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Abstract Non-Hermitian physics of optical as well as atomic systems is crucial for modern quantum mechanics and is the subject
of increasing investigations. Here, we investigate the multi-stability of a non-Hermitian atomic optomechanical system consisting
of a high-Q Fabry–Pérot cavity with Bose–Einstein condensate (BEC). The external pump laser drives a strong cavity mode, which
then interacts with trapped BEC. We engineer non-Hermicity in the atomic system by considering the dissipation of excited state
to the ground state. The non-Hermitian effects induced by the excited state dissipation result in the modified atom-optomechanical
interactions and form non-Hermitian optical potential. We develop coupled non-Hermitian quantum Langevin equations for optical
and atomic (BEC) degrees of freedom. By governing the steady-state of the system, we show that the non-Hermicity in the system
yields in multi-stable state of cavity photon number, unlike the Hermitian optomechanical systems. Further, we illustrate that the
dissipation rate of the atomic excited state will also alter the multi-stable behavior of cavity photon number. We illustrate these effects
by computing the effective steady-state potential of the system as a function of cavity photon number. The dissipation rate appears
to be reducing steady-state photon number over a particular interval of effective potential. Our findings are not only important for
the understanding of the non-Hermitian atom-cavity systems but our findings regarding the optical multi-stability are also crucial
for the subject of optical switching.

1 Introduction

The cavity-optomechanics—cavity mediated interaction between mechanical resonators and light via radiation pressure—has been
the subject of many stunning investigations over the last two decades [1–3]. It has been proven to be the best tool to manipulate
mechanical effects of light to govern new physics. The recent studies on the optomechanical systems coupled with other physical
objects, like Bose–Einstein condensate (BEC), have attracted the growing interests of researcher both in theory and experiment
[4–9]. The most interesting example of such systems is an optomechanical cavity with one mechanical oscillator (or moving-end
mirror) and the ultracold atoms or BEC trapped inside the cavity. Furthermore, benefiting from the development of optical microcavity
technology, the mechanical resonator with a smaller mass can be used to magnify the optomechanical effect in such systems [10–12].
Thus, the construction of such hybrid optomechanical systems provides the opportunity to explore new quantum phenomena, for
instance, dynamical phase transitions to optomechanical superradiance [13], cooling the atoms to ground state [14–19], developing
optomechanical crystals [20–22] as well as realizing non-Hermitian system [23, 24].

Bender and Boettcher demonstrated that a non-Hermitian system can possess a real energy spectrum when the parity-time
(PT) symmetry condition is satisfied in 1998 [25]. These systems demand a complex potential V (x) characterized by V (x) �
V ∗(−x), in which the real part of the potential should be even, and the imaginary part should be odd to realize PT symmetry.
Very recently, there are various non-Hermitian studies based on quantum optomechanical systems, such as optomechanically
induced transparency (OMIT) [26–31], optomechanically induced light squeezing [32], PT symmetry breaking enhanced cavity
optomechanical magnetometry [33] and optomechanical crystal cavities [34]. Further, cavity-optomechanics has proven to be a
suitable tool to study non-Hermitian physics [35, 36], especially regarding the behavior of PT symmetry [37–40]. Although, there
has been sufficient work done in this direction, exploring non-Hermitian physics in a single optomechanical cavity is still desirable,
and we intend to do so by manipulating excited state dissipation in BEC-optomechanics in our work.

The subject of stability (or instabilities) of light in cavity quantum electrodynamics (QED) is very crucial in order to study and
implement quantum optical devices. Optical bistability (multistability) gives the behavior as a discontinuous transition between high
and low transmission of two (or more) stable states [41, 42], where the system can be described linearly, and instability implies
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Fig. 1 Schematic illustration of
Bose–Einstein condensate trapped
inside a Fabry–Pérot cavity. An
external pump laser η with
frequency ωp drives the cavity.
The cavity mode oscillates at
frequency is ωc with coupling
with two level atoms having
ground state |g〉 and excited state
|e〉, respectively

that driven far from the thermodynamic equilibrium of the system means towards high-order nonlinearities like chaos [43]. The
interaction between cavity mode and atoms excites different population densities of the cavity photons corresponding to these stable
and unstable states [44]. Although, there has been a lot of work done on optical bistability in cavity QED, but it is worthwhile to
see such optical effects in an engineered non-Hermitian cavity-atom system.

