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Abstract An extended evolution equation is studied by means of Hirota bilinear method in this article, and it is gained from local
Cartesian coordinate system of the basic equation group by applying scaling analysis and perturbation expansions. Firstly, the
equation is transformed into Hirota form by variable transformation. Secondly, based on Hirota equation, we obtained the soliton,
breather, rogue wave and interaction solutions of the equation. At last, figures of these solutions and the interaction of wave–wave
are showed by choosing appropriate parameters. The effects of the horizontal Coriolis parameter on the soliton, breather, rogue
wave, interaction solutions are conducted. We believe that the results have significant impaction in ocean dynamics.

1 Introduction

Studied here, we focus on the Eq. (3) in reference [1], which is a mesoscale ocean model that takes into account complete Cori-
olis parameters, other factors such as dissipation, topography, adiabatic heating are not considered. In this document, the mass
conservation equation and the momentum equation can be written as follows:
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(1)

where x is the zonal coordinate, and α is the zonal velocity; y is the meridional coordinate, and β is the meridional velocity; z
is the vertical coordinate, and γ is the vertical velocity. In the whole ambient flow field, d0 represents density and ψ0 represents
potential temperature, respectively, they are functions of z, and the temperature stratification is expressed as dψ0

dz . ψ represents the
perturbation of temperature. The symbol f , f ′, respectively, denote the vertical component and horizontal component. The physical
meanings of other symbols are in the literature [1]. An extended KdV equation is gained as model to evolve equatorial near-inertial
waves via perturbation expansions and the multiple scale method, as follows:
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Equation (2) can be reduced to:

∂F

∂T
+ a1F

∂F

∂ξ
+ a2

∂3F

∂ξ3 + a3
∂F

∂ξ
� 0. (3)

where a1 � C2
C , a2 � C3

C , a3 � C1
C . One key coefficient a3 represents the horizontal component of Coriolis parameters, a3 took effect

by controlling the velocity feature of the near-inertial waves. In the reference [1], the Eq. (3) was solved by applying Jacobian elliptic
function expansions; periodic and soliton solutions are obtained. Apparently, we need more meaningful exact solutions which are
not available; the horizontal Coriolis parameter effects on solitons, breathers, rogue wave and interactions have not discussed.

Actually, exact solutions of nonlinear equations have an important role in many fields, like mechanics [2], plasma physics [3,
4], optics [5], acoustics [6], thermodynamics [7]. Many researchers have studied on the exact solutions of the nonlinear equations,
counting in solitons [8–11], breathers [12–19], and rouge [20–22]. Breathers are local wave solutions with period, non-mediocre
properties caused by collision reaction of breathers, so breathers are often used to explain the modulation instability and the generation
of rouge waves [23]. Rouge solution is one of rational function solution with local characteristics of space–time; it shows up in a
short period, large amplitude, extremely destructive. It suddenly appears and disappears, and the crest is extremely steep, posing
a great threat to ships in the sea [24]. Many researchers also focus on interaction solutions between soliton and other solutions
[25–29]. To explain some physical phenomena further, we need to construct interaction solutions among nonlinear waves.

There have many ways to get the exact solutions of nonlinear extended equations, for instance, the Hirota bilinear method
[30–35], inverse scattering transformation [36–38], symbolic computation approach [39–41], Lie group method [42–44], Darboux
transformation [45–47], Bäcklund transformation [48–50], and so on. The Hirota bilinear transformation uses small parameter
perturbation method, and the solution of a series expansion is substituted into the bilinear equation, then compare the coefficients
of the parameters in the equation to the same power, so we can get the specific expressions of the one-soliton, muti-solitons of the
original equation, and the general expressions for the N-soliton can be obtained by mathematical induction. The Hirota bilinear
transformation uses bilinear derivatives as a tool, and this tool has one on one relationship to the equation that is being solved. It is
easy to calculate and has solved a large number of nonlinear partial differential equations effectively [51].

