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Abstract We review the formulation of quantum field theories with purely virtual particles, a new type of degrees of freedom that
can mediate interactions without ever appear as external on-shell states. This property allows to solve the problem of ghosts in
higher-derivative quantum gravity, leading to a renormalizable and unitary theory. The main steps for the BRST quantization of
gravity are recalled and renormalizability is discussed. Then, we introduce purely virtual particles in a general quantum field theory
and show the derivation of the so-called spectral identities, which are a key ingredient to prove unitarity. Finally, phenomenological
consequences and predictions in inflationary cosmology are presented.

1 Introduction

The formulation of a theory of quantum gravity is one of the most important task in theoretical physics. It is expected to shed
light on several open problems and, most importantly, it will tell us something new about our understanding of reality, in the same
way quantum mechanics made many of our certainties crumble at the beginning of the twentieth century. Many phenomenological
questions, such as the understanding of the initial phases of the universe or how to deal with black holes in quantum mechanics,
as well as more fundamental ones (do the notions of time, cause, past and future survive at arbitrary scales?) might find answer
in the theory of quantum gravity. However, formulating such a theory is as important as it is hard. We will probably need many
decades or centuries before to actually answer to all the relevant questions, because it is a very intricate subject and it connects
many aspects of physics altogether. Moreover, we do not have enough experimental data to infer much about the quantum nature
of gravity. Therefore, in the situation where the complexity of the topic comes together with the lack of data, it is important to stay
with our foot on the ground and proceed carefully. The starting point is to look at the past, analyze what has worked so far and try
to deviate as least as possible from that path. The risk is to completely loose contact with nature and go astray forever.

Over the last decades there have been several proposals to tackle the problem of quantum gravity. Some of them rely on abandoning
the framework that has been very successful so far, i.e. quantum field theory, in favor of something else. In some cases the approach
is based on the assumption that gravity is the geometry of spacetime at arbitrary small scales. We have no evidence for this; therefore,
those theories (loop quantum gravity, causal dynamical triangulations, spinfoam to name a few) should be viewed as theories of
quantum geometry, rather than theories of quantum gravity. Only the contact with nature will tell us whether that assumption is
correct or not. We think that a more cautious approach is to study the gravitational field in quantum mechanical terms, as we do for
all other fields, in the framework of quantum field theory.

In this review we present an approach to do so in a way that is consistent with the principles that have led to the standard
model of particle physics: locality, renormalizability and unitarity. Although conservative, this proposal cannot avoid to introduce
something new, albeit minimal. The new idea is the possibility to describe quanta that are purely virtual, i.e. they can be responsible
for interactions between other particles, like a virtual photon is responsible for the interaction between two electrons, but cannot
appear as on-shell states. These new type of particles are called purely virtual particles or fakeons, and they are introduced by means
of a specific procedure that we call fakeon prescription [1, 2]. Their presence is enough to have a local, renormalizable and unitary
quantum field theory of gravity.

The approach presented here has its roots in results that were known since many decades. The starting point is that Einstein
gravity treated as a quantum field theory is nonrenormalizable [3, 4]. The problem with nonrenormalizability is that, in order to
reabsorb the divergences of the theory, we need to introduce infinitely many operators of increasing dimension, each of them
with a new independent parameter. Therefore, in principle, if we want to fix all parameters with experiments we would need
infinitely many measurements. However, all the known nonrenormalizable theories are effective theories, which means that their
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nonrenormalizability is due to the fact that some additional (heavy) fields are integrated out. Once those fields are properly included
the infinitely many parameters turn out to be functions of a finite subset of them, and the theory is renormalizable. This is not what
happens in Einstein gravity, at least not in the same way as in other theories, like the Fermi model [5].

One way of proceed is to just accept that there might exist fundamental theories that are nonrenormalizable and start to work out
their properties in order to make them as predictive as they can (see e.g. [6–8]). Along this line is the asymptotic safety program
[9, 10], which is a nonperturbative field-theoretic approach that accounts for a generalization of asymptotic freedom, where the
coupling constant is assumed to flows to a nonvanishing value in the ultraviolet limit. Then, for the theory to be predictive, such a
interacting fixed point needs to have a finite-dimensional critical surface. An asymptotically safe theory is sometimes referred as
nonperturbatively renormalizable.

Another possibility is to go beyond Einstein gravity by imposing renormalizability. The natural choice is to add to the classical
action the counterterms generated at one loop in Einstein gravity, assume that their couplings are large and redo the analysis. This was
done in 1976 by Stelle [11], showing that adding to the action of gravity all the independent terms quadratic in the Riemann tensor,
as well as the cosmological term, makes the theory renormalizable. Moreover, some additional degrees of freedom are introduced
in this way. Besides the usual graviton modes, one massive scalar and one massive spin-2 particles also propagate. However, the
kinetic term of the latter has the wrong sign, causing instabilities that at quantum level can be traded for violations of unitarity. This
type of particles are called ghosts. At that point the theory, which we call Stelle gravity, was (righteously) labeled as physically
unacceptable and the research in this direction essentially stopped. Instead of insisting on the principle of renormalizability and
try to solve the problem of ghosts, many physicists moved to something else, often different from quantum field theory, to explain
quantum gravity. Over the decades only a limited number of people continued to study Stelle gravity and work out its properties, but
they often postpone the problem of ghosts for later studies or invoke some nonperturbative effects or theories beyond quantum field
theory that will eventually explain the matter [12–16]. These explanations never came. Furthermore, in 1980, Starobinsky shown
that the scalar degree of freedom introduced by the R2 term can explain the accelerated expansion of the early universe and solve a
number of phenomenological issues [17]. This is one of the most efficient and simple model of inflation, called Starobinsky model,
which is included in Stelle gravity. Moreover, since also the cosmological term is generated by renormalization, dark energy might
be explained within Stelle gravity.

Despite these results in favor of Stelle gravity, addressing the problem of ghosts has never been the priority of any of the major
research lines. On top of this, several potential approaches were already present in the literature (and actually inspired ours), although
not all of them were thought for gravity. For example, the Lee-Wick models [18, 19] have been used in the context of quantum gravity
only in the recent years [20, 21], or the so-called shadow states [22–24], introduced in 1972, which also share some properties with
fakeons, were soon ignored. Finally, another approach to the ghost problem is to formulate quantum gravity as a particular type of
nonlocal quantum field theory [25]. There is a decent amount of literature in this topic, but only in the last 10–15 years and only
by small groups (see [26] and references therein). Finally, we mention a more recent approach, introduced in [27], which uses the
fact that the ghost in Stelle theory is unstable to prove unitarity in situations where it has already decayed, using a generalization of
Veltman’s argument of [28]. The result is an effective theory, unitary at energy scales where the width of the ghost can be considered
large. However, this is far from truly removing the ghost from the spectrum, since it is always possible to find energy ranges where
it is long lived and cannot be ignored.

In a nutshell, many interesting ideas to tackle the problem of ghosts were already on the table since a few decades, but each of
them has been either abandoned, ignored or poorly studied.

To a relatively young physicist, like the author of this review, the feeling that the historical situation just described gives is that
someone did not do their job for fifty years.

Why abandon a successful framework such as quantum field theory? Why (almost) completely ignore the existence of a renor-
malizable, although not unitary, theory of gravity and move to other approaches? Why pretend not to see that the best inflationary
model points in the direction of that renormalizable theory? Probably the answers to these questions lie more on the social aspects
of physics rather than the scientific ones. We do not try to give our personal answers in this review, so we do not hurt the feelings
of anyone.

Finally, we want to clarify that it might well be that something beyond quantum field theory is necessary to achieve a more
fundamental understanding of quantum gravity. However, our opinion is that no stone should be left unturned in quantum field
theory before abandoning it and the topic addressed in this review tells us that this was not the case. Furthermore, as stressed above,
in the lack of guidance given by nature, we cannot afford to jump into the unknown without any grasp on experimental data. We
need to stick to what was successful so far and see where it leads.

The paper is organized as follows. In Sect. 2 we review Stelle gravity, discuss its renormalizability and introduce the ghost
problem. In Sect. 3 we recall the basics of unitarity in general quantum field theories, while in Sect. 4 we introduce the spectral
identities that are necessary to prove unitarity in theories with purely virtual particles. In Sect. 5 we explain how to apply the idea of
purely virtual particles to Stelle gravity and show its predictions in the context of inflationary cosmology. Finally, Sect. 6 contains
our conclusions.

Notation and conventions: We use the signature (+, −, −, −) for the metric tensor. The Riemann and Ricci tensors are defined
as Rμ

νρσ � ∂ρ�
μ
νσ − ∂σ�

μ
νρ + �

μ
αρ�

α
νσ − �

μ
ασ�

α
νρ and Rμν � Rρ

μρν , respectively. We write the four-dimensional integrals over
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spacetime points of a function F of a field φ(x) as
∫ √−gF(φ) ≡ ∫

d4x
√−g(x)F(φ(x)). We always assume that the integral of

the Gauss-Bonnet term vanish, i.e.
∫ √−g

(
Rμνρσ Rμνρσ − 4RμνRμν + R2

) � 0.

2 Stelle gravity

In this section we introduce Stelle gravity by recalling the general method for the quantization of gravity in quantum field theory.
Moreover, we study the propagator of the theory in order to show the presence of the spin-2 ghost. Finally, we give some details
about renormalizability.

