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Abstract Studies of the lattice systems are of current interest due to their applications in relativity, optics, condensed matter physics
and plasma physics. In this paper, we look into a hybrid relativistic and modified Toda lattice-type system. An equivalent form of
that system is provided by virtue of certain transformations. Based on the Lax pair of that equivalent form, we construct an N-fold
Darboux matrix and then derive the N-fold Darboux transformation, where N is a positive integer. Some analytic solutions are
determined with the help of the associated N-fold Darboux transformation.

1 Introduction

Studies of the lattice systems have been seen of current interest due to their applications in optics, condensed matter physics and
plasma physics [1–4]. The theory of relativity has not been separated from the rest of physics, for every physical theory is supposed
to conform to the basic relativistic principles, and any concrete physical problem involves a synthesis of relativity and some specific
physical theory [5, 6]. The lattice systems and relativistic lattice systems have served as a useful guide in the recent studies on
nonlinear waves1 [7–10].

The Toda lattice system has been introduced to study the vibrations in a chain with nonlinear interactions [21] and waves
in an anharmonic lattice [22]. Numerical investigations have indicated that the Toda lattice system behaves remarkably like an
integrable nonlinear system, where the integrability means that the system’s Hamiltonian can be brought to an integrable form [23].
Subsequently, the complete integrability of the Toda lattice system has been confirmed [24, 25]. With a change of the variables, the
Toda lattice system has been written in the Lax form [25–27]. As for the solutions of the Toda lattice system, inverse-scattering
solutions have been derived via the inverse-scattering method [26], multi-soliton solutions have been constructed through the
Bäcklund transformation method [28], positon solutions have been generated via the Darboux transformation (DT) [29], soliton
solutions in the Wronskian form has been obtained [30] and complexiton solutions have been determined through the Casoratian
formulation [31].

It has been said that certain relativistic particle systems are not only completely integrable at the classical level, but can also
be quantized in such a fashion that the integrability survives [32, 33]. The relativistic Toda lattice system has been derived via
the requirement of Poincaré invariance for the Toda lattice system [33]. Lax representation, complete integrability and scattering
problem of the relativistic Toda lattice system have been studied [33]. A hereditary recursion operator and an alternative proof of the
complete integrability of the relativistic Toda lattice system have been provided via the Lax representation [34]. Three different Lax
representations and complete integrability of the relativistic Toda lattice system have been investigated [35]. The direct and inverse
spectral problems of the relativistic Toda lattice system have been solved [36]. Conserved quantities, bi-Hamiltonian formulation
and recursive structure of the relativistic Toda lattice system have been obtained through the master symmetries [37]. Relation
between the discrete time Toda lattice system and relativistic Toda lattice system has been found in the context of the Hamiltonian
dynamics [38]. Bilinear forms of the relativistic Toda lattice system have been carried out via the auxiliary dependent variables, based
on which the multi-soliton solutions have been constructed in the form of the Casorati determinant [39]. Other relativistic lattice
systems such as the discrete-time relativistic Toda lattice system, relativistic Volterra lattice system and relativistic Lotka-Volterra
lattice system have also been seen [40, 41]. Bilinear forms and multi-soliton solutions in the form of the Casorati determinant of the
discrete-time relativistic Toda lattice system and relativistic Lotka-Volterra lattice system have been derived via the Hirota method

1 Investigations on certain nonlinear waves of the continuous nonlinear systems have been shown, e.g., in Refs. [11–20].
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and Casoratian technique [42, 43]. N-fold DT and some solutions of the relativistic Volterra lattice system have been obtained
through a gauge transformation and Lax pair, where N is a positive integer [44].

Based on the work of Ref. [45], Ref. [46] has presented the following hybrid relativistic and modified Toda lattice-type system:

pn,t � α(� − 1)eqn−qn−1 + β2(� − 1)eqn−qn−1+pn−1 , (1a)

qn,t � epn
(
1 + β2eqn+1−qn

)
, (1b)

where the integer n stands for a discrete spatial variable, qn and pn mean two differentiable functions of the continuous temporal
variable t, qn, t � dqn

dt and pn, t � dpn
dt , � is a shift operator defined via �pn � pn+1, while α and β denote two real constants which

are respectively modified-Toda-lattice related and relativistic-Toda-lattice related. Dynamic issues with respect to System (1) have
been seen in Refs. [45, 46]. Lax pair, one-fold DT and certain solutions of System (1) have been obtained [46].