This paper mainly studied following points: Firstly, Hirota bilinear equation of the extended equation is obtained. Secondly, the
N-soliton solutions are gained by using small parameter perturbation, breather, rogue wave, and interaction between one-soliton and
one-breather, interaction between two-soliton and one-rogue that are found by using the symbolic calculation method; the solution
images are given with the help of Mathematica software. Lastly, it can be found that the Rossby waves rotate clockwise with the
Coriolis parameter a3 increasing. when the wave is periodic, the period decreases with the increasing of the horizontal Coriolis
parameters a3. When studying the interaction, we found that a change in a3 does not cause a change in the moment of the interaction.

2 The Hirota bilinear form

Under the following variable transformation:

u � 2(ln F)ξξ . (4)

where u � u(ξ , T ), F � F(ξ , T ), and a1 � 6a2.
Substituting (4) into (3), the Eq. (3) is transformed into the below Hirota bilinear form:

(Dξ DT + a2D
4
ξ + a3D

2
ξ )F · F � 0. (5)

Then, there:

Dξ DT F · F � 2(FξT F − Fξ FT ),

D4
ξ F · F � 2(Fξξξξ F − 4Fξ Fξξξ + 3F2

ξξ ),

D2
ξ F · F � 2(Fξξ F − F2

ξ ). (6)

3 The soliton solutions

Next, we follow the steps of the Hirota bilinear method to get the N-soliton solution of Eq. (3), substituting (6) into (5), we get:

(FξT F − Fξ FT ) + a2(Fξξξξ F − 4Fξ Fξξξ + 3F2
ξξ ) + a3(Fξξ F − F2

ξ ) � 0. (7)

Using bilinear form and small parameter perturbation method suppose:

F � 1 + εF1 + ε2F2 + ε3F3 + ε4F4 · · · . (8)
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substituting (8) into (7) and compare the coefficients of the same power of ε to obtain a system of linear differential equations:

ε :
(
∂ξ∂T + a2∂

4ξ + a3∂
2ξ
)
F1 � 0, (9.1)

ε2 : 2
(
∂ξ∂T + a2∂

4ξ + a3∂
2ξ
)
F2 � −(Dξ DT + a2D

4
ξ + a3D

2
ξ

)
F1 · F1, (9.2)

ε3 : 2
(
∂ξ∂T + a2∂

4ξ + a3∂
2ξ
)
F3 � −2

(
Dξ DT + a2D

4
ξ + a3D

2
ξ

)
F1 · F2, (9.3)

ε4 : 2
(
∂ξ∂T + a2∂

4ξ + a3∂
2ξ
)
F4 � −(Dξ DT + a2D

4
ξ + a3D

2
ξ

)
(2F1 · F3 + F2 · F2), (9.4)

3.1 The one-soliton solution

To solve one-soliton, we suppose:

F � 1 + εF1, F1 � eθ1 , θ1 � λ1ξ + ω1T + θ0
1 . (10)

With λ1, ω1 and θ0
1 are arbitrary constants.

Then

F � 1 + εeλ1ξ+ω1T+θ0
1 . (11)

Substituting (10) into (9.1), we can obtain the following equation:

λ1ω1 + a2λ
4
1 + a3λ

2
1 � 0. (12)

We can get:

ω1 � −(a2λ
3
1 + a3λ1). (13)

Let ε � 1 lead to:

F � 1 + eλ1ξ−(a2γ 3
1 +a3γ1)T+θ0

1 . (14)

and we can get one-soliton solution:

u � 2
[
ln
(

1 + eλ1ξ−(a2γ 3
1 +a3γ1)T+θ0

1

)]

ξξ . (15)

3.2 The two-soliton solution

To solve two-soliton, we suppose:

F � 1 + εF1 + ε2F2, F1 � eθ1 + eθ2 , F2 � eθ1+θ2+A12 . (16)

where θi � λiξ + ωi T + θ0
i (i � 1, 2) with λi , ωi ,and θ0

i are arbitrary constants.Then,

F � 1 + ε
(

eλ1ξ+ω1T+θ0
1 + eλ2ξ+ω2T+θ0

2

)
+ ε2eλ1ξ+ω1T+θ0

1 +λ2ξ+ω2T+θ0
2 +A12 . (17)

substituting (16) into (9.1), we can obtain the following equation:
(
λ1ω1eθ1 + λ2ω2eθ2