The Stelle action is

SHD � − 1

2κ2

∫ √−g

[

2
C + ζ R +
α

2
C2 − ξ

6
R2

]

, (2.1)

where C2 � CμνρσCμνρσ is the squared of the Weyl tensor and 
C , ζ , α, ξ and κ are real parameters with dimension

[
C ] � 4, [ζ ] � 2, [α] � 0, [ξ ] � 0, [κ] � 0. (2.2)

Note that the parameter κ is redundant, since ζ already accounts for the Planck mass, but it is useful to keep track of loop orders in
the perturbative expansion. We can see that no parameters of negative dimension appear, even after the correct normalization of the
kinetic terms. In fact, if we expand the metric around Minkowski spacetime as

gμν � ημν + 2κhμν , (2.3)

where hμν is the graviton field, the quadratic part of the action contains terms with four derivatives that are multiplied by dimensionless
parameters. Those terms are dominant in the ultraviolet and after properly normalizing them, the total action still contains parameters
with non-negative dimension. In the case of Einstein gravity the four-derivative terms are absent and the kinetic term is multiplied
by ζ , which has positive dimension. Once that term is normalized, all the interactions contain powers of 1/ζ . Since the counterterms
are polynomials in the parameters of the theory (with properly normalized kinetic term), then the counterterms in Einstein gravity
are polynomial in 1/ζ , which is a parameter with negative dimension. Therefore, it is possible to build counterterms with arbitrary
mass dimension, since it can always be compensated by powers of 1/ζ . This is why general relativity is said to be nonrenormalizable
by power counting. However, to prove the renormalizability of Stelle gravity, we need to show that the counterterms satisfies certain
properties, as we explain in the next subsection.

Before to proceed with renormalizability we derive the graviton propagator and study its poles and residues. In this way we establish
some notation and review the standard steps for the quantization of gravity. First, we recall that the Becchi–Rouet–Stora–Tyutin
(BRST) transformations associated to diffeomorphisms read

sgμν � − ∂μC
αgαν − ∂νC

αgμα − Cα∂αgμν

sCρ � − Cσ ∂σC
ρ

sC̄σ � Bσ

sBτ � 0. (2.4)

The dimensions of the fields are

[gμν] � 0, [Cρ] � 0, [C̄σ ] � 0, [Bτ ] � 1.

It is easy to show that the operator s is nilpotent, i.e. s2 � 0. Therefore, as in the case of gauge theories, we can add to the classical
action a gauge-fixing term that is s-exact, obtaining the gauge-fixed action

Sgf � SHD + s�, (2.5)

where � is a fermionic functional with [�] � −1. For the purposes of this section, we choose the functional

� � α

∫
C̄μ�

(Gμ − λκ2Bμ
)
, (2.6)

where � � ημν∂μ∂ν , λ is a gauge-fixing parameter and Gμ is the gauge-fixing function. We choose

Gμ � ηνρ∂ρgμν , (2.7)

to have a simplified propagator. More general fermionic functionals and gauge-fixing function can help in checking gauge indepen-
dence of the counterterms (see [29]). With these choices the gauge-fixing term reads

s� � α

∫
Bμ�

(Gμ − λκ2Bμ
)

+ Sgh, (2.8)
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where Sgh is the action of the Faddeev-Popov ghosts

Sgh � α

∫
C̄μ∂ν�

(
gμρ∂νC

ρ + gνρ∂μC
ρ + Cρ∂ρgμν

)
. (2.9)

In order to obtain the graviton propagator we substitute B with the solution of its equations of motion, i.e.

Bμ � 1

2λκ2 Gμ, (2.10)

and the gauge-fixed action (2.5) becomes

Sgf � SHD +
α

4λκ2

∫
Gμ�Gμ + Sgh. (2.11)

We write a generic quadratic part of the graviton action as

Squad
gf �

∫
hμνT

μνρσ hρσ , (2.12)

so the propagator Dμνρσ is the Fourier transform of the Green function of Tμνρσ , i.e.

T̃μναβDαβρσ � i

2

(
δμρ δ

ν
σ + δμσ δ

ν
ρ

)
, (2.13)

where T̃ is the Fourier transform of T . Considering the symmetries of the indices, a basis for both T̃ and D is given by the spin-2

projectors {�(2), �(1), �(0), �̄(0)} plus the tensor ¯̄�(0) that takes into account the possible mixing between two different spin-0
component, which are defined as follows

�(2)
μνρσ ≡1

2
(πμρπνσ + πμσπνρ) − 1

3
πμνπρσ , (2.14)

�(1)
μνρσ ≡1

2
(πμρωνσ + πμσωνρ + πνρωμσ + πνσωμρ), (2.15)

�(0)
μνρσ ≡1

3
πμνπρσ , (2.16)

�̄(0)
μνρσ ≡ωμνωρσ , (2.17)

¯̄�(0)
μνρσ ≡πμνωρσ + πρσωμν , (2.18)

where πμν and ωμν are the spin-1 projectors

πμν ≡ ημν − pμ pν
p2 , ωμν ≡ pμ pν

p2 . (2.19)

Therefore, we can write (omitting the indices)

T̃ � x2�
(2) + x1�

(1) + x0�
(0) + x̄0�̄

(0) + ¯̄x0
¯̄�(0) (2.20)

D � y2�
(2) + y1�

(1) + y0�
(0) + ȳ0�̄

(0) + ¯̄y0
¯̄�(0), (2.21)

where xi are obtained from the quadratic part of the action and yi are unknowns to be derived by imposing (2.13). For a general
theory of gravity, the relations between xi and yi are

y1 � i

x1
, y2 � i

x2
, y0 � i x̄0

x0 x̄0 − 3 ¯̄x2
0

, ȳ0 � i x0

x0 x̄0 − 3 ¯̄x2
0

, ¯̄y0 � − i ¯̄x0

x0 x̄0 − 3 ¯̄x2
0

. (2.22)

After applying (2.22) to the action (2.12) and setting 
C to zero for simplicity, the graviton propagator reads

Dμνρσ � i

p2 + iε

[
�

(2)
μνρσ

(ζ − αp2)
− �

(0)
μνρσ

2(ζ − ξp2)
− λ

2αp2

(
2�(1)

μνρσ + �̄(0)
μνρσ

)
]

. (2.23)

The expression of the Faddeev-Popov ghost propagator follows straightforwardly from the part of Sgh that is quadratic in the fields
C, C̄ . In momentum space we find

〈
CμC̄ν

〉 � i

p2 + iε

(
ημν − pμ pν/2p2

αp2

)

. (2.24)

We identify the single poles and their residues by splitting the propagator (2.23) into partial fractions. To further simplify, we choose
λ � 0, then we find

Dλ�0
μνρσ � i

2ζ

[
2�(2)

μνρσ − �
(0)
μνρσ

p2 + iε
− 2�(2)

μνρσ

p2 − ζ/α + iε
+

�
(0)
μνρσ

p2 − ζ/ξ + iε

]

. (2.25)
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The first term is the same as in Einstein gravity and describes a massless graviton, while the second and third term are typical of
Stelle gravity and describe a massive spin-2 field and a massive scalar field, respectively. The residue at the massive spin-2 pole
is negative. This means that the theory propagates a ghost, which violates unitarity. In order to make this clear, we show a simple
example by means of a scalar toy model. Consider the action

S(ϕ) �
∫ [

1

2
∂μϕ

(

1 +
�
M2

)

∂μϕ − 1

2
m2ϕ

(

1 +
�
M2

)

ϕ − λ

3!
ϕ3

]

, (2.26)

where ϕ is a scalar field, m and M are mass parameters and λ is a coupling constant. Using the Feynman prescription, the propagator
reads

D(p2) � −iM2

(p2 − m2 + iε)(p2 − M2 + iε)
� i

p2 − m2 + iε
− i

p2 − M2 + iε
, (2.27)

where in the second step we have appropriately redefined ε. A degree of freedom associated to a propagator with negative residue
at the pole is called ghost. The propagator (2.27) describes two degrees of freedom, one at p2 � m2 with a positive residue and
one at p2 � M2 with negative residue. Ghosts should not be confused with tachyons, which are defined as degrees of freedom with
negative mass squared1 and introduce additional pathologies. For the present review it is important just to know that tachyons cannot
be cured by the fakeon prescription and the parameters of the theory must be constrained in order to avoid tachyons (see Sect. 5).

The simplest example of a unitarity violation is given by the tree-level 2-to-2 scattering amplitude. Unitarity is encoded in the
optical theorem (see next section for the details), which, in the case the process considered, states that

2ImM2→2 �
∫

d�|M2→1|2 ≥ 0, (2.28)

where M2→2 and M2→1 denote the tree-level amplitudes of the processes ϕϕ → ϕϕ and ϕϕ → ϕ, respectively, while d� is the
integration measure over the phase space of final states. The amplitude M2→2 is

M2→2 � −λ2
(

1

p2 − m2 + iε
− 1

p2 − M2 + iε

)

(2.29)

and its imaginary part reads

ImM2→2 � πλ2[δ(p2 − m2) − δ(p2 − M2)
]
, (2.30)

which is not nonnegative and therefore violates (2.28). Similar violations appear every time a odd number of ghosts is on shell in
the right-hand side of (2.28).

This simple example shows what happens also in Stelle theory. Moreover, note that the pole of the additional scalar in (2.25)
has positive residue. Therefore, if we send the mass of the ghost to infinity (α → 0) we find a unitary theory describing a massless
graviton and a massive scalar, the Starobinsky model. However, in that case renormalizability is lost. In fact, the presence of the ghost
is crucial to obtain certain cancellations between Feynman diagrams that avoid higher-dimensional counterterms to be generated
by renormalization. In the end renormalizability can be obtained at the price of unitarity. These two properties seem to be mutually
exclusive in quantum gravity, since they are both entangled to the ghost. If we have the ghost we loose unitarity, while if we get rid of
the ghost we loose renormalizability. To define a quantum field theory of gravity that makes sense both physically and mathematically
we need to find a way to consistently remove the ghost from the set of physical states and keep its contributions inside Feynman
diagrams at the same time. This cannot be achieved without relaxing some assumptions of standard quantum field theory. In our
approach we disentangle the on-shell contributions of the ghost from the virtual ones, that would typically be related in the standard
case of the Feynman prescription. Once this modification is introduced we can obtain the property we want and remove the ghost
from the spectrum at any energy scale without spoiling the consistency of the theory.

Before to proceed with the details of the fakeon prescription we give a sketch of the proof of renormalizability in Stelle gravity
for the readers that are not familiar with it. We anticipate that the fakeon prescription do not modify the divergences of the theory,
therefore from this point of view there is no difference with the Stelle gravity.

