ik[C1 exp(−b1x2) + C2 exp(−b2x2)] − τ0D1 exp(−τ0x2)

U2(x2) = −[C1b1 exp(−b1x2) + C2b2 exp(−b2x2) + ikD1 exp(−τ0x2)]
C1, C2, D1 are arbitrary constants and b1 and b2 are two roots having positive real parts of the equation:

b4 − Sb2 + P = 0,

in which the expressions of S and P can be found from Eqs. (15) and (16).
Thus, the components stresses become

σ12 = �1(x2) exp(ik(x1 − ct)), σ22 = �2(x2) exp(ik(x1 − ct)) (27)

where, �1(x2) and �2(x2) are given by

�1(x2) = μ1C1 exp(−b1x2) + μ2C2 exp(−b2x2) + η1D1 exp(−τ0x2)

�2(x2) = γ1C1 exp(−b1x2) + γ2C2 exp(−b2x2) + η2D1 exp(−τ0x2)

The temperature T is given by

T = θ∗(x2) exp(ik(x1 − ct) (28)

where θ∗(x2) is given by

θ∗(x2) = [α1C1 exp(−b1x2) + α2C2 exp(−b2x2)]
with

α1 = c11b2
1 + k2(ρc2 − c11)

β1
,

α2 = c11b2
2 + k2(ρc2 − c11)

β1
,

and
μ1 = −ik(c11−c12)b1, μ2 = −ik(c11−c12)b2, η1 = (c11−c12)(τ0

2+k2)
2 , γ1 = c11b1

2−k2c12−β1α1, γ2 = c11b2
2−k2c12−β1α2,

η2 = ikτ0(c11 − c12).
Now putting x2 = 0 in U1(x2),U2(x2),�1(x2),�2(x2),θ∗(x2),θ∗

,2(x2) we get

U1(0) = ik(C1 + C2) − τ0D1

U2(0) = −(C1b1 + C2b2 + ikD1)

�1(0) = μ1C1 + μ2C2 + η1D1

�2(0) = γ1C1 + γ2C2 + η2D1

θ∗(0) = α1C1 + α2C2

θ∗
,2(0) = −(α1b1C1 + α2b2C2)
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Using these obtained values ofU1(0),U2(0),�1(0),�2(0),θ∗(0),θ∗
,2(0) in Eq. (25), a homogeneous system of equations inC1,C2, D1

is obtained, given by

r11C1 + r12C2 + r13D1 = 0

r21C1 + r22C2 + r23D1 = 0

r31C1 + r23C2 + r33D1 = 0

(29)

On elimination of C1, C2 and D1, Eq. (29) yields the frequency equation as follows:

r11(r22r33 − r32r23) + r12(r31r23 − r21r33) + r13(r21r32 − r31r22) = 0 (30)

in which

r j1 = μ1a j1 + γ1a j2 + ika j3 − b1a j4 + α1a j5 − α1b1a j6,

r j2 = μ2a j1 + γ2a j2 + ika j3 − b2a j4 + α2a j5 − α2b2a j6,

r j3 = η1a j1 + η2a j2 − τ0a j3 − ika j4; j = 1(1)3.

(31)

Similarly, for m → 0 and stress free boundary conditions, the frequency equation can be recast in the following form:

r ′
11(r

′
22r

′
33 − r ′

32r
′
23) + r ′

12(r
′
31r

′
23 − r ′

21r
′
33) + r ′

13(r
′
21r

′
32 − r ′

31r
′
22) = 0, (32)

where the expressions for r ′
i j can be obtained from ri j after replacing a3 j by a′

3 j ; j = 1(1)6.
In which

a′
31 = ikᾱ1ᾱ2

b̄1b̄2[ᾱ]ξ̄ [sinhε; b̄],

a′
32 = τ0ᾱ1ᾱ2

ik[ᾱ]η̄2 − [ᾱ; γ̄ ]τ0
[cosh ε],

a′
33 = −ᾱ1ᾱ2η̄2

ik[ᾱ]η̄2 − [ᾱ; γ̄ ]τ0
[cosh ε],

a′
34 = η̄1ᾱ1ᾱ2

b̄1b̄2[ᾱ]ξ̄ [sinhε; b̄],

a′
35 =

(
ikη̄2 − γ̄1τ0

)

ik[ᾱ]η̄2 − [ᾱ; γ̄ ]τ0
[ᾱ cosh ε],

a′
36 = [ᾱ1

b̄1b̄2[ᾱ] [b̄; sinhε].