)
+ a2

(
λ4

1eθ1 + λ4
2eθ2

)
+ a3

(
λ2

1eθ1 + λ2
2eθ2

) � 0. (18)

we can get:

ωi � −(a2λ
3
i + a3λi ) (i � 1, 2). (19)

substituting (16) into (9.2),eA12 can be calculated by using Mathematica:

eA12 � − (λ1 − λ2)((ω1 − ω2) + a2(λ1 − λ2)3 + a3(λ1 − λ2))

(λ1 + λ2)((ω1 + ω2) + a2(λ1 + λ2)3 + a3(λ1 + λ2))
(20)

let ε � 1 lead to:

F � 1 + eθ1 + eθ2 − (λ1 − λ2)((ω1 − ω2) + a2(λ1 − λ2)3 + a3(λ1 − λ2))

(λ1 + λ2)((ω1 + ω2) + a2(λ1 + λ2)3 + a3(λ1 + λ2))
eθ1+θ2 . (21)

where ωi satisfies (19). Substituting (21) into (4), we can get two-soliton:

u � 2
[
ln
(

1 + eθ1 + eθ2 + eθ1+θ2+A12
)]

ξξ
. (22)

where θi � λiξ + ωi T + θ0
i (i � 1, 2), ωi � −(a2λ

3
i + a3λi ) (i � 1, 2) and

eA12 � − (λ1 − λ2)((ω1 − ω2) + a2(λ1 − λ2)3 + a3(λ1 − λ2))

(λ1 + λ2)((ω1 + ω2) + a2(λ1 + λ2)3 + a3(λ1 + λ2))
.
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3.3 The three-soliton solution

To solve three-soliton, we suppose:

F � 1 + εF1 + ε2F2 + ε3F3, (23)

F1 � eθ1 + eθ2 + eθ3 , (24)

F2 � eθ1+θ2+A12 + eθ1+θ3+A13 + eθ2+θ3+A23 , (25)

F3 � eθ1+θ2+θ3+A123 . (26)

where θi � λiξ + ωi T + θ0
i (i � 1, 2, 3). Substituting (24) into (9.1), we can obtain:

ωi � −(a2λ
3
i + a3λi ) (i � 1, 2, 3). (27)

substituting (24) and (25) into (9.2), eAi j can be calculated by using Mathematica:

eAi j � − (λi − λ j )((ωi − ω j ) + a2(λi − λ j )3 + a3(λi − λ j ))

(λi + λ j )((ωi + ω j ) + a2(λi + λ j )3 + a3(λi + λ j ))
(i � 1, 2, 3, i < j). (28)

substituting (24), (25) and (26) into (9.3), F3 can be calculated by using Mathematica:

F3 � eθ1+θ2+θ3+A123 . (29)

where eA123 � eA12 eA13 eA23 , let ε � 1 lead to

F � 1 + eθ1 + eθ2 + eθ3 + eθ1+θ2+A12 + eθ1+θ3+A13 + eθ2+θ3+A23 + eθ1+θ2+θ3+A123 . (30)

substituting (30) into (4), we can get three-soliton solution:

u � 2[ln F]ξξ . (31)

where F satisfies formula (30). Substituting (24), (25) and (26) into (9.4), we can obtain F4 � 0, so the three-soliton solution must
exist, and the N-soliton solution must exist.

3.4 The N-soliton solution

The same can be obtained the N-soliton. The function F has the below formula:

F �
∑

μ�0,1

e

N∑

i�1
μi θi+

∑

1≤i< j
μiμ j Ai j

. (32)

where θi � λiξ + ωi T + θ0
i (i � 1, 2, 3 · · · N ), ωi satisfies (27) (i � 1, 2, 3 · · · N ) and eAi j satisfies (28) (i � 1, 2, 3 · · · N ,

1 ≤ i < j), with λi ,and θ0
i are arbitrary constants.