2.1 Renormalization

We give the main ingredients to prove the renormalizability of the theory with the help of the Batalin-Vilkovisky formalism, which
we briefly introduce below. In [11] it was assumed that the divergent part of the effective action satisfies the so-called Kluberg-
Stern–Zuber conjecture [30, 31]. More recently it has been proved by a theorem in [32] for a large class of models, which includes
higher-derivative quantum gravity. We do not review the proof here and the reader is referred to [32] for details.

The Batalin-Vislkovisky formalism is a useful tool to prove renormalizability in gauge theories and gravity. It makes use of an
extended action� that accounts for the sources of the BRST transformations and allows to write the Ward–Takahashi–Slavnov–Taylor

1 Note that a ghost can also be a tachyon.
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identities in a compact form. The counterterms then satisfy certain properties and the divergences are removed by means of an iterative
procedure.

We collect all the fields into the row �α � (gμν , Cρ , C̄σ , Bτ ) and introduce a set of sources Kα � (Kμν
g , KC

σ , K τ

C̄
, K τ

B) for the
composite BRST operators s�α , conjugate to the fields, and define the antiparentheses of two functionals X and Y of � and K as

(X , Y ) ≡
∫ (

δr X

δ�α

δlY

δKα

− δr X

δKα

δlY

δ�α

)

, (2.31)

where the integral is over the spacetime points associated with repeated indices and the subscripts l, r in δl , δr denote the left and
right functional derivatives, respectively. We introduce the ghost number

gh#(gμν) � gh#(Bτ ) � 0, gh#(Cρ) � 1, gh#(C̄σ ) � −1, (2.32)

so that the gauge-fixed action is invariant under the global symmetry

�α → �αeiβgh#(�α), (2.33)

where β is a constant. Finally, the extended action is defined by adding the source term SK � − ∫
s�αKα to the gauge-fixed action.

The dimensions of the sources are

[Kg] � 3, [KC ] � 3, [KC̄ ] � 3, [KB] � 2, (2.34)

while the ghost numbers are fixed by requiring that SK be invariant under the symmetry (2.33) combined with2

Kα → Kαe
iβgh#(Kα ) (2.35)

and read

gh#(Kg) � −1, gh#(KC ) � −2, gh#(KC̄ ) � 0, gh#(KB ) � −1. (2.36)

Finally, the statistics of the fields �α and sources Kα are opposite to each other.
In the Batalin-Vilkovisky formalism, the gauge-fixing term can be written as

s� � (SK ,�) (2.37)

and the extended action reads

�(�, K ) � SHD + (SK ,�) + SK . (2.38)

This action is used to define the generating functional Z of the correlation functions and the generating functional W of the connected
correlation functions by means of the formula

Z (J , K ) �
∫

[d�] exp

(

i�(�, K ) + i
∫

�α Jα

)

� exp iW (J , K ). (2.39)

As usual, the generating functional of one-particle irreducible diagrams is defined as the Legendre transform of W with respect to J

�(�, K ) � W (J , K ) −
∫

�α Jα , (2.40)

where �α � δrW/δ Jα . Renormalization is achieved by means of parameter and field redefinitions, which are canonical transfor-
mations with respect to the antiparentheses. It is easy to show that � and � satisfy the master equations

(�,�) � 0, and (�,�) � 0. (2.41)

The first one is a generalization of the BRST invariance of the gauge-fixed action. In fact, the operator

σ ≡ (�, ·) (2.42)

reduces to the BRST transformations when acting on �, while it further reduces to a diffeomorphism when acting on gμν . The
second equation collects the Ward–Takahashi–Slavnov–Taylor identities. Moreover, it contains information about the counterterms.
In order to keep track of the loop expansion, we temporarily reintroduce the factors �, the n-th order in � being the n + 1-th order
in loops. Then, by expanding � in powers of � and using the master equation, it is possible to show that the divergent part of the
effective action satisfies the equation

σ�
(n)
div � 0, (2.43)

2 This symmetry is not spoiled by radiative corrections since both Feynman rules and the diagrammatics are compatible with it.
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where �
(n)
div is the divergent part of the functional �(n), which we assume to be convergent up to the order �

n−1. If a functional X
satisfies σ X � 0, we say that it is σ -closed, while if it is such that X � σY , where Y is another functional, we say that it is σ -exact.
The general solution of (2.43) can be written as

�
(n)
div(�, K ) � G̃n(�, K ) + σ X̃n(�, K ), (2.44)

where G̃n is a σ -closed local functional. In order to prove renormalizability we need to ensure that it is possible to move all the
dependence on the sources and unphysical fields into the σ -exact term. This means that the solution (2.44) is reorganized in the form

�
(n)
div(�, K ) � Gn(h) + σ Xn(�, K ), (2.45)

where the functional Gn now depends only on the metric fluctuation and is gauge invariant, being σ -closed. This is the Kluberg-
Stern–Zuber conjecture mentioned above, which is now proved by a theorem [32]. We give some additional properties of �, �(n)

div

and Xn , which allow us to write �(n)
div in a more explicit form

(1) The divergent part cannot depend on B, KC̄ and KB because no vertices of the action (2.38) contain them, so no one-particle
irreducible diagrams can be built with B, KC̄ and KB .

(2) � depends on Kg and C̄ only through the combination

K̃μν
g ≡ Kμν

g + α�
∫

δGρ
δgμν

C̄ρ. (2.46)

This property ensures that also �
(n)
div depends on Kg and C̄ only through K̃g . In fact, given a diagram with an external Kμν

g leg,

there exists an almost identical diagram where the Kμν
g leg is replaced by a α�

∫ δGρ

δgμν
C̄ρ leg and viceversa.

(3) Xn also depends on Kμν
g and C̄ρ via the combination K̃μν

g . The proof of this property is as follows. The dimension of Xn and
its ghost number imply that we can parametrize it as

Xn(�, K ) �
∫

�gμνK
μν
g +

∫
�CρKC

ρ +
∫

C̄ρLρ , (2.47)

where Lρ is a function of dimension 3 and ghost number zero, while �gμν and �Cρ are the renormalizations of the metric
tensor and the Faddeev-Popov ghosts, respectively. Then, from the expression (2.45) and property 1) it follows that also σ Xn

does not depend on B. In σ Xn the terms linear in B are

σ Xn |B �
∫ (

δr S

δgμν

δl Xn

δKμν
g

− δr Xn

δC̄ρ

δl S

δKC̄
ρ

)∣
∣
∣
∣
∣
B

�
∫

Bρ

[

α�
∫

δrGρ
δgμν

�gμν + Lρ

]

. (2.48)

Therefore, the expression in the squared bracket in (2.48) must vanish, which implies that the terms proportional to Kg plus
those proportional to C̄ in Xn are

Xn(�, K )|Kg ,C̄ �
∫ [

�gμνK
μν
g − C̄ρα�

∫
δrGρ
δgμν

�gμν

]

�
∫

�gμν K̃
μν
g . (2.49)

From the properties listed above we deduced that

Xn(�, K ) �
∫

�gμν K̃
μν
g +

∫
�CρKC

ρ . (2.50)

Although �
(n)
div can be written in the form (2.45), it is still possible that the σ -exact term contains terms that depend only on the

physical fields. More explicitly, a straightforward calculation gives

σ Xn �
∫

δSHD

δgμν
�gμν −

∫
�Rμν K̃

μν −
∫

�RρKC
ρ , (2.51)

where

�Rμν � − σ�gμν +
∫

�gαβ
δl (sgμν)

δgαβ
+

∫
�Cτ δl (sgμν)

δCτ
, (2.52)

�Rρ � − σ�Cρ +
∫

�Cτ δl (sC
ρ)

δCτ
(2.53)

We can see that there is a term proportional to the equations of motion, which depends only on the metric. Then, if we split the
metric as in (2.3) we have

�gμν � t0gμν + t1hμν + t2ημνh + O(h2), (2.54)
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where ti are (gauge-dependent) coefficients that depend on the parameters in (2.1), which makes the term proportional to the
equations of motion non-covariant. Therefore, when we compute the divergent part of a Feynman diagrams with only graviton
external legs, we would get also the terms proportional to the equations of motion. In practice, this mean that those terms always
need to be taken into account when computing the divergent part of diagrams in Stelle theory and, in general, the results obtained in
this way are not covariant. In other words, the functional Gn cannot be written as a function of gμν only but it depends also on hμν
in an independent way. Only after removing those terms, we can safely conclude that any other one-particle irreducible diagrams
would generate divergent terms that sum together to give a covariant result. Another way to see this is to consider the wave functions
renormalization of hμν and its trace as independent. This depends on the gauge choice since the wave function renormalization are
unphysical. For example, the background field method, which can be seen as a gauge choice, takes care of terms like those in σ Xn .
If we do not choose a particular gauge or a method that preserves general covariance at each steps, we can remove the σ -exact term
by means of the transformation

�i ′ � �i − δXn(�, K )

δK ′
i

, K ′
i � Ki − δXn(�, K )

δ�i
. (2.55)

which is canonical, i.e. preserves the antiparentheses. In components, it reads

h′
μν � hμν − �gμν , C ′σ � Cρ − �Cρ , C̄ ′τ � C̄τ , B ′ν � Bν , (2.56)

while the sources transform as

K ′μν
g � Kμν

g + K̃ αβ
g

δ�gαβ
δhμν

− KC
σ

δ�Cσ

δhμν
, K ′C

σ � KC
σ − KC

α

δ�Cα

δCσ
,

K ′C̄
τ � KC̄

τ , K ′B
τ � K B

τ .

(2.57)

We obtain

�
(n)
div(�′, K ′) � �

(n)
div(�, K ) − σ Xn(�, K ) �

∫ √−g

[

2
n + ζn R +
αn

2
C2 − ξn

6
R2

]

, (2.58)

where all the terms of dimension 0, 2 and 4 have been included as possible counterterms and the parameters with the subscript n
denote the renormalization of the associated quantities.