In this paper, we investigate optical multistable dynamics in a non-Hermitian optomechanical system containing BEC and driven
by a single mode pump laser. In order to make our system non-Hermitian, we consider the dissipation of the excited state as a gain
for the ground state, by not using the adiabatic elimination of excited state decay. After governing the steady-state dynamics of our
system, we find that non-Hermicity has a profound effect on steady-state cavity photon number. It is interesting to note that at low
pump powers, the cavity photon number shows optical bistable behavior and at high pump power, it illustrates, so-called, optical
biunstability. In particular, we illustrate that the angle of phase shift φ on an optical lattice has a very strong effect on steady-state
dynamics, especially at high pump power regions. Further, we illustrate the effects of non-Hermicity on the effective steady-state
potential of the system as a function of cavity photon number.

This paper starts by introducing our mode and calculation in Sect. 2. Section 3 shows the multistability of steady-state cavity
photon number under the negative and positive value of phase shift as cos 2φ. Finally, Sect. 4 summarizes and prospect our work.

2 The model

The model is composed of 87Rb BEC trapped inside a high quality factor optical cavity shown as Fig. 1 [45]. A single-mode pump
laser with frequency ωp drives the cavity and generates a strong intracavity field with coupling strength η � √

P × κ/�ωp . The
total Hamiltonian of the system can be divided into two parts,

Ĥ � Ĥa + Ĥc, (1)

where Ĥa describes BEC and its optomechanical interactions with cavity, while Ĥc corresponds to the intracavity optical field and
its coupling with external pump field.

The atomic mode (or BEC) have ground state |g〉 and excited state |e〉 with transitional frequency ω0. We use �̂
†
g (�̂g) and �̂

†
e (�̂e)

to represent creation (annihilation) operator of ground and excited state, respectively. The Hamiltonian of two-level atoms in optical
lattice Ĥa is given by [40],

Ĥa �
∫ ∑

i�g,e

�̂
†
i (x)( − �

2�2

2m
+ U (x))�̂i (x) + �ω0�̂

†
e (x)�̂e(x)

− (d · E(x , t)�̂†
g (x)�̂e(x)â† + H.c.)

+
u

2
�̂†

g (x)�̂†
g (x)�̂g(x)�̂g(x)dx ,

(2)

where m is the atomic mass and U (x) � �V0â†â cos2(kx) corresponds to the optical lattice formed by the intracavity mode [46–48],
V0 is the optical lattice depth and k � ωc/c is the wave number. E(x , t) � E0 cos(kx + φ) is the electric field with E0 being the
electric component of cavity field along with φ as a scattering phase shift. d � 〈e|d̂|g〉 corresponds to the electric dipole moment,
and u is the interatomic interaction coefficient. We consider that the excited state has dissipation larger than the spontaneous emission
rate and thus, this dissipation acts as a contribution to the mechanics of the ground state. In other words, we consider the decay of
the excited state as a gain for the ground state, by ignoring the adiabatic elimination of the excited state. This gain later makes our
system non-Hermitian, which is the main topic of the work. To include such dissipation, one can adopt the Heisenberg equation
approach for excited state under rotating wave approximation (RWA) given as,

˙̂
�e(x) � iδ�̂e(x) + i

d · E(x, t)
�

�̂g(x)â − �

2
�̂e(x), (3)
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here δ � ωc −ω0 is the detuning between cavity field and atoms. The decay of the excited state to the ground state is indicated with
�. While using a near-resonant light pump, we suppose δ � �. Under these conditions, the above equation will read as,

�̂e(x) ≈ i
2d · E(x, t)

��
�̂g(x)â. (4)

We assume that the atomic densities are low enough that one can neglect the two body interactions. By considering the relation
excited state �̂e(x) with ground state �̂g(x) in Eq. (2), one can rewrite the Hamiltonian for atoms (or BEC) in optical lattice Ĥa as,