(33)

Special cases:

(i) Very thin layer (h → 0): Corresponding frequency equation for adiabatic condition can be expressed as:

α1b1(R12R23 − R22R13) + α2b2(R11R23 − R21R13) = 0

where

R11 = A11μ1 − A14b1 − a16α1b1

R12 = A11μ2 − A14b2 − A16α2b2

R13 = A11η1 − ik A14

R21 = γ1A22

R22 = γ2A22

R23 = η2A22
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and

A11 = ik
(
μ̄1 − μ̄2

)

[ᾱ]b̄1b̄2ξ̄
[ᾱb̄] + η̄1

A14 = η̄1
(
μ̄1 − μ̄2

)

[ᾱ]b̄1b̄2ξ̄
[ᾱb̄] − ik

(
c̄11 − c̄12

)

ξ̄
η̄1

A16 =
(
μ̄1 − μ̄2

)

[ᾱ]b̄1b̄2
[b̄]

A22 = [γ̄ ; ᾱ]τ0 + ik[ᾱ]η̄2

ik[ᾱ]η̄2 − [ᾱ; γ̄ ]τ0

(ii) Coupled Thermoelasticity: If τ = 0, Eq. (30) yields the corresponding frequency relation in Coupled Thermoelasticity theory.
(iii) In absence of thermal effect: We now take the thermal field to vanish in order to reduce our results to the purely elastic case.

For this purpose we take T̄ = 0, C̄v = 0, β̄1 = 0. Under this specialization the equations in (10) become identical with Ref. [8] and
the governing Eq. (30) becomes,

cosh(τ0h) − ξ̄2−b̄2
1

2ξ̄2 cosh(b̄1h)

sinh(τ0h) − ξ̄2+b̄2
1

2b̄1τ0
sinh(b̄1h)

=
sinh(τ0h) − 2b̄1τ0

ξ̄2+b̄2
1

sinh(b̄1h)

cosh(τ0h) − 2ξ̄2

ξ̄2+b̄2
1

cosh(b̄1h)

(iv) It is observed that the component of heat flux vector q2 is related to the temperature gradient T,2 by the following relation:

q2 = −K1

(1 + τD′)
T,2,

where D′ ≡ ∂
∂t .

Particles’ motion:

In order to describe the surface particle motion during the surface wave propagation, we retain only the real parts of u1 and u2 as
follows:

u1 = Acosp + Bsinp

u2 =
( B

k

)
cosp −

(k A
τ0

)
sinp

(34)

where A = −τ0D1 exp(−τ0x2), B = −k
(
C1 exp(−b1x2) + C2 exp(−b2x2)

)
, p = k(x1 − ct).

Eliminating p from u1 and u2 we get,

(
A2 + B2

)
u2

2 +
(k2A2

τ 2
0

+ B2

k2

)
u2

1 + AB
(2k

τ0
− 2

k

)
u1u2 =

(k A2

τ0
+ B2

k

)2
(35)

Equation (35) represents an ellipse in the u1u2 plane. The semi-major axis X, semi-minor axis Y, and the eccentricity e of the ellipse
are the following:

X =
[ (

k A2

τ0
+ B2

k

)2

acos2θ + bsin2θ + hsin(2θ)

] 1
2

,

Y =
[ (

k A2

τ0
+ B2

k

)2

asin2θ + bcos2θ − hsin(2θ)

] 1
2

,

e =
[

1 − acos2θ + bsin2θ + hsin(2θ)

asin2θ + bcos2θ − hsin(2θ)

] 1
2

,

(36)

in which a =
(
k2A2

τ 2
0

+ B2

k2

)2
, b = A2 + B2, h = AB

(
2k
τ0

− 2
k

)
, c = −

(
k A2

τ0
+ B2

k

)2
and θ = 1

2 tan
−1

( 2 h
a−b

)
.

Thus, in the presence of thermal field, when a Rayleigh wave propagates into a homogeneous, an-isotropic layer, surface particles
followed an elliptical path as seen in the Eq. (35). The lengths of the major and minor axes depend on the term ’A’. Therefore, they
increase or decrease exponentially. The decay of the elliptical paths of the surface particles depends on the attenuation coefficient
and wave propagation speed.
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5 Solution of the frequency equation

Here we shall discuss about the technique of the solution of the obtained frequency equation with various conditions. With the
help of this technique we shall try to interpret and extract the contained information in this relational equation involving secular
characteristic parameters.