We stress that we used the fact that the divergent terms can be organized as (2.45) in any gauge. Additional details can be found in
[32] and [29]. However, we could choose a gauge fixing and a parametrization of the graviton field [11] such that�gμν � �Cρ � 0,
so Xn is zero and the transformation (2.55) is trivial. In that case, no terms proportional to the equations of motion appear, the
counterterms are gauge invariant and there is no need to use the theorem that shows (2.45) to prove renormalizability in that specific
setting.

3 Unitarity and cutting identities

In this section we recall how unitarity is formulated diagrammatically by using the so-called cutting equations. Unitarity is the
condition

SS† � 1 (3.1)

on the S matrix, which can be rewritten in terms of its nontrivial part T as

−i(T − T †) � T T †. (3.2)

The matrix elements of Eq. (3.2) are obtained by choosing initial and final states, |i〉, | f 〉 and by inserting the completeness relation
between T and T † on the right-hand side of (3.2)

−i〈 f |(T − T †)|i〉 �
∑

|n〉

∫
d�n〈 f |T |n〉〈n|T †)|i〉, (3.3)

where the sum runs over all the possible final states and the integral symbolically denote the integration over the phase space of
those final states. The matrix element 〈 f |T |i〉 is associated to the amplitude A f i up to a δ function for the conservation of four
momentum. If we write Eq. (3.2) in terms of the amplitudes for an elastic scattering, i.e. | f 〉 � |i〉, we obtain

2ImA(f)
i i (s) �

∑

n

∫
d�n |Ain |2� 2�σtot(s), (3.4)

where A(f) is the forward amplitude, s is the center-of-mass energy squared, � is the flux factor of initial particles and σtot is the
total cross sections. This has a more familiar form known from the optical theorem in nonrelativistic scattering and this is why
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also (3.2) is named like that. However, Eq. (3.2) is more general, since it is valid for any type of process and on its right-hand side
typically involves quantities that are not cross sections. Since quantum field theory is defined perturbatively by means of Feynman
diagrams, Eq. (3.2) can be expanded diagrammatically, obtaining a set of equations order by order. There is a more powerful set
of identities that are valid diagram by diagram: the cutting equations, which hold in any local quantum field theory.3 From now on
we refer to them as cutting identities. However, only if the theory satisfies additional requirements the cutting identities imply the
optical theorem.

The first step to derive the cutting identities is the largest-time equation, which is their coordinate-space version. For the purpose
of this section we consider only the scalar ϕ3 theory given by the action (2.26) without the higher-derivative terms. The generalization
to fermions, gauge theories and gravity involves some caveats related to gauge invariance, which we do not address here. More
details can be found in [33, 34]. First, we recall that the Feynman propagator

Di j (x) �
∫

d4 p

(2π )4

i

p2 − m2 + iε
e−i px , x ≡ xi − x j (3.5)

can be written as

Di j (x) � θ (x0)D+
i j (x) + θ (−x0)D−

i j (x), (3.6)

where

D±
i j (x) �

∫
d3p

(2π )3

e∓iω(p)x0
e±ip·x

2ω(p)
, ω(p) ≡

√
p2 + m2,

θ is the Heaviside step function and the bold symbols represent the space components of vectors. Then, consider a generic Feynman
diagram represented by a function F(x1, . . . , xn), where each spacetime point xi is associated to a vertex. For example, a one-loop
three-point function is given by

F(x1, x2, x3) � (−iλ)3D12D23D31, (3.7)

where λ indicates a generic coupling constant. We introduce another function where one or more xi are marked by a hat. The new
function is obtained from F by means of the following substitutions

Di j (x̂i − x j ) → D+
i j , Di j (xi − x̂ j ) → D−

i j , Di j (x̂i − x̂ j ) → (Di j )
∗. (3.8)

Moreover, each vertex associated with a marked point must be substituted with its complex conjugate. Using the example above we
can have

F(x̂1, x̂2, x3) � (−iλ)3(D12)∗D+
23D

−
31. (3.9)

Now, suppose that a time component x0
i for some i is larger than all the others. Then any diagram where xi is not marked is equal to

minus the same diagram in which xi is marked. This follows straightforwardly from the definition of marked points and from (3.6).
For example, in the case of the three-point function above, assuming that x0

1 is the largest time component, we can write

F(x1, x2, x3) � (−iλ)3D12D23D31 � (−iλ)3D+
12D23D

−
31 � −F(x̂1, x2, x3), (3.10)

F(x1, x2, x̂3) � −(−iλ)3D12D
−
23D

+
31 � −(−iλ)3D+

12D
−
23D

+
31 � −F(x̂1, x2, x̂3) (3.11)

and so on. Therefore, for any time configuration we have a set of identities that hold by construction, as long as it is possible to
determine which time component is the largest, i.e. the vertices are local, and they have distinct times. Coincident points can generate
contact terms which do not spoil the result [34]. We can write the largest-time equation in a compact form without specifying which
time component is the largest as

∑

m

Fm(x1, . . . , x̂i , . . . , x̂ j , . . . , xn) � 0, (3.12)

where the sum runs over all the possible ways of marking the points (including the cases where all and no vertices are marked) and
the Fm are the diagram with marked vertices. Then we can take the Fourier transform of (3.12). The Fourier transform of D± can
be written in the form

D̃±(p) � 2πθ (p0)ρ(p2), (3.13)

where ρ(p2) is a distribution such that the Fourier transform of the propagator is

D̃(p) �
∞∫

0

ds

2π

iρ(s)

p2 − s + iε
. (3.14)
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Fig. 1 On the top, the cutting
identity for a tree-level diagram.
On the bottom, the cutting identity
for the bubble diagram

In the case of a standard scalar field theory we have

ρ(p2) � δ(p2 − m2), D̃(p2) � i

p2 − m2 + iε
, D̃± � 2πθ (±p0)δ(p2 − m2). (3.15)

In order to have a better graphical view, we introduce cut diagrams, instead of marked ones, where an internal line is cut if it connects
a marked vertex with an unmarked one. The cut is represented by a continuous line and has a “shaded region” on the side where the
marked vertex lies, which represents the energy flow given by the θ -functions in (3.13). In practice, the cut diagrams are obtained
from the main diagram by means of the substitution

i

p2 − m2 + iε
→ 2πθ (±p0)δ(p2 − m2) (3.16)

for each cut propagator and by complex conjugating everything that lies on the shadowed region. Finally, a diagram where all the
vertices lie in the shadowed region correspond to the complex conjugate of the diagram with no cut. With these definitions we can
write the cutting identities

G + G∗ � −
∑

cuts

Gc, (3.17)

where G is the diagram in momentum space and Gc are the cut diagrams. Simple examples of the cutting identities are given by
those in Fig. 1. The one on the top reads

−λ2
(

i

p2 − m2 + iε
+

−i

p2 − m2 − iε

)

� −λ22πθ (p0)δ(p2 − m2) − λ22πθ (−p0)δ(p2 − m2)

� −λ22πδ(p2 − m2).

(3.18)

The identity on the bottom in Fig. 1 is shown by considering equal masses m for the particles in the loop. In that case the bubble
diagram reads

B(p2) � − iλ2

2(4π )2

1∫

0

dx ln

(−xp2(1 − x) + m2 − iε

μ2

)

+ Bdiv, (3.19)

where x is a Feynman parameter,μ is the renormalization scale and Bdiv is the divergent part of the diagram evaluated in dimensional
regularization, which might contain also some finite constant depending on the scheme. Therefore,

B + B∗ � − λ2

16π
θ (p2 − 4m2)

√

1 − 4m2

p2 . (3.20)

Note that Bdiv cancels in (3.20), since it is always purely imaginary. The cut diagrams are

B12 � λ2
∫

d4q

(2π )2 θ (p0 + q0)δ((p + q)2 − m2)θ (−q0)δ(q2 − m2) (3.21)

and analogous expression for B21, where the subscripts indicate the energy flow. It is easy to check the identity by direct computation
and show that

B + B∗ � −B12 − B21. (3.22)

In this case, where the scalar field propagator has a positive residue, the cutting identities are equivalent to the optical theorem. For
example, remembering that G � iT , the right-hand side of (3.20) is equal to the right-hand side of (3.3) when the initial state is

3 Here locality means that it is possible to build consistent Feynman rules that involve local vertices.
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a single particle with center-of-mass energy squared p2 and the final state is two particles of mass m2. Note that the θ -function
in (3.20) gives the correct kinematical condition p2 > 4m2 for the decay to happen. However, it is not always true that (3.17)
implies (3.2). In fact, we did not assume any positivity property on the distribution ρ in (3.13) to prove (3.17), which, instead, is
crucial for the optical theorem. The simplest example is the case of a ghost. In that case we have ρ � −δ(p2 −m2) and the right-hand
side of (3.18) does not have the correct sign to match the right-hand side of (3.3).

In general we can say that the cutting identities implies a modified version of the optical theorem called pseudounitarity equation,
which, written in a compact form, reads

−i(T − T †) � TCT †, C � diag(1, . . . , 1, − 1, . . . , − 1, . . .), (3.23)

where the minus ones in the matrix C depend on the presence of ghosts in the theory. Therefore, the task of determine whether
a theory is unitary or not reduces to find a way to deal with the matrix C. For example, in gauge theories the matrix C is not the
identity, due to the presence of Faddeev-Popov ghosts as well as longitudinal and temporal component of the gauge fields. However,
thanks to the BRST symmetry it is possible to project the Fock space onto a subspace which is generated only by creation operators
of the physical fields, i.e. the transverse gauge bosons. This operation is consistent with unitarity and the degrees of freedom that
are projected out in this way are not generated back by loop corrections. In the next section we show that it is possible to achieve
the same type of projection without the help of a symmetry by changing the quantization prescription for the degrees of freedom
that we want to remove from the spectrum. However, there is a crucial difference in the case of the fakeon prescription: unlike the
BRST case, purely virtual particles are not unphysical, so they can still contribute to the interactions between other standard degrees
of freedom and give physical effects.