∑
μ � 0, 1 covers the sum of all possible combinations of θi , θ j � 0, 1 i ,

j � 1, 2, 3 · · · N . Putting (32) into (4), we can get N-soliton solution:

u � 2

⎡

⎢
⎣ln

⎛

⎜
⎝
∑

μ�0,1

e

N∑

i�1
μi θi+

∑

1≤i< j
μiμ j Ai j

⎞

⎟
⎠

⎤

⎥
⎦

ξξ

. (33)

where θi � λiξ + ωi T + θ0
i (i � 1, 2, 3 · · · N ),ωi satisfies (27) (i � 1, 2, 3 · · · N ) and eAi j satisfies (28) (i � 1, 2, 3 · · · N ,

1 ≤ i < j).
The Fig. 1 By choosing proper parameters for (15), the dynamic diagrams of one-soliton can be described: λ1 � 1/2, a2 � 1,

(a1) a3 � 1/8; (a2) a3 � 1; (a3) a3 � 2. From Figures (a1), (a2) and (a3), the same values of λ1 and a2, along with a3 increasing,
the direction of wave propagation changes clockwise. Not only that, from the Figure (a4), the wave width of one-soliton solutions
decreases, and the wave propagation frequency accelerates with the Coriolis parameter a3 increasing, but Rossby waves amplitude
does not change. From Figures (a5) illustrate, one-soliton has general traveling wave properties.

The Fig. 2 By choosing proper parameters for (22), the dynamic diagrams of two-soliton can be described: λ1 � 1, λ2 � 3/2,
a2 � 1, (a6) a3 � −2; (a7)a3 � −1; (a8) a3 � 7/6. From (a6), (a7) and (a8), the same values of λ1, λ2 and a2, along with a3

increasing, the direction of wave propagation changes clockwise; at same time, the angle gradually decreases. we can clearly see
that the two solitons are bright, and the collisions are elastic. Their speeds and shapes keep no change after collision; two solitons
get phase shifts after the interactions, and as a3 changes, the position of the interaction between solitons does not change. From
(a9), (a10) and (a11), different values a3 leads to the big change of density when the two waves collide. From Figures (a12), when
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Fig. 1 One-soliton solutions of Eq. (3). Up row: 3D graphs of one-soliton solutions with λ1 � 1/2, a2 � 1 (a1) a3 � 1/8; (a2) a3 � 1; (a3) a3 � 2. Down
row: The left one is the visual diagram of a3 transformation. The right one is the propagation of solitons overtime with a3 � 1

a3 � −1, we can see that the shape and amplitude of the waves change with the changing of T . The two solitons take interaction
completely when T � 0, the amplitude goes down, which reflects the energy dissipation caused by the interaction of the two solitons.
When T � −5 and T � 5, there are two axisymmetric graphs. From Figure (a13), when ξ � 0, the shapes of the waves are very
similar, the wave width decreases, and the wave propagation frequency accelerates along a3 increasing; Rossby waves amplitude
does not change. From Figure (a14), when T � 1, the wave keeps its shape and shifts to the left along a3 changing.

In Fig. 3, by choosing proper parameters for (31), the dynamic diagrams of three-soliton can be described: λ1 � 2, λ2 � 3,
λ3 � 3/2, a2 � 1, (a15) a3 � −4; (a16)a3 � −2; (a17) a3 � 1. From (a15), (a16) and (a17), the same values of λ1, λ2, λ3 and
a2, along with a3 increasing, the direction of wave propagation changes clockwise; at same time, the intersection angle of the three
waves changes. we can see that the three solutions are bright solitons, and the collisions are elastic. Their speeds and shapes keep
no change after collision; three solitons have phase shifts after the interactions, and as a3 changes, the position of the interaction
between solitons does not change. From (a18), (a19) and (a20), different values of the horizontal Coriolis parameter a3 lead to the
large change of contour density when the three waves collide. From Figures (a21), when a3 � −2, we can see that the shape and
amplitude of the waves change with the changing of T . The three solitons take interaction completely when T � 0, amplitude of
waves reaches the maximum value, which reflects the energy accumulation caused by the interaction of the three solitons. From
Figure (a22), when ξ � 0, the shapes of the waves are very similar, the wave width decreases, and the wave propagation frequency
accelerates along a3 increasing; Rossby waves amplitude does not change. From Figure (a23), when T � 1, the wave keeps its
shape and shifts to the left along a3 changing.