Ĥa �
∫

dx�̂†
g (x)( − �

2�2

2m
+ U (x) − i

2|d · E(x, t)|2
��

â†â)�̂g(x). (5)

Here it should be noted that we have omitted the subscription g from the ground state in order to make things simpler. Now one can
note that the Hamiltonian is now in non-Hermitian form because the intracavity effective optical potential for atoms appears to be
complex. Further, the PT symmetry can be achieved or tuned by adjusting phase shift φ in the effective optical lattice [40], as can
be noted in V (x) below,

V (x) � �V0â
†â( cos2(kx) − iγ cos2(kx + φ)), (6)

here i2|d · E(x, t)|2/�� � iγ cos2(kx + φ) with effective non-Hermitian parameter γ � 2|d · E0(x)|2/�V0�. After that, one can
rewrite the effective Hamiltonian for the atoms inside the cavity Ĥa as,

Ĥa �
∫

dx�̂†
g (x)( − �

2�2

2m
+ V (x))�̂g(x). (7)

To study the interaction between BEC and cavity field, it is necessary to know the expression of the bosonic operator �̂g . The
inter-cavity field couples with different momentum modes at ±2l�k of the BEC, where l is an integer and k is the wave number
of the cavity field. The experiment shows that when the photon number is not large, the BEC and cavity field interaction will
significantly engender with those momenta 0 and ±2�k while neglecting higher order modes we could expend the bosonic operator
�̂g in k-space as [49]

�̂g(x) � [ĉ0 +
√

2 cos(2kx)ĉ2]/
√
L , (8)

where ĉ0 and ĉ2 are zero momentum and side-mode components for bosonic annihilation operator for atoms respectively and satisfy
|ĉ0|2+|ĉ2|2� N , L is cavity length, with this expansion we have

Ĥ ′
a ��V0â

†â(
1

2
(ĉ†

0 ĉ0 + ĉ†
2 ĉ2)(1 − iγ )

+

√
2

4
(ĉ†

0 ĉ2 + ĉ†
2 ĉ0)(1 − iγ cos 2φ))

+ 4ωr ĉ
†
2 ĉ2.

(9)

First term describes the potential energy and the second term describes the optical coupling between the zero momentum and
side-mode of the BEC, the last term is the energy of side-mode with frequency 4ωr � 2k2

�
2/m, we suggest the atom number is less

with ĉ†
0 ĉ0 � N , which means side-mode atoms occupy only a few parts if condensate, treating the condensate with “c”approach via

ĉ0 and ĉ2 → √
N then Eq. (9) could be reduced as

Ĥ ′
a �1

2
�V0Nâ†â(1 − iγ ) +

1

2
�

√
NV0â

†âq̂(1 − iγ cos 2φ)

+ 4ωr ( p̂2 + q̂2),
(10)

here q̂ � (ĉ†
2 + ĉ2)/

√
2 and p̂ � i(ĉ†

2 − ĉ2)/
√

2 are position operator and momentum operator of side-mode satisfying the canonical
commutation relation [q̂, p̂ � i], the behavior of side-mode BEC is effectively as movable mirror.

The Hamiltonian for intra-cavity field Ĥc can be expressed as [1]

Ĥc � −�
câ
†â − i�η(â − â†), (11)

where, 
c � ωp − ωc is the cavity-pump detuning, â and â† correspond to the photonic annihilation and creation operators for the
optical cavity field with frequency ωc and canonical relation [â, â†] � 1. The second term describes the external pumping of the
cavity mode with the amplitude of the coupling field η.