Generally the wave number(k) and hence the phase velocity(c) of the wave are complex quantities such that

1

c
= 1

V
+ i

Q

ω
(37)

where k = R + i Q and R = ω
V with the quantities R and V are real. Now using the relation (37) the exponent term in (9) becomes

i R(x1 − V t) − Qx1. It shows V and Q are propagation speed and attenuation coefficient of the wave respectively.
As we know c = ω

k , so for fixed values of frequency(ω) and the depth of the layer (h) the Eq. (30) becomes a function of k only
and let the equation be g(k) = 0. Hereafter we shall apply iteration method on the equation g(k) = 0 to obtain the solution with
desired level of accuracy.

Specific loss

Specific loss is defined as the ratio of dissipated energy (�W ) in taking a specimen through a stress cycle to the stored elastic energy
(W ) in a specimen in its maximum strain. It is genuinely most effective way to define internal friction for materials. For sinusoidal
plane wave of small amplitude, the specific loss ( �W

W ) is equals to 4π times the absolute value of the imaginary part of k to the real
part of k i.e

�W

W
= 4π | Im(k)

Re(k)
| = 4π |V Q

ω
| (38)

6 Numerical results

This section includes the numerical results from the obtained frequency equation. For the numerical analysis purposes we have taken
the medium and the overlaid layer both are made of carbon steel with material constants as follows:

c11 = 268.1 (GPA), c12 = 111.2 (GPA), c̄11 = 268.1 (GPA),
c̄12 = 111.2 (GPA), β1 = 6910112 kg/(Km s2), β̄1 = 6910112 kg/(Km s2),
Cv = 465 J/(kg K), C̄v = 465 J/(kg K), K1 = 54 W/(m K), K̄1 = 54 W/(m K),
ρ = 7833 kg/m3, ρ̄ = 7833 kg/m3, T0 = 293 K. ‘ω’ in Hz.
Taking these material constants and using the above stated solution technique for frequency equation some numerical results are

presented here.
Attenuation coefficients and specific loss factors for various cases are computed in the context of Lord–Shulman theory and

classical thermoelasticity theory.
Figures 2 and 3 depict the nature of attenuation coefficient of the localized waves with respect to frequency for thick and

comparatively thinner (h → 0) layer respectively.
Figure 2 shows the nature of attenuation coefficient in the layered medium with respect to frequency of the wave. From this figure

it is observed that for a certain relaxation time in the context of Lord–Shulman model the magnitude of attenuation coefficients
increases gradually and after taking higher values in magnitudes it decreases monotonically in the region 40 ≤ ω ≤ 100. The
nature of attenuation coefficient in context of classical thermoelasticty also follows the same fashion, it takes nearly equal values
in magnitudes as of Lord–Shulman model in the region 0 ≤ ω ≤ 75. The difference in magnitude occurs in the higher frequency
region 75 ≤ ω ≤ 100. In this region classical thermoelasticity attains lower magnitude of attenuation coefficient compared to
Lord–Shulman model.

Figure 3 depicts the nature of attenuation coefficient when the thickness of the layer tends to zero i.e h → 0. In the region
0 ≤ ω ≤ 45 attenuation coefficient increases very slowly with small magnitude and suddenly it takes the very high in the region
45 ≤ ω ≤ 70. Thereafter attenuation coefficient becomes very low in the higher frequency region 70 ≤ ω ≤ 100. In the whole
region of frequency classical thermoelasticity theory attains low attenuation coefficient than the Lord–Shulman theory.

Figures 4 and 5 describe the behaviour of specific loss factor with respect to frequency in the context of both Lord–Shulman
model and classical thermoelasticity theory.

Figure 4 shows the change in specific loss with respect to frequency for the layered media of a certain thickness. In lower frequency
region 0 ≤ ω ≤ 20 specific loss increases in rapid manner and then a sharp decline occur in the region 20 ≤ ω ≤ 30. It is observed
that specific loss gradually decreases in frequency region 30 ≤ ω ≤ 100 and it takes very low values in magnitudes when frequencies
are high. The Lord–Shulman model and classical thermoelasticity theory follow the same fashion of change in specific loss but
differs in magnitude. In the region 10 ≤ ω ≤ 30 Lord–Shulman model attains higher value of specific loss as compared to classical
thermoelasticity theory and in remaining region both attain nearly same value of specific loss.