4 Spectral identities and unitarity with fakeons

In this section we show how to turn a standard degree of freedom into a purely virtual particle. This result is achieved by means
of a set of operations that we call the fakeon prescription. There are a few different equivalent ways of implementing the fakeon
prescription. Here we present what we believe to be the clearest one, i.e. via the so-called threshold decomposition. The amplitudes
are obtained by using the Feynman prescription for every propagator in the theory and only at the end an additional step is performed.
In this way it is clear which properties of the standard Feynman prescription survive the fakeon prescription and which get modified.
Roughly speaking, what we want to achieve with the fakeon prescription is to remove all the parts of the amplitudes that are related
to the (would-be-purely-virtual) particle being on-shell. For example, the real part of the bubble diagram (3.19) tells whether the
particle in the external line can decay into the (on-shell) particles in the loop, as shown in (3.20). Once those pieces are subtracted,
we perform a projection at the level of the Fock space by choosing to work in a subspace where the particles that we want to
make purely virtual are not external legs. Combining the two operations (removing pieces of the amplitudes and projecting onto a
subspace) guarantees that quantum corrections will not generate back the degrees of freedom that we remove from the set of particle
that can appear on shell.

In order to identify the subtractions, we decompose the amplitudes as sums of terms that are associated to single thresholds. In
Feynman diagrams thresholds tell which kinematic configurations allow for the virtual particles to become on shell. To obtain the
threshold decomposition it is sufficient to integrate each Feynman diagram over the loop energies. The integral over space momenta
is postponed to after the decomposition is performed.

We consider one-loop diagrams, the generalization to higher loops can be found in [35]. Moreover, we derive the decomposition
for a scalar theory, since all the crucial points are related to the singularities and branch cuts of the amplitudes, which are not modified
by the presence of nontrivial numerators. For a one-loop diagram with N legs, we define the skeleton diagram as

Gs
N �

∫
dq0

2π

N∏

a�1

2ωa

(q0 + k0
a)2 − ω2

a + iεa
, ωa �

√
(q − ka)2 + m2

a , (4.1)

where ka are the external momenta.4 With this definition, a standard Feynman diagram is

GN �
∫

dD−1q
(2π)D−1

(
N∏

a�1

1

2ωa

)

Gs
N . (4.2)

The skeleton diagrams satisfy the identity [35]

Gs + (Gs)∗ � −
∑

cuts

Gs
c, (4.3)

4 In order to have more symmetric formulas we have introduced one momentum for each external leg, which is redundant.
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where Gs
c are the cut skeleton diagrams. Moreover, each diagram in (4.3) can be decomposed into a sum of independent terms,

which means that (4.3) gives a set of identities that holds independently. The decomposition works as follows. First, perform the
integral over the loop energies by means of the residue theorem. After this operation, the result has the form

Gs
N �

∑

i

c′
i

N∏

j�1

1

D′
i j

, (4.4)

where the coefficients c′
i can depend on the spatial external momenta and the denominators D′ are linear combinations of external

energies k0
a and frequencies ω′

a � ωa − iεa . It is always possible to manipulate the above expression such that the denominators
contain only sums of frequencies, i.e.

Gs
N �

∑

i

ci

N∏

j�1

1

Di j
, Di j � P0 −

∑

a

ω′
a , (4.5)

where P0 is a combination of external energies k0
a . This means that the true physical nonanalyticities are always associated to

thresholds which Lorentz invariant expressions have the form

P2 ≥
(

∑

i

mi

)2

, (4.6)

where P2 is some invariant build with external momenta and mi are internal masses. Thresholds that contains differences of masses
are called pseudothresholds and they need to disappear from the amplitudes in order to have a physically consistent theory. In fact,
pseudethresholds are responsible for instabilities. For example, if the pseudothreshold

P2 ≥ (m1 − m2)2, (4.7)

is present, then a particle with squared mass P2 � m2 would be allowed to decay into two heavier particles with massesm1, m2 > m
as long as their difference satisfies the bound.

The absence of pseudothresholds is nontrivial and depends on the choice of the prescription. In fact, the location of the poles in
the loop-energy complex plane might change with different prescriptions and the integration contour used in the residue theorem
would enclose different poles. For example, choosing the Feynman prescription for each degrees of freedom fixes the relative sign
between ωa and iεa to be the same in every ω′

a . In general, mixing the prescription could change that. An example is given by mixing
Feynman and anti-Feynman prescriptions in the same diagram by choosing the former for some degree of freedom and the latter
for others. In that case, some of the physical thresholds are switched with pseudothresholds [36]. From what follows, it is clear that
mixing the Feynman prescription and the fakeon prescription does not lead to instabilities and the pseudothresholds still cancel.

Once a skeleton diagram is reduced in the form (4.5) we apply the formula

lim
ε→0+

1

x + iε
� P 1

x
− iπδ(x), (4.8)

to each term, where the limit is understood in the sense of distributions and P is the Cauchy principal value. At this level each
threshold, or at least what would be a threshold once we finalize the integral over the space components of loop momenta, is
associated with a delta function. It is important to separate the terms that contain independent thresholds. For this purpose we
introduce a few definitions in order to rewrite the skeleton diagram. We define

Pab � P 1

ea − eb − ωa − ωb
, Qab � P 2ωb

(ea − eb − ωa)2 − ω2
b

, �ab � πδ(ea − eb − ωa − ωb), (4.9)

where ea ≡ k0
a and the subscripts a, b etc... label the internal legs. For example the skeleton bubble and skeleton triangle diagrams

are

Bs � −iP2 − �12 − �21 (4.10)

Cs � −iP3 +
∑

perms

[

−�abQac +
i

2
�ab(�ac + �cb)

]

, (4.11)

respectively, where

P2 � P12 + P21, P3 � P12P13 + cycl + (e → −e). (4.12)

In general the quantity Pn is a sum of products of n−1 different Pab and always contains the ultraviolet divergences of the associated
diagram.

Each Feynman diagram, as well as the correspondent cut diagrams, can be decomposed in this way (see [35] for a general
strategy). It is useful to show these results in a table. The case of the bubble diagram is depicted in Table 1, where each column below
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Table 1 Threshold decomposition
of the bubble diagram and its cut
diagrams

Terms Diag.

P2 −i i 0 0
�12 −1 −1 2 0
�21 −1 −1 0 2

Table 2 Threshold decomposition
of the triangle diagram and its cut
diagrams

Terms Diag.

P3 −i i 0 0 0 0 0 0
�12Q13 −1 −1 2 0 0 0 0 0
�23Q21 −1 −1 0 2 0 0 0 0
�31Q32 −1 −1 0 0 2 0 0 0
�21Q23 −1 −1 0 0 0 2 0 0
�32Q31 −1 −1 0 0 0 0 2 0
�13Q12 −1 −1 0 0 0 0 0 2
�12�13

i −i 2i 0 0 0 0 −2i

�23�21
i −i 0 2i 0 −2i 0 0

�31�32
i −i 0 0 2i 0 −2i 0

�21�31
i −i 0 0 2i −2i 0 0

�32�12
i −i 2i 0 0 0 −2i 0

�13�23
i −i 0 2i 0 0 0 −2i

the diagrams shows the coefficients of the decomposition that multiply the terms in the first column. The sum of the diagrams in the
table vanishes due to the cutting identities. However, it is clear from the table that each row cancel independently. This new set of
identities are called spectral identities. In general, the independent terms that compose a skeleton diagram can be separated by the
number of� that they contain. Indeed, in more complicated diagrams different products of�’s appear. The threshold decomposition
of a L-loop diagram with N legs G(L)

N and its cut diagrams G(L , n)
N can be schematically written as

G(L)
N � −iP (L)

N +
∑

j

∑

m

c jO j�,m (4.13)

G(L ,n)
N �

∑

j

∑

m

c(n)
j O j�,m , (4.14)

where O j�,m are terms that contain j number of �’s, m labels the number of terms with the same j, n labels the number of cut

diagrams and c j , c
(n)
j are constant coefficients. The spectral identities then read

c j + c∗
j +

∑

n

c(n)
j � 0, ∀ j. (4.15)

Moreover, a few other properties can be derived. First, by construction, the coefficients with even number of�’s are purely imaginary,
while those with an odd number are real, i.e.

Re[c2r ] � Re
[
c(m)

2r

]
� 0, Im[c2r+1] � Im

[
c(m)

2r+1

]
� 0, ∀r ,m. (4.16)

Then, from this property and the spectral identities it follows that
∑

m

c2r � 0, ∀r. (4.17)

These properties can be better appreciated in the case of the triangle diagram shown in Table 2.
The spectral identities (4.15) and the threshold decomposition allow us to reduce the optical theorem to a set of algebraic equations.

To summarize, the sum of the spectral identities of a given diagram gives the cutting identities for that diagram, while the sum of
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Table 3 The threshold
decomposition of a triangle
diagram and its cut diagrams
where particle 1 is purely virtual

Terms Diag.

P3 −i i 0 0
�23Q21 −1 −1 2 0
�32Q31 −1 −1 0 2

the cutting identities implies the optical theorem. As mentioned in Sect. 3, the last implication is true only if some conditions are
satisfied, for example, if all the degrees of freedom have positive residue. In the case of gauge theories it is necessary to include
Faddeev-Popov ghosts in order to obtain unitarity in the Fock subspace where they are projected away, together with the longitudinal
and temporal components of the gauge fields. On the other hand, theories with ghosts satisfy the cutting identities but violate the
optical theorem. However, thanks to the threshold decomposition and the spectral identities we know how to modify the amplitudes
and obtain a unitary theory in the subspace where some degrees of freedom are removed from the states that can be on shell. This is
achieved by simply setting to zero all the �’s that contain at least one frequency associated to the particles that we want to remove
from the spectrum, i.e. �ab � 0 if the leg a and/or b is purely virtual. Indeed it is easy to see from Tables 1 and 2 that if we cancel
any row we would just remove one of the spectral identities, which hold independently.