As an open system, we have to consider effects of dissipation on the optical field, the decay of exited state of atoms, and the
damping of the side-mode atoms, we incorporate standard quantum noise operators by deriving quantum Langevin equations in
non-Hermitian system. It must be stressed that the non-Hermitian quantum Langevin equation runs differently from Hermitian case

[50–52], In general the non-Hermitian quantum Langevin equation is given by ˙̂O � −i/�(Ĥ Ô − Ô Ĥ†) − κ Ô + N̂ here Ô is
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Fig. 2 Bistable dynamics of the
cavity field as a function of the
normalized pump intensity η2/κ2.
a–c show the steady-state result
with the phase shift cos 2φ take
value of 1,0,−1, respectively. The
relation between the steady-state
of cavity photon number and the
atoms will have two roots
illustrated by the blue and red
curve in a and c. In a and c show
the local enlarged of lower
bistability when the pump
intensity is small. Here, other used
parameters are ωr � 0.1 and
γ /γsm � 0.08. The coupling of
cavity and atoms g/ωr � 4, the
effective cavity-pump detuning

/κ � −5.1 and the decay of the
side-mode atoms are
γsm/κ � 0.001

the generic operator of the system and κ is the corresponding decay rate, N̂ is the noise operator. Now the coupled non-Hermitian
quantum Langevin equations are given by

dâ

dt
�(i
 − igq̂ − (

√
Ngγ + gγ cos 2φq̂)(2â†â + 1) − κ)â

+ η +
√

2κ âin ,

dâ†

dt
�â†(−i
 + igq̂ − (

√
Ngγ + gγ cos 2φq̂)(2â†â + 1) − κ)

η +
√

2κ âin ,

dq̂

dt
�4ωr p̂ − γsmq̂ + f̂1M ,

d p̂

dt
� − 4ωr q̂ − gâ†â − gâ†âγ cos 2φ(q̂ p̂ + p̂q̂)

− γsm p̂ + f̂2M ,

(12)

123



Eur. Phys. J. Plus         (2023) 138:810 Page 5 of 10   810 

where 
 � 
c − NV0/2 is the effective detuning of the system, g � √
NV0/2 is the coupling of cavity field and side-mode atoms.

âin is the Markovian input noise of the optical cavity field, the damping of atoms is described by γsm which is caused by the couples
of the ±2�k-momentum side-mode to the others, f̂1 as well as f̂2 are the associated noise operator, assumed to be Markovian. The
side-mode atoms are driven by the radiation pressure of the cavity field, which deeply depends on the position of the oscillator. When
the system is at the same input pump power one can reach to three or more different stable states, this hysteresis-like phenomenon
is called multistability [52]. By treating the positions and momenta as classical variables we could generate the classical dynamics
of the cavity field and side-mode atoms. By setting its time derivative to zero in Eq. (12) we could gain the steady-state dynamic of
|αs |2 and qs in the non-Hermitian situation are

|αs |2� η2

(gγ (2|as |2+1)(
√
N + cos 2φqs) + κ2) + (
 − gqs)2

, (13)

g|αs |2(1 +
2γ cos 2φγsm

4ωr
q2
s ) + 4ωr (1 + (

γsm

4ωr
)2)qs � 0, (14)

where α is the classical limit of â. In the non-Hermitian case, the steady-state dynamic of side-mode atoms is quite different from
the Hermitian case that we are familiar with.

3 Multistability of steady-state cavity photon number

It has been confirmed in previous studies that the photon in a single optomechanics system can, with the help of cavity mediated
radiation-pressure, exhibit optical bistability [48, 52]. In our model, in the absence of dissipation from excited state, the optomechanics
system will follow conventional Hermitian condition and show bistable behavior, as studied in previous cases. However, the situation
starts to change when we incorporate dissipation of the excited state to the ground state of atoms, resulting in completely altered
steady-state behavior of intracavity photon number |αs |2.

To make our work experimentally feasible, we chose a particular set of parameters for calculations which adopted from experi-
mental setups as discussed in refs [5, 49, 53–55]. We consider N � 2.3 × 104 87Rb atoms trapped inside Fabry–Pérot cavity with
length L � 1.25 × 10−4 m, driven by single mode pump field with power P � 0.0164 mW and wavelength λp � 780 nm. The
intra-cavity optical mode oscillates with frequency ωc � 15.3 × 2π × 1014 Hz, where cavity decay rate is κ ≈ 1.3 × 2π kHz. The
intra-cavity potential depth V0 � 3.9 × 2π MHz and effective detuning 
 � 0.52 × 2π MHz. Intra-cavity field produces recoil of
ωr � 3.8 × 2π kHz in atomic mode trapped inside cavity with damping rate γsm � 0.21 × 2π kHz.