4 The one-breather wave solution

Supporting by the symbolic computation approach, the one-breather wave solution of Eq. (3) is gained, suppose:

f � e−θ1 + c2eθ1 + c1 cos θ2, (34)

where θ1 � λ1(ξ − w1T ), θ2 � λ2(ξ + w2T ), where λ1, w1, λ2, w2 are real constant.
Substituting (34) into (7) and setting the coefficients of eθ1 cos θ2, e−θ1 cos θ2, .
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Fig. 2 Two-soliton solutions of Eq. (3). First row: 3D graphs of two-soliton solutions with λ1 � 1, λ2 � 3/2, a2 � 1, (a6) a3 � −2; (a7) a3 � −1; (a8)
a3 � 7/6. Second row is the contour plots. Third row: 2D graphs of two-soliton solutions

eθ1 sin θ2, e−θ1 sin θ2 and constant term equal to zero, we get equation group as below:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c2λ
2
1(a3 − w1 + 4a2λ

2
1) � 0,

−c1λ
2
1(w1 + w2 + 4a2λ

2
1) � 0,

−c1c2λ
2
1(w1 + w2 + 4a2λ

2
1) � 0,

c1λ
2
1(−2a3 + w1 − w2) � 0,

c1c2λ
2
1(2a3 − w1 + w2) � 0.

(35)

We select one of the solutions to continue analysis:

w1 � a3, w2 � −a3, a2 � 0. (36)
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Fig. 3 Three-soliton solutions of Eq. (3). First row: 3D graphs of three-soliton solutions with λ1 � 2, λ2 � 3, λ3 � 3/2, a2 � 1, (a15) a3 � −4;(a16)
a3 � −2;(a17) a3 � 1. The second row is the corresponding contour plots. Third row: 2D graphs of three-soliton solutions

Substituting (34) (36) into (4), the one-breather wave solution is obtained:

u � 2

(
λ2

1e−λ1(ξ−a3T ) + c2λ
2
1eλ1(ξ−a3T ) − c1λ

2
2 cos[λ2(ξ − a3T )]

e−λ1(ξ−a3T ) + c2eλ1(ξ−a3T ) + c1 cos[λ2(ξ − a3T )]

−
(−λ1e−λ1(ξ−a3T ) + c2λ1eλ1(ξ−a3T ) − c1λ2 sin[λ2(ξ − a3T )]

)2

(
e−λ1(ξ−a3T ) + c2eλ1(ξ−a3T ) + c1 cos[λ2(ξ − a3T )]

)2

(37)

In Fig. 4, by choosing proper parameters for Eq. (37), the dynamic diagrams of one-breather can be described: λ1 � λ2 � 1/10,
c1 � −c2 � 2, (d1)a3 � 3; (d2)a3 � 4; (d3)a3 � 5. From Figures (d1), (d2) and (d3), the same values of λ1, λ2, c1, c2 and a2,
along with a3 increasing, the wave propagation direction changes clockwise and the period of the wave decreases. Figure (d4) is
density plot of one-breather solution. From graph (d5), when a3 � 4, as T increasing, the wave keeps the same shape and moves
parallel to the right. From graph (d6), when T � 3, as the horizontal Coriolis parameter a3 increasing, the wave keeps the same
shape and moves parallel to the right.
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Fig. 4 One-breather of Eq. (3). The 3D graphs with λ1 � λ2 � 1/10, c1 � −c2 � 2, (d1)a3 � 3;(d2)a3 � 4;(d3)a3 � 5. (d4) and (d5) are the density
plots and the 2D graph with a3 � 4; (d6) is the 2D graph with T � 3.