123



Eur. Phys. J. Plus        (2023) 138:1019 Page 11 of 15  1019 

Fig. 2 Nature of attenuation
coefficient for thick layer

Fig. 3 Nature of attenuation
coefficient for thin (h → 0) layer

Figure 5 is the depiction of specific loss with respect to frequency when the depth of the layer tends to zero i.e h → 0. This
figure infer that Lord–Shulman model attempts higher value of specific loss as compared to classical thermoelasticity. According to
Lord–Shulman model specific loss increases in rapid manner in the frequency region 0 ≤ ω ≤ 10 then slow increment occur in the
region 10 ≤ ω ≤ 30, thereafter it gradually decreases in the higher frequency region 30 ≤ ω ≤ 100. In the classical thermoelasticity
theory specific loss increases highly in the low frequency region 0 ≤ ω ≤ 10 and then in the remaining region it monotonically
decreases.

Here in this figure the diminishing nature of specific loss in high frequency region for both Lord–Shulman model and classical
thermoelasticity theory is a noticeable fact.

123



 1019 Page 12 of 15 Eur. Phys. J. Plus        (2023) 138:1019 

Fig. 4 Comparison of specific
loss for thick layer

Fig. 5 Comparison of specific
loss for thin (h → 0) layer
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Fig. 6 Comparison of frequencies
with the thickness of the layer

Fig. 7 Comparison of frequencies
with the thickness of the layer

Again, the obtained frequency Eq. (30) is an implicit equation of phase velocity c and depth of the layer h. From this implicit
equation of c and h the nature of phase velocity of the Rayleigh wave under thermal effect depicted graphically in Fig. 6 with respect
to depth of the layer. The phase velocity of the wave is very high when depth of the layer is close to zero, thereafter it decreases
monotonically and become close to very low value when the depth of the layer is very high. It is also noticed that in classical
thermoelasticity phase velocity of the wave diminishes faster than Lord–Shulman model of thermoelasticity.

In general, we have the relation c = ω
k and hence the frequency Eq. (30) becomes equation in two variables frequency ω and

the depth of the layer h for fixed value of k. By using this fact the nature of frequency of Rayleigh wave under thermal effect with
respect to depth of the layer has been shown in Fig. 7. The frequency of the wave is very high when depth of the layer close to zero
and it becomes very low when depth of the layer is high. The frequency of the wave decreases monotonically and diminishes in
higher depth of layer. It is observed that in the region 0 ≤ h ≤ 0.07, Lord–Shulman theory attains higher value of frequency than
classical thermoelasticity theory and in the remaining region both coincide with each other.
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7 Conclusion

In this article, the frequency equation of the localized wave propagation is achieved in a transversely isotropic elastic half-space
overlaid by a transversely isotropic elastic layer with arbitrary thickness under thermal effect. The layer and half-space are assumed
to be bonded perfectly to each other. Lord–Shulman model of generalized thermoelasticity for transversely isotropic media is used
for derivation of frequency equation. The behaviour of attenuation coefficient and specific loss with respect to frequency are depicted
in numerically simulated figures. Nature of phase velocity and Rayleigh wave frequencies with respect to the thickness of the layer
are presented graphically for various cases.

By analyzing the obtained results and numerical simulations, one can highlight following salient points:

(a) Attenuation coefficient of the wave is higher in Lord–ShulmanLord–Shulman theory as compared to classical thermoelasticity
and has the diminishing nature in higher frequencies for both the cases of finite layered media as well as in thin layer.

(b) In the lower frequency region specific loss increases in rapid manner thereafter it gradually decreases and diminishes in higher
frequency region. This observation hold for both case of layered media with layer of certain thickness and when thickness of
the layer tends to zero.

(c) Phase velocity as well as frequency of the localized both are notably high for thin layer. The hyperbolic type heat conduction
model can able to depict more realistic nature the Rayleigh wave as compared to the classical thermoelasticity.

(d) It has been observed that the elliptical path of the particle is exponentially decaying with phase lag.
(e) This theoretical model can be useful in various real applications in future like, earthquake engineering, seismology, geophysics

etc.
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