However, as far as we know, equivalent form of System (1) has not been reported. In addition, N-fold DT of that equivalent form
and some analytic solutions which are different from those in Ref. [46] have not been discussed. In Sect. 2, an equivalent form of
System (1) will be presented via certain transformations. In Sect. 3, N-fold Darboux matrix and N-fold DT of that equivalent form
will be determined via the equivalent-form Lax pair. In Sect. 4, some analytic solutions of that equivalent form will be obtained
based on our N-fold DT. In Sect. 5, we shall give the conclusions.

2 Equivalent form of System (1)

For the convenience of deriving the N-fold DT and some analytic solutions, we take the transformations

rn � epn , sn � eqn , (2)

and then System (1) is equivalent to the following system:

rn,t � rn

[
α(� − 1)

sn
sn−1

+ β2(� − 1)
rn−1sn
sn−1

]
, (3a)

sn,t � rn
(
sn + β2sn+1

)
, (3b)

whose Lax pair is expressed as

��n � Un�n , Un �
(
rnλ − λ−1 sn
−β2rn+α

sn
αλ

)

, (4a)

�n,t � Vn�n , Vn �
⎛

⎝
sn

(
β2rn−1+α

)

sn−1
− snλ−1

β2rn−1+α
sn−1

λ−1 − λ−2

⎞

⎠, (4b)

which is consistent with the Lax pair in Ref. [46] under Transformations (2), where �n � (�1, n , �2, n)T , �1, n and �2, n are two
differentiable functions of t, λ is a spectral parameter and the superscript “T” refers to the transpose for a vector/matrix.

3 N-fold DT of System (3)

For the purpose of constructing an N-fold DT of System (3), we first introduce a gauge transformation [47, 48]

�̃n � Mn�n , (5)

where Mn is a reversible matrix and �̃n is necessary to satisfy

��̃n � Ũn�̃n , Ũn � Mn+1UnM
−1
n , (6a)

�̃n,t � Ṽn�̃n , Ṽn � (
Mn,t + MnVn

)
M−1

n , (6b)

while Ũn and Ṽn have the same structures as Un and Vn , respectively, with the exception that the previous potentials rn , sn have been
substituted by new ones r̃n , s̃n , and the superscript “−1” means the inverse of a matrix. We assume that N-fold Darboux matrix Mn

takes the form of a polynomial matrix of λ, as shown below:

Mn �
(
An Bn

Cn Dn

)
�

⎛

⎜⎜⎜
⎝

λ−N +
N∑

j�1
A(−N+2 j)
n λ−N+2 j

N∑

j�1
B(N−2 j+1)
n λN−2 j+1

N∑

j�1
C (N−2 j+1)
n λN−2 j+1 λN +

N∑

j�1
D(N−2 j)
n λN−2 j

⎞

⎟⎟⎟
⎠

, (7)
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where An , Bn , Cn and Dn are some to-be-determined functions of n and t. Assuming that λı ’s (λı �� 0, ı � 1, 2, . . . , 2N ) are the
2N roots of detMn , we get

detMn � A(N )
n λ−2N

2N∏

ı�1

(
λ2 − λ2

ı

)
. (8)

Consequently, we can use the linear algebraic system shown below to find A(−N+2 j)
n ’s, B(N−2 j+1)

n ’s, C (N−2 j+1)
n ’s and D(N−2 j)

n ’s
uniquely:

N∑

j�1

A(−N+2 j)
n λ

−N+2 j
ı + δı ,n

N∑

j�1

B(N−2 j+1)
n λ

N−2 j+1
ı � −λ−N

ı , (9a)

N∑

j�1

C (N−2 j+1)
n λ

N−2 j+1
ı + δı ,n

N∑

j�1

D(N−2 j)
n λ

N−2 j
ı � −δı ,nλ

N
ı , (9b)

where

δı ,n � φ2,n(λı ) + θıψ2,n(λı )

φ1,n(λı ) + θıψ1,n(λı )
, (10)

φn(λı ) � (
φ1, n(λı ), φ2, n(λı )

)T and ψn(λı ) � (
ψ1, n(λı ), ψ2, n(λı )

)T are the solutions of Lax Pair (4), while the 4N parameters
λı ’s, θı ’s (λı �� λj , ı �� j , θı �� 0) are set in such a way that the determinant of the coefficients for Eq. (9) is non-zero.