For example, Table 2 reduces to Table 3 if particle 1 is purely virtual. Note that, after setting to zero every �1, a also some of
cut diagrams vanishes (those where particle-1 leg is cut). In the end the surviving rows still sum to zero. Therefore, when ghosts
are present, if we remove the rows that are responsible for the violation of the optical theorem, we get a modified set of cutting
identities which imply unitarity, once we project onto the subspace where the ghosts are not external states. In other words, the
fakeon prescription allows us to consistently remove the ghosts (or any degrees of freedom we decide to) from the physical spectrum
without relying on a symmetry and without changing the properties under renormalization (we never cancel the row that contains
Pn). Note that this removal is a true one and it is understood at any energy. This makes purely virtual particles radically different
from resonances or unstable particles, for which always exists a Lorentz frame where they can be long lived and therefore detectable
as every other particle.

In practice, the operation just described can be implemented by simply changing (4.8) into

1

x + iε
→ P 1

x
− iτπδ(x), (4.18)

where τ � 0 if x contains at least one fakeon frequency and τ � 1 otherwise. Then we can safely consider only diagrams where the
purely virtual particles do not appear in the external legs. This is the fakeon prescription, which can be applied to both ghosts and
standard particles and is consistent at any loop order [35, 37].

A given amplitude Af in theories with fakeons, which is obtained using (4.18), can be written as

Af � A − �fA, (4.19)

where A is a standard amplitude obtained using the Feynman prescription and �fA is a functions obtained by summing all the terms
that need to be set to zero by the fakeon prescription. This subtraction has been explicitly calculated in [38] for the case of one-loop
bubble, triangle and box diagrams, which are the most relevant in particle physics phenomenology. The modified functions exhibit
new nonanalyticities and singularities that can be used to discriminate models with fakeons from models without. It is even possible
to explore the possibility that fakeons might exist in general, regardless the problem of ghosts in quantum gravity. For example, in
[39] a inert-doublet model where the new scalars are turned into fakeons has been considered as an extension of the standard model
and compared with the standard inert-doublet model. The results show that in some portion of the parameters space the two models
can be quite different. In particular, it was shown that the contribution to the decay of the Higgs boson into two photons differs in the
two cases due to the modifications of the form (4.19). Another possibility is to consider whether one of the particles in the standard
model can be purely virtual or not. The only particle that cannot be ruled out from being a fakeon by the present experimental data
is the Higgs boson [40]. This possibility is more interesting because there is no freedom in the parameters space and therefore we
can look for some energy domains where the differences between the two cases (standard Higgs versus purely virtual Higgs) are
relevant. This will be published in a forthcoming paper [41].

The fakeon prescription opens the way for a new understanding of model building and particle physics. However, its main
application remains quantum gravity. Although in principle quantum gravity with purely virtual particles can be discriminated from
Stelle gravity or Einstein theory in terms of scattering amplitudes, it is quite challenging from the practical point of view, given the
energies in play. Instead, a good arena where to test quantum gravity is inflationary cosmology. In the next section we show how to
obtain an important prediction from quantum gravity in that context.
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5 Quantum gravity with purely virtual particles and cosmology

In this section we write the action (2.1) in an alternative form, in order to make clear the presence of the ghost and show how to
apply the fakeon prescription. Then we proceed with the derivation of observables in inflationary cosmology and derive a prediction
for the tensor-to-scalar ratio.

The procedure to rewrite the action is a composition of a Weyl transformation and a metric field redefinition, together with the
introduction of scalar and spin-2 auxiliary fields φ and χμν , respectively. The details can be found in [42]. The result of this procedure
is that the action (2.1) can be rewritten as

SHD(g,φ,χ) � S̃HE(g) + Sχ (g,χ) + Sφ(g + ψ ,φ), (5.1)

where

S̃HE(g) � − 1

2κ2

∫ √−g
(

2
̃C + ζ̃ R
)

,

̃C


C
�

(

1 +
2

3

(α + 2ξ )
C

ζ 2

)

, ζ̃ � ζ

̃C


C
, (5.2)

Sφ(g,φ) � 3ζ̂

4

∫ √−g

[

∇μφ∇μφ − m2
φ

κ2

(
1 − eκφ

)2

]

, ζ̂ � ζ

(

1 +
4

3

ξ
C

ζ 2

)

, (5.3)

and Sχ (g, χ) is the covariantized Pauli–Fierz action with the “wrong” sign for the kinetic term plus nonminimal couplings and
infinite interactions between g and χ , i.e.

Sχ (g,χ) � − ζ̃

κ2 SPF(g,χ ,m2
χ ) − ζ̃

2κ2

∫ √−gRμν(χσ
σχμν − 2χμρχ

ρ
ν) + S(>2)

χ (g,χ), (5.4)

SPF(g,χ ,m2
χ ) � 1

2

∫ √−g
[∇ρχμν∇ρχμν − ∇ρχ

μ
μ∇ρχν

ν + 2∇μχ
μν∇νχ

ρ
ρ − 2∇μχ

ρν∇ρχ
μ
ν

−m2
χ (χμνχ

μν − χμ
μχ

ν
ν)

]
(5.5)

where S(>2)
χ (g, χ) contains terms that are at least cubic in χ . They can be derived from the Einstein-Hilbert action as

Sχ (g,χ) � S̃HE(g + ψ) − S̃HE(g) − 2
∫

χμν
δ S̃HE(g + ψ)

δgμν
+

ζ̃ 2

2ακ2

∫ √−g(χμνχ
μν − χμ

μχ
ν
ν)

∣
∣
g→g+ψ

, (5.6)

and

ψμν � 2χμν + χμνχ
ρ
ρ − 2χμρχ

ρ
ν . (5.7)

Finally, the squared masses of φ and χ read

m2
φ � ζ

ξ
, m2

χ � ζ̃

α
. (5.8)

We highlight that the tilde and hat quantities are useful to deal with a nonvanishing cosmological constant and derive the correct
change of variables that makes only mχ modified by 
C . In the case where the cosmological constant is negligible, all the tilde and
hat quantities are equal to the usual ones and it is convenient to choose

ψμν � 2χμν. (5.9)

For details, see [42].
Now that all the degrees of freedom are manifestly represented by fields, it is clear how to apply the fakeon prescription: in

every diagram we set to zero all the �’s that contain a frequency associated to χ . Then we restrict only to diagrams with external
hμν and/or φ legs. In general we can couple any type of matter � to quantum gravity and the interactions in the variables (5.1) are
obtained by means of the substitution

Sm(g,�) → Sm(geκφ + ψeκφ ,�), (5.10)

where Sm is the action of matter.
We stress that the action (2.1) [or (5.1)] is an interim one. This means that it is not the action that we would obtain in the classical

limit. Roughly speaking, the reason is that the fakeon is a purely quantum object and does not have a classical counterpart. Therefore,
the fakeon prescription and all its physical effects cannot be derived from a classical action. We first need to start from a quantum
theory with the desired properties and then perform the classical limit. We call the true classical action the projected action and the
interim one the unprojected action. Then, one could wonder why we do not start directly from the projected action, where the fields χ
are already projected away, and quantize it with standard techniques. There are various reasons for this. First, it is very hard to obtain
it explicitly, since the fakeon prescription is derived from perturbative quantum field theory, the whole procedure is also perturbative
and it is not known at the moment how to implement it at a nonperturbative level. Moreover, the projected nonperturbative action
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is expected to be nonlocal and rather cumbersome. The good of using action (2.1) is that it is local and we can define Feynman
rules as usual (although we eventually modified the results as explained in Sect. 3). We could think of this in a reversed way as
follows. Assume that a nonperturbative projected action of (5.1) exists and it is known explicitly. This action, Sproj

np (g, φ), would be
dependent only on the metric and the scalar field φ (and on other physical fields, if present). Moreover, it would be of a form where
renormalizability is not manifest and it is complicated (or even impossible) to define Feynman rules. The fakeon prescription tells
us that it is possible to introduce a new field χ and define a new action S(g, φ, χ), which is physically equivalent to Sproj

np , provided
that the fakeon prescription is used for χ . The new action is (5.1) and such that

S(g,φ,χ(g,φ)) � Sproj
np (g,φ), (5.11)

where χ(g, φ) is obtained from the nonperturbative version of the fakeon prescription. The advantage of S(g, φ, χ) is that it is
local. Moreover, being also equivalent to (2.1), it can be proved to be renormalizable, as explained in Sect. 2. At the present it is
possible to obtain only the perturbative version of projected action by studying the classical limit of the fakeon prescription, which
is enough to work out predictions. Some explicit examples for simpler models have been obtained in [43]. The projected action in
the case of gravity has been derived at quadratic level in the perturbations around inflationary background at several orders in the
slow-roll expansion [44, 45] as we review below.

5.1 Inflation

The theory of quantum gravity with purely virtual particles can be tested in the context of inflationary cosmology. In fact, the scalar
degree of freedom introduced by the R2 term can be viewed as the inflaton and used to explain the anisotropies of the cosmic
microwave background [17]. Since our action contains also the C2 term, we need to treat it in a fashion similar to what is explained
in Sect. 3 in the case of scattering amplitudes. For this reason, it is necessary to understand the fakeon prescription in curved
spacetime. As explained below, this task is simplified by the fact that in cosmology we do not need to go as far as computing loop
corrections. Therefore, we can work with the classical limit of the fakeon prescription [44].

It is more convenient to use the action

S(g,φ) � − M2
Pl

16π2

∫ √−g

(

R +
1

2m2
χ

CμνρσC
μνρσ

)

+
1

2

∫ √−g
[∇μφ∇μφ − 2V (φ)

]
, (5.12)

V (φ) � m2
φ

2κ̂2

(
1 − eκ̂φ

)2
, κ̂ � M−1

Pl

√
16π/3, (5.13)

where we have explicitly introduced the Planck mass M2
Pl � 8π2ζ/κ2, the fakeon mass m2

χ � ζ/α and the inflaton mass m2
φ � ζ/ξ ,

and we have canonically normalized the field φ. Moreover, we set the cosmological constant to zero since it is unimportant for our
purposes. Alternatively, it is possible to use directly the action (2.1). Here we consider only the action (5.12). The two possibilities
are physically equivalent and they are connected by perturbative redefinitions of the quantities [44].