In this section, we focus on non-Hermicity-induced multistability, which is characterized by the decay of the excited state γ . The
steady-state relationship between photon number and atomic side-mode is given by Eq. (14), which will give us two roots when
cos 2φ � 0. In the case of no phase shift in optical lattice cos 2φ � 1, as shown in Fig. 2a, the two roots of Eq. (14) result in two
red and blue curves forming an “�” shape with respect to external pump laser power. The cavity photon first shows two stable and
one unstable state at lower input powers and photon number states, while two unstable and one stable states at higher input power
and photon number state, unlike previous studies on steady-state behavior of cavity photons. The reason behind is the dissipation of
excited states that are appeared to be contributing to cavity photon number and resulting in another reverse biunstable state to the
smaller bistable state occurring at lower input powers, as illustrated by the inset of Fig. 2a. In other words, at higher input power,
the excited state dissipation occupies and saturates to higher values of photonic population. Further, unlike the hermitian case, with
the increasing input pump strength the cavity photon number will not grow endlessly, the non-Hermitian effects under zero phase
will limit the maximum number of photons in the cavity.

The value of phase shift φ illustrates a deep influence on the stable-state of cavity-atom system. We note that the cavity optical
potential satisfies the PT symmetry when the phase shift φ � kπ because the intracavity potential satisfy the relation V (x) � V ∗(−x)
while treating iγ �V0â†â/2 in Eq. (9) as global imaginary constant [56]. But we will not discuss the behavior of PT symmetry here
in this work. We choose another two representative values of φ, with respect to the steady-state photon behavior, and discuss them
in the following. When we consider cos 2φ � 0, the stable state relation in Eq. (14) between photon number and atoms becomes
much more simple and exhibits optical bistability, as shown in Fig. 2b, which is similar to the conventional bistable behavior of
cavity photon number in any previous optomechanical system. It means that transitional phase of intracavity lattice provides an
opportunity to convert (or revert) photon multistable state to conventional bistable state. Further, when we choose cos 2φ � −1, the
photonic number again converts to multistability and unstability, as illustrated in Fig. 2c, similar to the first case. However, in this
case, the photon number of the cavity exhibits one root (blue curve) at the low power pumping (see inset figure of Fig. 2c), but the
other counterpart (root) occurs at so high values that it is not possible to visualize in the domain of possible pumping powers, as
illustrated by the red cure in Fig. 2c. In this way, it appears to have conventional bistable behavior but in fact it is not. It means that,
at this particular phase, the other part of the root which incorporates the dissipation of excited states moves to so higher powers that
its contribution can be ignored.

Thus, from these results one can conclude that the excited state-induced dissipation appears in the form of gain for cavity field
but gain unconventionally contributes to two unstable states and one stable state, crucially depending upon the lattice phase. At
cos 2φ � 0, contribution is appeared to be zero while at cos 2φ � 0, the contribution of γ appear in biunstable states at higher photon
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Fig. 3 The steady-state cavity
photon number |αs |2 as a function
of normalized pump intensity
η2/κ2 under different values of
non-Hermitian strength γ which
depict by black, blue, and red
curves. a–c show the steady-state
result when the phase shift cos 2φ

takes value of 1,0,−1 respectively.
The coupling between cavity and
atoms in all figures and subfigures
is g/ωr � 4. The other parameters
are same as used in the calculation
of Fig. 2

numbers and at higher input pump field powers. It is known that photons in the optical cavity exhibit bistability under hermitian
conditions, similar to the blue curve in Fig. 2a. But the non-Hermitian effects appear to be playing major role in the high input pump
powers. In our model, cavity mode acts as a lossy part while dissipation from excited state of two-level BEC acts as gain to the
system, making a scenario to achieve non-Hermatianality. As mentioned previously, non-Hermitian parameter is defined over the
dissipation of excited states, so its values will indeed affect a lot the photonic steady-state number states in cavity. Therefore, it is
important to see the effects of γ on the steady-state cavity photon number, as illustrated in Fig. 3.