Proposition 1 The matrix Ũn defined via Eq. (6a) has the same structure as that of Un, i.e.,

Ũn �
(
r̃nλ − λ−1 s̃n
−β2r̃n+α

s̃n
αλ

)

,

where the transformations from the old potentials rn, sn into the new ones r̃n, s̃n are given by

r̃n � A(N )
n+1

A(N )
n

rn , (11a)

s̃n � sn + B(−N+1)
n

D(−N )
n

. (11b)

Proof Let M−1
n � M∗

n /detMn and

Mn+1UnM
∗
n �

(
f11, n(λ) f12, n(λ)

f21, n(λ) f22, n(λ)

)
,

in which

f11,n(λ) � −An+1Dnλ
−1 + (rn An+1Dn − αBn+1Cn)λ −

(
β2rn + α

)
Bn+1Dn

sn
− sn An+1Cn ,

f12,n(λ) � An+1Bnλ
−1 + (αAnBn+1 − rn An+1Bn)λ +

(
β2rn + α

)
BnBn+1

sn
+ sn An An+1,

f21,n(λ) � −Cn+1Dnλ
−1 + (rnCn+1Dn − αCnDn+1)λ −

(
β2rn + α

)
DnDn+1

sn
− snCnCn+1,

f22,n(λ) � BnCn+1λ
−1 + (αAnDn+1 − rn BnCn+1)λ +

(
β2rn + α

)
BnDn+1

sn
+ sn AnCn+1,

(12)

and the superscript “∗” means the adjoint of a matrix. According to Eq. (4a), (9) and (10), we have

An(λı ) � −δı ,n Bn(λı ), Cn(λı ) � −δı ,nDn(λı ), δı ,n+1 � −(
β2rn + α

)
+ αsnλıδı ,n

sn
(
rnλı − λ−1

ı + snδı ,n
) . (13)

After that, using Eqs. (12) and (13), we can confirm that λı ’s are the roots of f11, n(λ), f12, n(λ), f21, n(λ) and f22, n(λ).
According to Eq. (12), we realize that f11, n(λ) is the polynomial in λ with the highest order 2N + 1 and lowest order −2N − 1,

f12, n(λ) and f21, n(λ) are the polynomials in λ with the highest order 2N and lowest order −2N , while f22, n(λ) is the polynomial
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in λ with the highest order 2N + 1 and lowest order −2N + 1. Making use of Eq. (8), it is possible to verify the existence of a matrix
Hn such that

Mn+1UnM
∗
n � detMn · Hn , (14)

where

Hn �
(
h(1)

11, nλ + h(−1)
11, nλ

−1 h(0)
12, n

h(0)
21, n h(1)

22, nλ

)

,

while h(1)
11, n , h(−1)

11, n , h(0)
12, n , h(0)

21, n and h(1)
22, n are some to-be-determined functions of n and t. Following that, rewriting Eq. (14) as

Mn+1Un � HnMn , (15)

and equating the same powers of λ in Eq. (15), we are able to derive

h(1)
11,n � A(N )

n+1

A(N )
n

rn � r̃n , h(−1)
11,n � −1, h(0)

12,n � sn + B(−N+1)
n

D(−N )
n

� s̃n , h(1)
22,n � α, (16)

and

snC
(−N+1)
n+1 + α

(
D(−N )
n+1 − D(−N )

n

)
− h(0)

21,n B
(−N+1)
n � 0,

h(0)
21,n + C (−N+1)

n+1 +
β2rn + α

sn
D(−N )
n+1 � 0.

(17)

Solving Eqs. (9) gives rise to

D(−N )
n �

2N∏

ı�1

λ2
ı A

(N )
n , (18)

and then Eqs. (17) and (18) bring about

h(0)
21,n � −β 2̃rn + α

s̃n
. (19)

From Eqs. (6a), (16) and (19), we obtain the conclusion of Proposition 1. The proof is completed. �

Proposition 2 The matrix Ṽn defined via Eq. (6b) has the same structure as that of Vn, i.e.,

Ṽn �
⎛

⎝
s̃n

(
β2r̃n−1+α

)

s̃n−1
− s̃nλ−1

β2r̃n−1+α
s̃n−1

λ−1 − λ−2

⎞

⎠,

under Transformations (11).