5 The interactions of one-soliton and one-breather

Supporting by the symbolic computation approach, the interactions of one-soliton and one-breather of Eq. (3) are gained, suppose:

f � cosh θ1 + cos θ2 + eθ3 + 1, (38)

where θ1 � λ1(ξ − w1T ), θ2 � λ1(ξ + w2T ), θ3 � λ2(ξ + w3T ), λ1, w1, λ2, w2, w3 are real constant. Substituting (38) into (7)
and setting the coefficients of eθ3 cos θ2, eθ3 cosh θ1, cos θ2 cosh θ1, eθ3 sin θ2, eθ3 sinh θ1, sin θ2 sinh θ1 equal to zero, this results in
a group of six equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−a3λ
2
1 − w2λ

2
1 + a2λ

4
1 + a3λ

2
3 + w3λ

2
3 − 6a2λ

2
1λ

2
3 + a2λ

4
3 � 0,

a3λ
2
1 − w1λ

2
1 + a2λ

4
1 + a3λ

2
3 + w3λ

2
3 + 6a2λ

2
1λ

2
3 + a2λ

4
3 � 0,

λ2
1

(
w1 + w2 + 4a2λ

2
1

) � 0,
λ1λ3

(
2a3 + w2 + w3 − 4a2λ

2
1 + 4a2λ

2
3

) � 0,
λ1λ3

(−2a3 + w1 − w3 − 4a2λ
2
1 + 4a2λ

2
3

) � 0,
λ2

1(2a3 − w1 + w2) � 0.

. (39)

We select one of the solutions to continue analysis:

w1 � a3 + a2λ
2
1 + 3a2λ

2
3,

w2 � −a3λ
2
1 + a2λ

4
1 − a3λ

2
3 + w1λ

2
3 − 10a2λ

2
1λ

2
3 − 3a2λ

4
3

λ2
1

,

w3 � −2a3 + w1 − 4a2λ
2
1 − 4a2λ

2
3. (40)

Substituting (38) (40) into (4), the interaction of one-soliton and one-breather is obtained:

u � 2

(
λ2

3eλ3(ξ+w3T ) − λ2
1cos[λ1(ξ + w2T )] + λ2

1cosh[λ1(ξ − w1T )]

1+eλ3(ξ+w3T ) + cos[λ1(ξ + w2T )] + cosh[λ1(ξ − w1T )]

− (λ3eλ3(ξ+w3T ) − λ1sin[λ1(ξ + w2T )] + λ1sinh[λ1(ξ − w1T )])2

(1+eλ3(ξ+w3T ) + cos[λ1(ξ + w2T )] + cosh[λ1(ξ − w1T )])2

)

.

(41)

where w1, w2, w3 satisfy (40).
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Fig. 5 The interaction solutions of one-soliton and one-breather of Eq. (3). 3D graphs with λ1 � 2, λ3 � 1, a2 � 1, (f1) a3 � −7;(f2)a3 � −6;(f3)a3 � −5.
(f4) (f5) (f6) are density plots. (f7) (f8) are 2D plots.

In Fig. 5, by choosing proper parameters for (41), the dynamic diagrams of the interactions of one-soliton and one-breather can
be described: λ1 � 2, λ3 � 1, a2 � 1, (f1)a3 � −7; (f2)a3 � −6; (f3)a3 � −5. From (f1)–(f3), the same values of λ1, λ3 and a2,
along with a3 increasing, the wave propagation direction changes clockwise and the shape of both waves’ changes. At same time,
the angle between the two waves decreases, and the period decreases. The collision of two waves is inelastic, and they collide and
merge into a wave, eventually forming a Y-type wave. From density Figures (f4) (f5) and (f6), we can clearly see the interaction
of the two waves and notice that the moment of interaction of the two waves does not change with the changing of a3. From 2D
Figures (f7) and (f8), as a3 increases, the waves keep the same shape and move parallel to the right; along T increasing, the shape
and amplitude of wave changes.