Before to proceed we fix some notation. We expand the action (5.12) around the Friedmann-Lemaître-Robertson-Walker (FLRW)
background

gμν � ḡμν + δgμν ḡμν � diag(1, − a2, − a2, − a2) (5.14)

up to the quadratic order in the perturbations δgμν , where a(t) is the scale factor. We anticipate to the reader that in the end only
the tensor and scalar perturbations propagate and no vector or additional tensors/scalars are present due to the fakeon projection.
Therefore, instead of going through the details for the two cases separately, we show the general procedure which is valid for both
(specifying the differences where necessary) and then present the power spectra and the spectral indices.

We work in space Fourier transform and label the space momentum as k and its modulus as |k|� k. We define the slow-roll
parameter

ε ≡ − Ḣ

H2 , H � ȧ

a
(5.15)

and express every quantities as power series in ε, up to overall, non-polynomials factors. In particular, it is easy to show that

dnε

dtn
� HnO(ε

n+2
2 ) (5.16)

so other slow-roll parameters that are typically defined in the literature, such as η ≡ 2ε − ε̇
2 Hε

, are also series in ε. In general,
inflationary models contain one independent slow-roll parameter for each field that participates to inflation. It is also useful to derive
the expansions

H �mφ

2

(

1 −
√

3ε

2
+

7ε

12
+ O(ε3/2)

)

,
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v ≡ − aHτ � 1 + ε + O(ε3/2).

where τ is the conformal time

τ � −
+∞∫

t

dt ′

a(t ′)
, (5.17)

with the initial condition chosen to have τ � −1/(aH ) in the de Sitter limit ε → 0. Moreover, it is convenient to define

λ ≡ κ̂ φ̇

2H
�

√

− Ḣ

3H2 �
√
ε

3
, (5.18)

since every quantity is an expansion in
√
ε (and eventually also in k). The parameter λ is small during inflation and can be viewed

as a “coupling constants” from which the whole process of cosmic inflation is interpreted as a sort of “renormalization-group flow”
[46], in analogy with particle physics. This is a mathematical correspondence between the quantities in inflation and in perturbative
quantum field theory and it is useful to systematize the computations by exporting the techniques of the latter to the former. This
idea is generalized for several single-field inflationary models [47], where potentials can be classified and even ruled out. The case
of double field inflation is studied in [48]. For future use we write the background field equations in terms of λ. The Friedmann
equations are

Ḣ � −3κ̂2

4
φ̇2, H2 � κ̂2

4

(
φ̇2 + 2V

)
, φ̈ + 3H φ̇ +

dV

dφ
� 0. (5.19)

Then, by combining Eq. (5.19), it is easy to show that the parameter λ satisfies

λ̇

H
� −3λ(1 − λ2) − κ̂

2H2

dV

dφ
. (5.20)

Finally, we denote with uk(t) the space Fourier transform of a general perturbation and the power spectrum of Pu is defined as

〈uk(τ )uk′ (τ )〉 � (2π)3δ(3)(k + k′) 2π2

k3 Pu , Pu � k3

2π2 |uk|2. (5.21)

Moreover, replacing |τ | by 1/k∗, where k∗ is a reference scale, we write

ln Pu(k) � ln Au + nu ln
k

k∗
, (5.22)

where Au and nu are called amplitude and spectral index, respectively. From now on we omit the subscript k in the perturbations
and simply write u(t). Terms like uu̇ are understood as either uku̇−k or u−ku̇k.

In the case of tensor perturbations, the quadratic action is of the form

S(u) � M2
Pl

8π

∫
dt a(t)3

[

f (t)u̇2 − g(t)u2 − 1

m2
χ

ü2

]

, (5.23)

where f and g are time-dependent functions. Note that, because of the C2 term, there is a higher-derivative term, as expected. At
this level, it is convenient to remove it with a field redefinition and introduce explicitly an additional perturbation. In order to do this
we consider the extended action

S′(u, B) � S(u) + �S, �S � M2
Pl

8πm2
χ

∫
a3

(
B − ü − f̃ u̇ − g̃u

)2
, (5.24)

where B is an auxiliary field and f̃ , g̃ are functions to be determined. The two actions coincide once we substitute B with the solution
of its own equation of motion B(u), i.e.

S′(u, B(u)) � S(u). (5.25)

Finally, we perform the field redefinitions

u � U + bV , B � V + cU , (5.26)

where b and c are other functions to be determined. In the case of scalars, there are no higher-derivative terms but some fields are
not dynamical and can be removed algebraically by using their filed equations.

After these procedures the action in both cases is reduced in the form

S′(U , V ) � 1

2

∫
dt Z

(
U̇ 2 − ω2U 2 − V̇ 2 + �2V 2 + 2σUV

)
, (5.27)
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where Z , ω, � and σ are time-dependent functions that are different for tensor and scalar perturbations. It is now explicit that the
field V is problematic, due to the different sign of its kinetic term. Therefore, we need to quantize it as purely virtual and remove it
from the spectrum. As mentioned above, we do not need to compute loops and the tree-level version of the fakeon prescription is
enough. In order to obtain it we note that formula (4.18) with τ � 0 can be written as

1

2

(
1

x + iε
+

1

x − iε

)

� P 1

x
(5.28)

and apply it to the fakeon perturbations by averaging their retarded and advanced Green functions. The result of this operation is
called fakeon Green function. More explicitly, the equation of motion for V is

�V ≡
(

d2

dt2 +
Ż

Z

d

dt
+ �2

)

V � −σU (5.29)

and the solution obtained with the fakeon Green function is

V (t) � (Gf ∗ F)(t), F ≡ −σU , (5.30)

where Gf is the fakeon Green function of the operator � and “∗” is the convolution. The result for Gf in de Sitter space is [44]

Gf(t , t
′) � iπsgn(t − t ′)e−3H (t−t ′)/2

4H sinh
(
nχπ

)
[
Jinχ (ǩ)J−inχ (ǩ′) − Jinχ (ǩ′)J−inχ (ǩ)

]
, (5.31)

where Jn denotes the Bessel function of the first kind and

nχ �
√
m2
χ

H2 − 1

4
, ǩ � k

a(t)H
, ǩ′ � k

a(t ′)H
. (5.32)

In this way we can write V as a function of U

V (U ) � −Gf ∗ (σU ) (5.33)

and plug it back in the action (5.27), obtaining the projected action

Sproj(U ) � S′(U , V (U )). (5.34)

This is the classical version of fakeon prescription. It is worth note a few properties. First, the function σ is of order λ2 [44] and,
by (5.33), so is V (U), and at the leading order in the slow-roll expansion the fakeon prescription gives V � 0. Therefore, the nonlocal
term σUV (U ) in (5.34) is O(λ4), which means that the projected action is unaffected by V (U) up to the order λ3 included. This
simplifies the computations, which can be pushed to higher-order without including the nonlocal contributions [45]. However, the
change of variables (5.26) tells us that we need V (U) for the power spectra, since the true physical variable is u(U, V ). Moreover,
the power spectra are computed in the so-called superhorizon limit |kτ |→ 0, so having V (U) in that limit is enough. This further
simplifies its derivation. The function V (U) up to the order λ3 is of the form

V (U ) � λ2(v1 + v2λ)U + v3λ
3U̇ + O(λ4), (5.35)

where the coefficients vi depend on mχ and mφ and can be found in [45].5

5.2 Power spectra

At this stage we need only to compute the solution to the equation of motion for U and then derive the power spectrum for u. In order
to do it, we first change variable to a rescaled conformal time η ≡ −k̄τ , where k̄ � k(1 +O(λ)) is due to the fakeon prescription, so
k̄ � k if the C2 term is absent. Then we perform an additional field redefinition to put the projected action in the Mukhanov-Sasaki
form

Sproj
w (w) � 1

2

∫
dη

[(
dw

dη

)2

− w2 +

(
2 + σw

η2

)

w2

]

, (5.36)

where w is the new variable, the ′ denotes the derivative with respect to η and σw � O(λ) is a power series in λ which encodes the
deviations from scale-invariant power spectrum. The solution of the associated equation of motion can be derived by imposing the
usual Bunch-Davies condition for the field w, which in these variables reads

w(η) � eiη√
2

, for η → ∞. (5.37)

5 Note that in [45] the quantity (5.18) is labelled as α, while here we have used the letter λ to avoid confusion with the parameter in front of the C2 term.
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The solution is expanded in powers of λ as

w(η) � w0(η) +
∞∑

n�1

λnwn(η), (5.38)

where

w0(η) � i(1 − iη)

η
√

2
eiη (5.39)

and wn>0 are other functions that depend on the type of perturbations (tensor or scalar), since also σu depends on that. In particular,
σu is O(λ) and O(λ2), for scalar and tensor perturbations, respectively.

Finally, the power spectrum is obtained from |u|2 by tracing back all the field redefinitions and change of variables starting from
the solution w(η), so we have

u � U (w) + bV (U (w)), w � w(k̄|τ |) (5.40)

and the power spectrum is

Pu(k) � k3

2π2 |u(k)|2, (5.41)

It is important to highlight that in the superhorizon limit the dependence of Pu on τ drops and that the one on k is all encoded in
λk ≡ λ(1/k), where λ is obtained from the background equations of motion (5.20) as a function of τ and then set τ � 1/k. The
results for the power spectra for tensor and scalar perturbations are [44, 45]

Pt (k) � 4m2
φς

πM2
Pl

[

1 + 3ςλk + λ2
k

(

6ςγM +
47

4
ς2 +

11

8

m2
φ

m2
χ

ς

)

+ O(λ3
k )

]

, ς ≡ 1
(

1 +
m2
φ

2m2
χ

) , (5.42)

Ps(k) � m2
φ

12πM2
Plλ

2
k

[

1 + λk(5 − 4γM ) + λ2
k

(

4γ 2
M − 40

3
γM +

7

3
π2 − 67

12
− m2

φ

2m2
χ

F

(
m2
φ

m2
χ

))

+ O(λ3
k)

]

, (5.43)

respectively, where γM � γE + ln 2, γE being the Euler–Mascheroni constant and F is a function which can be obtained recursively
as a series up to arbitrary orders [45]. The spectral indices are given by

nu − θ � d ln Pu(λk)

d ln k
� −β(λk)

∂ ln Pu

∂λk
, β(λk) � − dλk

d ln k
, (5.44)

where θ � 0, 1 for tensor and scalar perturbations, respectively. The beta function β is a power series in λk and it is obtained from

dλ

d ln|τ | � −1

v

λ̇

H
(5.45)

by using the expansions (5.16) and (5.17). We report its expression up to the order λ4

β(λ) � −2λ2
[

1 +
5

6
λ +

25

9
λ2 + O(λ3)

]

(5.46)

but can be derived up to any order. In the renormalization-group-flow analogy mentioned above the quantity (5.46) plays the role of
the beta function in quantum field theory and a necessary condition for the background to be asymptotically de Sitter in the infinite
past is that (5.46) be at least quadratic and negative (in analogy with asymptotic freedom).