Proof Let

(
Mn, t + MnVn

)
M∗

n �
(
g11, n(λ) g12, n(λ)

g21, n(λ) g22, n(λ)

)
,

in which

g11,n(λ) �BnCnλ
−2 +

[

sn AnCn +
BnDn

(
β2rn−1 + α

)

sn−1

]

λ−1 +
sn AnDn

(
β2rn−1 + α

)

sn−1
+ An,t Dn − Bn,tCn ,

g12,n(λ) � − AnBnλ
−2 −

[

sn A
2
n +

B2
n

(
β2rn−1 + α

)

sn−1

]

λ−1 − sn An Bn
(
β2rn−1 + α

)

sn−1
+ AnBn,t − An,t Bn ,

g21,n(λ) �CnDnλ
−2 +

[

snC
2
n +

D2
n

(
β2rn−1 + α

)

sn−1

]

λ−1 +
snCnDn

(
β2rn−1 + α

)

sn−1
+ Cn,t Dn − CnDn,t ,

g22,n(λ) � − AnDnλ
−2 −

[

sn AnCn +
BnDn

(
β2rn−1 + α

)

sn−1

]

λ−1 − sn BnCn
(
β2rn−1 + α

)

sn−1
+ AnDn,t − BnCn,t .

(20)
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With the aid of Eqs. (4b), (9) and (10), we obtain that

An,t (λı ) � −δı ,n,t Bn(λı ) − δı ,n Bn,t (λı ),

Cn,t (λı ) � −δı ,n,t Dn(λı ) − δı ,nDn,t (λı ),

δı ,n,t � β2rn−1 + α

sn−1
λ−1
ı −

[

λ−2
ı +

sn
(
β2rn−1 + α

)

sn−1

]

δı ,n + snλ
−1
ı δ2

ı ,n .

(21)

In terms of Eqs. (20) and (21), it is possible to check that λı are all the roots of g11, n(λ), g12, n(λ), g21, n(λ) and g22, n(λ).
On the basis of Eqs. (20), we know that g11, n(λ) is the polynomial in λ with the highest order 2N and lowest order −2N , g12, n

(λ) and g21, n(λ) are the polynomials in λ with the highest order 2N −1 and lowest order −2N −1, while g22, n(λ) is the polynomial
in λ with the highest order 2N − 2 and lowest order −2N − 2. With the help of Eq. (8), it can be demonstrated that there exists a
matrix Kn such that

(
Mn,t + MnVn

)
M∗

n � detMn · Kn , (22)

where

Kn �
(

k(0)
11, n k(−1)

12, nλ
−1

k(−1)
21, nλ

−1 k(−2)
22, nλ

−2

)

,

while k(0)
11, n , k(−1)

12, n , k(−1)
21, n and k(−2)

22, n are some to-be-determined functions of n and t. To calculate Kn , we rewrite Eq. (22) as

Mn,t + MnVn � KnMn . (23)

By equating the same powers of λ in Eq. (23), we derive

k(−1)
12,n � − sn + B(−N+1)

n

D(−N )
n

� −̃sn , k(−2)
22,n � −1, (24)

and

k(0)
11,n − sn + B(−N+1)

n

D(−N )
n

C (−N+1)
n − sn

(
β2rn−1 + α

)

sn−1
− β2rn−1 + α

sn−1
B(−N+1)
n � 0,

k(−1)
21,n − β2rn−1 + α

sn−1
D(−N )
n − C (−N+1)

n � 0,

A(N )
n,t − k(0)

11,n A
(N )
n +

sn
(
β2rn−1 + α

)

sn−1
A(N )
n � 0,

D(−N )
n,t − k(−1)

21,n B
(−N+1)
n − snC

(−N+1)
n � 0.