6 The one-rogue wave solution

Supporting by the symbolic computation approach, the one-rogue wave solution of Eq. (3) is gained, suppose:

F � (d1ξ + b1T + c1)2 + (d2ξ + b2T + c2)2 + c0, c0 > 0. (42)
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Fig. 6 One-rogue wave of Eq. (3). 3D graphs when d1 � 1, d2 � 1/2, c1 � −1, c2 � −1, c0 � 0, a2 � 1/6, (g1) a3 � 2;(g2) a3 � 4;(g3) a3 � 7.
Contour figures with d1 � 1, d2 � 1/2, c1 � −1, c2 � −1, c0 � 0, a2 � 1/6, (g4) a3 � 2; (g5) a3 � 4. g(6) g(7) are 2D graphs of the one-rogue wave.
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Fig. 7 Interaction solutions of two-soliton and one-rogue of Eq. (3). 3D graphs with λ1 � 1/2, λ2 � λ3 � 2, w1 � 1, ci � 1, (i � 1, 2, 3), p � 1,
a2 � 1(h1)a3 � −4; (h2)a3 � −3; (h3) a3 � −2. (h4) (h5) (h6) are the corresponding density plots. (h7) (h8) are the 2D plots

where d1, d2, b1, b2, c0, c1, c2 are real constant. Substituting (42) into (7), we assign coefficients T , T 2, ξ , ξ2, ξT be equal to
zero, and this results in a group of six equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1
(
d1(c0 − c2

1 + c2
2) − 2c1c2d2

)
+ b2

(−2c1c2d1 + d2(c0 + c2
1 − c2

2)
)

+ a3(d2
1 (c0 − c2

1 + c2
2)

− 4c1c2d1d2 + d2
2 (c0 + c2

1 − c2
2)) + 6a2(d2

1 + d2
2 )2 � 0,

− 4
(
b2

1(c1d1 + c2d2) + b2
(
b2c1d1 − a3c2d

2
1 + b2c2d2 + 2a3c1d1d2 + a3c2d

2
2

)

+ a3b1
(
2c2d1d2 + c1

(
d2

1 − d2
2

))) � 0,

b3
1d1 + b1b2d1(b2 + 4a3d2) + b2

1

(
b2d2 + a3

(
d2

1 − d2
2

))
+ b2

2

(
b2d2 + a3

(−d2
1 + d2

2

)) � 0,

(b1c1 + b2c2 + a3c1d1 + a3c2d2)
(
d2

1 + d2
2

) � 0,
(
d2

1 + d2
2

)(
b2

1 + a3b1d1 + b2(b2 + a3d2)
) � 0,

(
d2

1 + d2
2

)(
b1d1 + b2d2 + a3

(
d2

1 + d2
2

)) � 0.

(43)
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We select one of the solutions to continue analysis:

b1 � −a3d1,

b2 � 1

2

(

−a3d2 +
√

−4b2
1 − 4a3b1d1 + a2

3d
2
2

)

,

c0 � −6a2(d2
1 + d2

2 )2 + 2a3c1c2d1d2 − a3c2
1d

2
2 + a3c2

2d
2
2

a3d2
2

. (44)

Substituting (42) (44) into (4), the one-rogue wave is conducted:

u � 4

(

−2(d1A + d2B)2

�2 +
d2

1 + d2
2

�

)

. (45)

� � c0 + A2 + B2,

A � c1 − a3d1T + d1ξ ,

B � c2 + d2ξ.

In Fig. 6, by choosing proper parameters for (45), the dynamic diagrams of one-rogue wave can be described: d1 � 1, d2 � 1/2,
c1 � −1, c2 � −1, c0 � 0, a2 � 1/6, (g1) a3 � 2;(g2)a3 � 4;(g3) a3 � 7. From (g1)—(g3), the same values of d1, d2, c1, c2,
c0 and a2, along with a3 changing, the wave propagation direction changes clockwise. From (g4) and (g5), different values of a3

lead to a big change of density. From (g6), (g7), when ξ � 0 and T � 0, along with a3 increasing, amplitudes decrease and shapes
change.