Finally, the spectral indices read

nt � −6ςλ2
k + O(λ3

k), ns − 1 � −4λk

[

1 − λk

(
5

3
− 2γM

)]

+ O(λ3
k). (5.47)

Note that in the case of scalar perturbations the contributions due to the fakeon (the mχ dependence) start to appear at the order λ2
k

for Ps and at the order λ3
k for ns (not shown here). This means that up to those orders the predictions of scalar perturbations are

indistinguishable from those of the Starobinsky model. On the other hand, the predictions for the tensor perturbations get modified
already at the leading order.
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5.3 Consistency condition

The study of the fakeon prescription on curved spacetime leads to other nontrivial consequences. The whole procedure cannot be
applied in the case of tachyons and specific conditions must be imposed. In flat spacetime, the so-called no-tachyon conditions
typically constrains the parameters in the action. For example, in the case of the quantum gravity action (2.1) we must have α, ξ > 0
in order to avoid tachyons, i.e. m2

φ , m2
χ > 0. In FLRW spacetime we need to impose that the mass squared of the field V be positive,

which can be read from (5.29) after the redefinition that cancels the term with a single derivative, i.e.

V → V√
Z
. (5.48)

Then the effective mass is

m(t)2 � �2 +
Ż2

4Z2 − Z̈

2Z
, (5.49)

where the functions � and Z are different for each perturbations. However, for tensor, vector and scalar perturbations it is of the
form

m(t)2 � m2
χ − H2

4
+
k2

a2 + O(ε, k4). (5.50)

It is enough to derive the no-tachyon condition in de Sitter spacetime, since we are expanding perturbatively around it. Moreover,
we can further simplify the expression (5.50) by taking the superhorizon limit k/(aH ) → 0. Then, recalling that H (ε � 0) � mφ/2
and by imposing m(t)2 |k/(aH )→0 > 0 at ε � 0 we get the consistency condition

mχ >
mφ

4
. (5.51)

It is possible to impose a stronger bound by requiring thatm(t)2 > 0 for every k. However, the positivity of a time-dependent function
is not reparametrization invariant. This can be shown by considering the most general transformation t → t ′(t), V (t) → V̂ (t) that
leaves the kinetic term invariant but changes the mass m(t)2 into M(t ′)2. Then, m(t)2 > 0 does not necessarily imply M(t ′)2 > 0.
On the other hand, if m2 is time independent and positive then the most general transformation that leaves M2 t ′-independent also
leaves it positive [44]. Imposing the no-tachyon condition for every k gives the same bound (5.51) in the case of tensor and vector
perturbations and a stronger one in the case of scalar ones. However, in what follows we consider only the no-tachyon condition in
the superhorizon limit and conclude that the presence of negative mass squared in some time interval is not necessarily a lack of
consistency.

The bound (5.51) it is important for phenomenologial reasons, since, by combining it with experimental data, it narrows the
allowed window for the tensor-to-scalar ratio to be less than an order of magnitude (see below).

5.4 Predictions

The best experimental data used to test inflationary models are those given by the Planck collaboration [49] combined with those
of the BICEP/Keck collaboration [50]. In order to compare the data with the theoretical calculations we define the (dynamical)
tensor-to-scalar ratio

r (k) � Pt (k)

Ps(k)
(5.52)

so that the usual tensor-to-scalar ratio is r(k) at a reference scale k∗. From the results above we obtain

r (k) � 48ςλ2
k

[
1 + λk(3ς − 5 + 4γM )

]
+ O(λ3

k ). (5.53)

The best data available at the moment give

ns(k∗) � 0.9649 ± 0.0042, ln
(
1010Ps(k∗)

) � 3.044 ± 0.014, r (k∗) < 0.035, (5.54)

where k∗ � 0.05 Mpc−1. From the measurement of ns(k∗) we can extract the value of λ∗ ≡ λk∗ , while from Ps(k∗) we extract mφ .
The results are

λ∗ � 0.0087 ± 0.0010, mφ � (2.99 ± 0.36) × 1013 GeV. (5.55)

Then, knowing the allowed values for λ∗ and using the bound (5.51), we can plot the tensor-to-scalar ratio as a function of λ and
restrict its values between the two curves in the cases mχ � mφ/4 and mχ → ∞. The result up to two-sigma level is shown in the
left panel of Fig. 2, while on the right panel we show it as a function of the number of e-folds N

N �
t f∫

ti

H (t ′)dt ′, (5.56)
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Fig. 2 On the left panel, the tensor-to-scalar ratio as a function of the parameter λ. On the right panel the same quantity is plotted as a function of the number
of e-folds. The purple lines represent r in the Starobinsky model, while the blue lines represent r when the consistency condition is saturated. The darker
regions indicate the one-sigma level, while the lighter ones the two-sigma level

which is often used in the literature to express the results. In general, it is more useful to use the variable λ, since the results can be
expressed as power series of it (up to overall terms), while N it is not a perturbative quantity. This follows from the relation between
N and λ

N �
∫ 1√

3

λ

H (λ′)
λ̇(λ′)

dλ′ �
∫ 1√

3

λ

dλ′

2λ′2

[

1 − 5

6
λ′ + O(λ′0)

]

� 1

2λ
+

5

12
ln λ + O(λ0), (5.57)

From (5.57) we see that the N (λ) is not a power series. The plots in Fig. 2 show that in the theory of quantum gravity with purely
virtual particles, where the field φ plays the role of the inflaton, the tensor-to-scalar ratio is confined in a window that is around an
order of magnitude. For concreteness, if we take N � 60 the tensor-to-scalar ratio is

0.37 � 1000 r � 3.41. (5.58)

Future experiments, such as LiteBIRD [51], might be able to test this result, if the so-called B-modes are detected within the expected
sensitivity (δr < 0.001 for LiteBIRD). We highlight that by measuring one new quantity, such as r (k∗) or nt (k∗), the parameter mχ

would be fixed and every other potential prediction would be a precision test of the theory.

6 Conclusions

We have reviewed an approach to quantum gravity in the framework of quantum field theory. The theory is built by requiring the
same guiding principles that have led to the standard model, i.e. locality, renormalizability and unitarity, and by being as conservative
as possible in accommodating those requirements. Renormalizability already singles out a unique action for quantum gravity, which,
besides the massless graviton, contains a scalar that can be viewed as the inflaton, a cosmological constant and a massive spin-2
particle. The latter, if quantized by means of standard techniques, leads to a violation of unitarity. However, this degree of freedom
is necessary to achieve renormalizability and cannot be removed without loosing that property. In order to restore unitarity without
renouncing to renormalizability we use a different quantization procedure for the massive spin-2 field, the fakeon prescription. Such
procedure is very general and in principle can be applied to any degree of freedom. Effectively, the fakeon prescription amounts to
compute every amplitude using the Feynman prescription as usual and then subtract certain functions, whose role is to remove the
on-shell parts of the degrees of freedom that we want to quantize in this way. The outcome is that those particles become purely
virtual and cannot appear on shell. In the case of quantum gravity, this is crucial since the possibility of having an on-shell spin-2
ghost violates unitarity. Using the fakeon prescription we can remove the ghost from the spectrum of the theory without loosing
it from the possible virtual states. In this way we obtain a renormalizable and unitary theory of quantum gravity. We have shown
that a good arena to test this theory is inflationary cosmology and shown that the consistency of the fakeon prescription in that
context leads to a pretty sharp prediction for the tensor-to-scalar ratio, which could be tested in future experiments that measure the
polarization of the cosmic microwave background.

When compared to other approaches to quantum gravity, the fakeon idea has several advantages. First it is perturbative and does
not add more complications from the computational point of view. The effort in computing Feynman diagrams in the theory of
quantum gravity with fakeons is comparable to that required for the standard model. Moreover, by reconciling renormalizability
and unitarity in quantum gravity, the fakeon approach makes unnecessary to invoke nonperturbative approaches to renormalization,
such as asymptotic safety. Furthermore, the whole procedure truly removes the ghost degrees of freedom from the theory, unlike
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the approach [27], which proves unitarity in Stelle theory only in situations where the unstable ghost has decayed. In this regards,
it is worth to highlight that ghosts can be removed by means of the fakeon prescription even if they are stable.

Finally, we mention some future directions in this research line. From the theoretical point of view it is important to understand
some aspects of the theory of quantum gravity, for example its perturbative validity. In fact, the fakeon prescription applied to
Stelle gravity introduces two power countings, so to speak. On the one hand the renormalization sector is perturbative up to
arbitrary energies, since the power counting is that of Stelle gravity. On the other hand some quantities, such as absorptive parts
of the amplitudes, obey the power counting of general relativity. An on-going work is to understand whether semi-nonperturbative
techniques, combined with the fakeon prescription, can improve the nonrenormalizable behaviors of scattering amplitudes. On a
more phenomenological side, it would be interesting to study the role of the spin-2 fakeon in post-inflationary eras to see how
cosmology is impacted. Furthermore, the results of [38] need to be explored more deeply, to uncover other new effects in particle
physics that could be directly related to the presence of fakeons.
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