(25)

Taking Eqs. (17), (18) and (25) into account, we obtain

k(0)
11,n � s̃n

(
β 2̃rn−1 + α

)

s̃n−1
, k(−1)

21,n � β 2̃rn−1 + α

s̃n−1
. (26)

From Eqs. (6b), (24) and (26), we arrive at the conclusion of Proposition 2. The proof is completed. �

Further, we provide the following theorem in light of Propositions 1 and 2:

Theorem 1 Let rn and sn be the seed solutions of System (3), φn(λ) � (
φ1, n(λ), φ2, n(λ)

)T
and ψn(λ) � (

ψ1, n(λ), ψ2, n(λ)
)T

be
two linearly independent solutions of Lax Pair (4), then the N-Fold DT is given by Transformation (5) and

r̃n � A(N )
n+1

A(N )
n

rn , s̃n � sn + B(−N+1)
n

D(−N )
n

,

where

A(N )
n � �A(N )

n

�1
, B(−N+1)

n � �B(−N+1)
n

�1
, D(−N )

n � �D(−N )
n

�2
,
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�1 �

∣
∣
∣
∣∣
∣
∣
∣
∣

λ−N+2
1 λ−N+4

1 · · · λN
1 λ−N+1

1 δ1, n λ−N+3
1 δ1, n · · · λN−1

1 δ1, n

λ−N+2
2 λ−N+4

2 · · · λN
2 λ−N+1

2 δ2, n λ−N+3
2 δ2, n · · · λN−1

2 δ2, n
...

...
. . .

...
...

...
. . .

...
λ−N+2

2N λ−N+4
2N · · · λN

2N λ−N+1
2N δ2N , n λ−N+3

2N δ2N , n · · · λN−1
2N δ2N , n

∣
∣
∣
∣∣
∣
∣
∣
∣

,

�2 �

∣
∣
∣
∣
∣
∣
∣
∣
∣

λ−N+1
1 λ−N+3

1 · · · λN−1
1 λ−N

1 δ1, n λ−N+2
1 δ1, n · · · λN−2

1 δ1, n

λ−N+1
2 λ−N+3

2 · · · λN−1
2 λ−N

2 δ2, n λ−N+2
2 δ2, n · · · λN−2

2 δ2, n
...

...
. . .

...
...

...
. . .

...
λ−N+1

2N λ−N+3
2N · · · λN−1

2N λ−N
2N δ2N , n λ−N+2

2N δ2N , n · · · λN−2
2N δ2N , n

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

�A(N )
n and �B(−N+1)

n are respectively produced from �1 by replacing the Nth and (N + 1)th columns with (−λ−N
1 , −λ−N

2 , . . . ,

−λ−N
2N )T , while �D(−N )

n is produced from �2 by replacing the (N + 1)th column with (−λN
1 δ1, n , −λN

2 δ2, n , . . . , −λN
2N δ2N , n)T .

4 Analytic solutions of System (3)

To determine some analytic solutions of System (3), we choose the non-zero seed solutions of System (3) as

rn � 1, sn � e
(
1+β2)

t . (27)

Utilizing Seed Solutions (27), we obtain the two solutions of Lax Pair (4) as

φn �
(

φ1,n(λı )

φ2,n(λı )

)
�

(
χ1(λı )[κ1(λı )]neμ1(λı )t

[κ1(λı )]ne
[
μ1(λı )−

(
1+β2

)]
t

)
, (28a)

ψn �
(

ψ1,n(λı )

ψ2,n(λı )

)
�

(
χ2(λı )[κ2(λı )]neμ2(λı )t

[κ2(λı )]ne
[
μ2(λı )−

(
1+β2

)]
t

)
, (28b)