7 The interactions of two-soliton and one-rogue

Supporting by the symbolic computation approach, the interaction of two-soliton and one-rogue of Eq. (3) is obtained, suppose:

f � θ2
1 + θ2

2 + epθ3 + e−pθ3 , (46)

where θi � λiξ + wi T + ci , (i � 1, 2, 3), λi , wi are real constant.
Putting (46) in (7) and setting the coefficients of e−pθ3 , epθ3 , T , T 2, T ξ , ξ , ξ2 and the coefficients of the cross terms be equal

to zero, this results in a group of eighteen equations, we select one of the solutions to continue analysis:

w1 � −a3λ
2
1 − w2λ2 − a3λ

2
2

λ1
,

w2 � −a3λ3 − a2 p
2λ2

3. (47)

Substituting (46) (47) into (4), the interaction of two-soliton and onebreather is gained:

u � 2

(
2λ2

1 + 2λ2
2 + p2λ2

3e−p(λ3ξ+w3T+c3) + p2λ2
3ep(λ3ξ+w3T+c3)

e−p(λ3ξ+w3T+c3) + ep(λ3ξ+w3T+c3) + (λ1ξ + w1T + c1)2 + (λ2ξ + w2T + c2)2

− (−pλ3e−p(λ3ξ+w3T+c3) + pλ3ep(λ3ξ+w3T+c3) + 2λ1(λ1ξ + w1T + c1) + 2λ2(λ2ξ + w2T + c2))2

(e−p(λ3ξ+w3T+c3) + ep(λ3ξ+w3T+c3) + (λ1ξ + w1T + c1)2 + (λ2ξ + w2T + c2)2)2

)

.

(48)

where w1, w2 satisfy (47).
In Fig. 7, by choosing proper parameters for (48), the dynamic diagrams of the interaction of two-soliton and one-rogue can be

described: λ1 � 1/2, λ2 � λ3 � 2, w1 � 1, ci � 1, (i � 1, 2, 3), p � 1, a2 � 1, (h1) a3 � −4; (h2) a3 � −3; (h3)a3 � −2.
From (h1), (h2) and (h3), the same values of λ1, λ2, λ3, w1, ci and a2, along with a3 increasing, the wave propagation direction
changes clockwise and the shape of both waves’ changes. At same time, the angle between the two solitons decreases. We can see
that the two solutions are bright solitons, and the collisions are elastic. Their speeds and shapes keep no change after collision;
two solitons have phase shifts after the interactions, and as a3 changes, the position of the interaction between solitons does not
change, and one-rogue wave is always at the center of the collision. From density Figures (h4) (h5) and (h6), we can clearly see the
interaction of the two waves and notice that the moment of interaction of the two waves does not change with the changing of a3.
From 2D Figures (h7) and (h8), as a3 increases, the waves move parallel to the right, along T increasing, the shape and amplitude
of wave change the one-rogue wave in the center position of the two solitons.
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8 Conclusions

This manuscript investigates the wave–wave interaction of the extended KdV equation with complete Coriolis parameters. Mainly
apply Hirota bilinear method, and with the assistance of small parameter perturbation, N-soliton solution is represented. Application
of the symbolic computation approach, one-breather, one-rogue wave and interaction between one-soliton and one-breather, interac-
tion between two-soliton and one-rogue solutions are obtained. These solutions are new solutions, which are helpful to understand
diverse physical phenomena in the atmosphere and ocean.

The effect of the horizontal Coriolis parameters a3 on propagation direction, period, and shape of wave is revealed. From all
figures, it can be found that the change of Coriolis parameter a3 affects the propagation direction of the wave, and the wave rotates
clockwise with the Coriolis parameter a3 increasing. If it is a periodic wave, an increase in a3 will also decrease the period. Figure 5
shows the inelastic collision of one-soliton and one-breather, which eventually form a Y-type wave. Figure 7 shows the elastic
collision of two solitons, and one-rogue wave is always at the center of the collision. From Fig. 2, 3, 5, 7, the moment of interaction
of the waves does not change with the change of a3.
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