From the previous discussion, we came to know that non-Hermicity yields in multistable “�” type spectrum depending upon
the phase of the lattice. In this section, we will see the effects of non-Hermitian parameter γ on the steady-state spectrum of cavity
photon numbers, as we illustrated in Fig. 3. If we increase the non-Hermitian strength γ /γsm from 3 to 6 while keeping cos 2φ � 1
constant, as shown in Fig. 3a, then the larger decay of the excited state will result in the smaller maximum number of steady-state
cavity photons. However, at higher values of γ , there should be increased steady-state photon number, because dissipation from
excited state is acting as gain to the cavity field. Here the reason is phase shift φ of the lattice. At cos 2φ � 1, the excited state
dissipation is though resulting in additional biunstable state but the higher values of γ are appeared to be scattering out more photons
from the cavity field resulting in decrease in steady-state cavity photon number.
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Fig. 4 The steady-state cavity
photon number |αs |2 as a function
of normalized pump-cavity
detuning 
/κ and normalized
pump laser intensity η2/κ2 under
the different values of
non-Hermitian strength γ when
cos 2φ � 1 and at cavity-atom
coupling g/ωr=4. a–d correspond
to γ /γsm � 3, 4, 5, 6
respectively. While the other
parameters used are same as in the
calculations of Fig. 2

But if we choose different phase, like cos 2φ � −1 Fig., then the increase in γ will act in the form of addition to the effective
steady-state photon number, as illustrated in Fig. 3c. The reason of this is same that now excited state dissipation is more align to
the cavity mode and contributing in a gain to the cavity field. It is very important because, in this case, one can achieve high-order
optomechanical interactions with relatively stronger cavity field. However, in the case of cos 2φ � 0, the conventional bistable
response will remain the same (because at this phase excited state dissipation is not align at all so that they can act as a gain). But
the increase in γ will again scatter out the photons from cavity mode yielding in lesser steady-state photon number states, as shown
in Fig. 3b. Thus, by modifying γ , one not only can get opportunity to control the excited state mediated gain but, in combination
with lattice phase, it also provides more precise controllability.

In order to further enhance of understanding of steady-state response of inter-cavity photon number, we investigate the intracavity
photon number as a function of effective cavity detuning 
 and input pump laser intensity η, as illustrated in Fig. 4. As displayed
in Fig. 4 which shows the optical behavior of the cavity with different values of non-Hermitian strength, here we consider the zero
phase shift case while cos 2φ � 1. The tide structure indicates that the steady-state photon has bistability, and the bistability caused
by non-Hermicity has a shape of horizontal section, it once again proves that the steady-state photon number has a limit under the
non-Hermitian cavity-atoms interaction. We could see from Fig. 4 the steady-state cavity photon number consists of two parts; the
main part represents root-1 and the tilted part represents root-2. The maximum number of intracavity photons is determined by
root-1 and then depends on the value of root-2 along with the increase of γ /γsm from 3 to 6. But it should be noted here that we just
study here the influence of excited state dissipation on steady-state values of photons at cos 2φ � 1, where, as discussed previously,
increase in γ is appeared to be decreasing the collective number of steady-state photons. However, at other phases (especially at
cos 2φ � −1), the results could be different. It is obvious because, as we already know, at other phase like cos 2φ � −1 excited
state dissipation will scatter into the cavity mode resulting in increase in cavity photon number.

In order to further broaden our understanding of the steady-state dynamics of the cavity-atom system containing non-Hermitian
effects, we derive the effective steady-state potential of the cavity-atom system as a function of the steady-state cavity photon number.
By assuming that the time scales short enough that atomic mechanical damping can be ignored, one can govern the equations of
dynamics or motion for atomic mode inside the cavity, reading as,

d2q̂

dt2 � − 8ωrγsm p̂ + γ 2
smq̂ − (4ωr )2q̂ − 4ωr gâ

†â

− 4ωr gâ
†âγ cos 2φ( p̂q̂ + q̂ p̂),

(15)

from the equation of motion, the steady-state effective potential Vs can be easily derived as the function of steady-state cavity photon
number |αs |2,