where

χ1(λı ) � 1

2
(
β2 + α

)
[
λ−1
ı + (α − 1)λı + λ−1

ı

√
1 − 2

(
1 + 2β2 + α

)
λ2
ı + (α − 1)2λ4

ı

]
,

χ2(λı ) � 1

2
(
β2 + α

)
[
λ−1
ı + (α − 1)λı − λ−1

ı

√
1 − 2

(
1 + 2β2 + α

)
λ2
ı + (α − 1)2λ4

ı

]
,

κ1(λı ) � 1

2

[
−λ−1

ı + (α + 1)λı − λ−1
ı

√
1 − 2

(
1 + 2β2 + α

)
λ2
ı + (α − 1)2λ4

ı

]
,

κ2(λı ) � 1

2

[
−λ−1

ı + (α + 1)λı + λ−1
ı

√
1 − 2

(
1 + 2β2 + α

)
λ2
ı + (α − 1)2λ4

ı

]
,

μ1(λı ) � 1

2

[
−λ−2

ı +
(
2β2 + α + 1

)
+ λ−2

ı

√
1 − 2

(
1 + 2β2 + α

)
λ2
ı + (α − 1)2λ4

ı

]
,

μ2(λı ) � 1

2

[
−λ−2

ı +
(
2β2 + α + 1

) − λ−2
ı

√
1 − 2

(
1 + 2β2 + α

)
λ2
ı + (α − 1)2λ4

ı

]
.

According to Eqs. (10), (13) and (28), we have

δı ,n � [κ1(λı )]ne
[
μ1(λı )−

(
1+β2

)]
t + θı [κ2(λı )]ne

[
μ2(λı )−

(
1+β2

)]
t

χ1(λı )[κ1(λı )]neμ1(λı )t + θıχ2(λı )[κ2(λı )]neμ2(λı )t
,

δı ,n+1 � −(
β2 + α

)
+ αe

(
1+β2

)
tλıδı ,n

e(1+β2)t
[
λı − λ−1

ı + e(1+β2)tδı ,n

] .

(29)

When N � 2, making use of Theorem 1, two-fold solutions of System (3) can be expressed as

r̃n � A(2)
n+1

A(2)
n

, (30a)

s̃n � e
(
1+β2

)
t + B(−1)

n

D(−2)
n

, (30b)

where
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A(2)
n � �A(2)

n

�1
, B(−1)

n � �B(−1)
n

�1
, D(−2)

n � �D(−2)
n

�2
,

with

�1 �

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 λ2
1 λ−1

1 δ1, n λ1δ1, n

1 λ2
2 λ−1

2 δ2, n λ2δ2, n

1 λ2
3 λ−1

3 δ3, n λ3δ3, n

1 λ2
4 λ−1

4 δ4, n λ4δ4, n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, �2 �

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

λ−1
1 λ1 λ−2

1 δ1, n δ1, n

λ−1
2 λ2 λ−2

2 δ2, n δ2, n

λ−1
3 λ3 λ−2

3 δ3, n δ3, n

λ−1
4 λ4 λ−2

4 δ4, n δ4, n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, �A(2)
n �

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 −λ−2
1 λ−1

1 δ1, n λ1δ1, n

1 −λ−2
2 λ−1

2 δ2, n λ2δ2, n

1 −λ−2
3 λ−1

3 δ3, n λ3δ3, n

1 −λ−2
4 λ−1

4 δ4, n λ4δ4, n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

�B(−1)
n �

∣
∣
∣
∣
∣
∣
∣∣∣∣∣∣∣∣∣

1 λ2
1 −λ−2

1 λ1δ1, n

1 λ2
2 −λ−2

2 λ2δ2, n

1 λ2
3 −λ−2

3 λ3δ3, n

1 λ2
4 −λ−2

4 λ4δ4, n

∣
∣
∣
∣
∣
∣
∣∣∣∣∣∣∣∣∣

, �D(−2)
n �

∣
∣
∣
∣
∣
∣
∣∣∣∣∣∣∣∣∣

λ−1
1 λ1 −λ2

1δ1, n δ1, n

λ−1
2 λ2 −λ2

2δ2, n δ2, n

λ−1
3 λ3 −λ2

3δ3, n δ3, n

λ−1
4 λ4 −λ2

4δ4, n δ4, n

∣
∣
∣
∣
∣
∣
∣∣∣∣∣∣∣∣∣

.

5 Conclusions

Studies of the lattice systems have been seen of current interest due to their applications in relativity, optics, condensed matter physics
and plasma physics. In this paper, we have studied a hybrid relativistic and modified Toda lattice-type system, i.e., System (1). It has
been known that System (1) is related to the relativistic Toda lattice and modified Toda lattice. Under Transformations (2), we have
given an equivalent form of System (1), i.e., System (3), along with Lax Pair (4). With the aid of Lax Pair (4), we have constructed
N-Fold DT (5) and (11) of System (3). Via N-Fold DT (5) and (11) with N � 2, we have obtained Two-Fold Solutions (30) of
System (3).
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