Vs � −(γ 2
sm + (4ωr )2)qs − 4ωr g|αs |2

(
1 +

γ cos 2φ

2ωr
qs

)
. (16)

Here, we illustrate the effects of non-Hermitian parameter γ and cavity-atom coupling g on the steady-state effective potential
while keeping the dissipation phase of excited state to the lattice same, i.e. cos 2φ � 1, as illustrated in Fig. 5. It can be seen
that the maximum number of steady-state photons are trapped (or occurs) during the particular interval of steady-state potential,
i.e., 0 ≤ Vs ≤ 175 approximately. It could be because of the proportionality of Vs with the steady-state position quadrature qs ,
which is consequently modifying the cavity mode strength. However, the particular photon number crucially depends on the system
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Fig. 5 The effective potential Vs
as a function of steady-state cavity
photon number |αs |2. a and
b show the potential under
different value of non-Hermitian
strength γ and cavity-atoms
coupling g, respectively. In a the
cavity-atoms coupling is
g/ωr � 1 and in b the
non-Hermitian strength
γ /γsm � 6. Here we use blue and
red curve to represent distinct root
of Eq. (14), furthermore, we use
solid, dashed and dotdashed line
to depict various values of
non-Hermitian strength γ /γsm in
a and cavity-atoms coupling g/ωr
in b. The other parameters used in
the calculation are same as in
Fig. 2

parametric configuration. One can further note that when we increase the value of normalized γ , the maximum limit on steady-state
cavity photon number, over the VS interval, is appeared to be decreasing, as can be seen in Fig. 5a. The reason behind this is the
same that at particular phase cos 2φ � 1, an increase in excited state dissipation will be out-off phase with lattice and will scatter
out more photons from the cavity field resulting in decrease in steady-state photon number. Moreover, if we change the atom-cavity
coupling g in a similar configuration, the steady-state photon number will also show similar behavior, as can be seen in Fig. 5b. It is
obvious and has been studied in multiple investigations in literature [2, 6–9]. The reason is that at stronger atom-cavity couplings,
more photons will be bound to the interactions resulting in lesser steady-state photon number (and vise-versa) power, but crucially
depending upon the phase of the lattice.

4 Conclusion

In conclusion, we first engineer non-Hermicity in a single optical cavity containing BEC, by incorporating mechanical dissipation
of the excited state as gain to the system (or ground state). The non-Hermicity is achieved by considering dissipation of the excited
state occurring at phase shift φ with cavity lattice formed by the externally driving single pump laser. After that, by computing
the steady-state behavior of the system via the Heisenberg picture, we study the occurrence of stability and instability in cavity
photon number. We find that the steady-state cavity photon number crucially depends on the phase shift of the intracavity lattice.
When cos 2φ � 1, then the cavity photon number shows “�” type shape containing a conventional bistable behavior at lower input
powers, while a biunstable behavior at higher input powers occurs at higher photon number states. However, at cos 2φ � 0, cavity
photon number simply shows a conventional bistable behavior similar to the previous investigations. Further, at cos 2φ � −1, the
photon number again illustrates “�” type behavior but this time the second root occurs at so high values of input power that it can
be ignored.

Furthermore, we illustrate the effects of the non-Hermitian parameter γ on cavity photon number for all cases of phase shift.
We find that γ has appeared to be suppressing the steady-state values of cavity photon number in the cases. Especially, in the case
of cos 2φ � −1, where it has appeared to further by shifting secondary roots to higher values, which resulted in only one root
with bistable behavior. We also illustrate the effects of the non-Hermitian parameter γ on the effective potential of the system as a
function of steady-state photon number. We show that γ as well as g are not only limiting the maximum steady-state photon to a
particular interval of effective potential, but, with their increasing strengths, are also suppressing maximum values of steady-state
photons as well. Our work provides a fundamental understanding of a non-hermitian optomechanics system mediated by ultra-cold
atoms, which could act as a platform to explore further non-Hermicity, including PT symmetry behavior, and its effects on quantum
nonlinear optics, which is also the topic of our future research.
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