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Abstract We investigate the quantum-mechanical time-evolution speed limit for neutral K and B mesons, both single as well as
correlated, within the framework of open quantum systems. The role of coherence–mixing, a crucial feature of the open system
evolution of the underlying quantum systems (here, the mesons), on the quantum-mechanical time-evolution speed limit is studied.
The impact of decoherence and CP (charge conjugation parity) symmetry violation on quantum-mechanical time-evolution speed
limit is also investigated. The quantum-mechanical time-evolution speed limit increases with the evolution time for the single
mesons, a signature of the underlying open system dynamics of the evolution being semi-group in nature. The evolution of the
correlated mesons slows down for an evolution time of approximately one-fourth of the lifetime, after which it is sped up. An overall
pattern that emerges is that correlated mesons evolve faster, as compared to their uncorrelated counterparts, suggesting that quantum
correlations can speed up evolution.

1 Introduction

The theory of quantum mechanics has revolutionized our understanding of the universe at the smallest scales. One of the key features
of quantum mechanics is that it allows for the existence of superposition and entanglement. Significant advancements in science
and technology have been made possible by exploiting entanglement and superposition, which would be otherwise impossible. This
has inspired the investigation of quantum correlations and their applications in high energy systems also, in particular, meson and
neutrino systems [1–8]. The nature of spatial [9–16] and temporal [17–21] quantum correlations, quantum coherence [22], geometric
phase [23–29], non-standard interactions [30], as well as the impact of decoherence in neutral meson and neutrinos, have also been
studied [31–37].

Heisenberg’s uncertainty principle is a fundamental concept in quantum mechanics. The uncertainty principle for position and
momentum shows the impossibility of simultaneous measurement of both position and momentum precisely, but the interpretation of
the energy–time uncertainty relation in this line is not so obvious. In [38], Mandelstam and Tamm (MT) showed that the energy–time

uncertainty principle
(
�t � �

�E

)
is a statement about the intrinsic time in which a quantum system evolves. The notion of the

speed of transportation of a quantum system, the quantum-mechanical time-evolution speed limit (QMTSL), was first introduced
in [39] using the geometric approach, making use of the Fubini-Study metric on the space of quantum pure states. The significance
of this is that the length of any path connecting two distinguishable pure states is lower bounded by the geodesic length between
them according to the Fubini-Study metric. Margolus, Levitin (ML) [40] provided a different QMTSL, which depends on the mean
energy. The QMTSL for unitary dynamics, restricted to orthogonal pure states, can be made tighter by combining the MT and ML
bounds as τQSL � max{ π�

2�H , π�

2〈H〉−E0
}. τQSL refers to the minimum amount of time required for a quantum system to evolve from

one state to another. It sets a fundamental limit on the speed at which quantum information can be processed or transmitted and is
also connected to the stability of matter [41]. It plays a crucial role in the development of quantum technologies such as quantum
computing and quantum communication. Any real system interacts with its environment, which can lead to a loss of quantum
coherence. This can be taken into account by using the ideas of open quantum systems [42–44]. The extension of the QMTSL to
open quantum systems [45–48] has important implications for the design and implementation of quantum information processing
protocols [47]. Recently, a good amount of work has been done in this domain, its connection with resource theory, and usefulness
for other technological aspects [48–54].

The treatment of unstable systems has a long history [55–65]. The study is facilitated by the use of the density matrix formalism,
a view supported by work on decaying systems using dynamical semi-groups [66], where it was suggested that a unitary evolution
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of an unstable system along with its decay products is not feasible. Hence, a decaying system is intrinsically an open system, even
without explicitly invoking an external environment.

In this work, we aim to investigate the role of the QMTSL in the dynamics of the decaying single and the correlated neutral
mesons, K 0, B0

d and B0
s . The neutral mesons exhibit the interesting feature of flavor oscillations. A study of quantum speed would

thus serve to develop insight into the dynamics of flavor oscillations. Further, since mesons are decaying systems, the study also
serves to bring out the features of quantum speed in the context of unstable quantum systems. Quantum coherence plays a crucial role
in our understanding of evolution. Decaying meson evolution, being inherently open, leads to mixing. It would thus be meaningful
to study the impact of coherence and mixing [74] on the quantum speed of the meson dynamics. Quantum correlations are the
epitome of quantumness in a system and highlight the utility of its quantum nature [67–71]. An interplay between various facets of
quantum correlations and the CP-symmetry (charge conjugation parity symmetry) violation in the quark sector has been actively
studied [33, 72, 73]. Violation in the quark sector has been shown to be a crucial ingredient in violating a Bell inequality for
entangled K-meson pairs [6]. Another fact bolstering the importance of CP symmetry violation in particle physics is the parameter
sin 2β, whose measurement was the first signal for CP violation outside the neutral kaon system and helped to establish the CKM
mechanism for CP violation. Correlated neutral K 0 and B0 mesons are obtained from the decay and subsequent hadronization of
the φ and ϒ resonances, respectively. Analysis of correlated neutral mesons from the perspective of quantum speed would thus be
pertinent. The role of decoherence and CP (charge-parity) violation are also considered.

The plan of the paper is as follows. We provide information related to the QMTSL and the notion of coherence and mixing
in Sect. 2. This is followed by a brief discussion of both single and correlated neutral mesons and the analytical expressions of
coherence and entropy for these systems (Sect. 3). In Sect. 4, these systems’ QMTSL is presented and discussed, followed by the
concluding remarks in Sect. 5.

2 Preliminaries

The basic notion of the QMTSL and coherence-mixing balance are presented below.

2.1 Measures of quantum-mechanical time-evolution speed limit

Mandelstam–Tamm and Margolus–Levitin-types bound on speed limit time for an open quantum system based on the geometrical
distance between the initial pure state ρ0 � |ψ0〉〈ψ0| and final state ρτ , which is a tighter bound is given as [45],

τQSL � max

{
1



op
τ

,
1


tr
τ

,
1


hs
τ

}
sin2[B], (1)

where 1



op
τ

, 1

tr

τ
, and 1


hs
τ

corresponds to the operator, trace, and Hilbert–Schmidt norms, respectively. Bures angle B(ρ0, ρτ ) �

arccos
√F(ρ0, ρτ ), where the Bures fidelity F(ρ0, ρτ ) is

[
tr[

√√
ρ0ρτ

√
ρ0]

]2

and,



op,tr,hs
τ � 1

τ

∫ τ

0
dt ||L(ρt )||op,tr,hs. (2)

As it is known, the operators obey the following inequality ||·||op≤ ||·||hs≤ ||·||tr, as a result, we have, 1/

op
τ ≥ 1/
hs

τ ≥ 1/
tr
τ ,

which shows that the QMTSL, based on the operator norm of the nonunitary generator provides the tighter bound on τQSL for an
actual evolution time τ .

The geometrical approach for the quantum speed limit, as discussed here, relies on the geodesic distance between any two points
is the shortest possible lengths connecting them. This idea was brought out in [39] in the context of an extension of the MT bound
to time-dependent Hamiltonians on the space of quantum pure states. The geometric quantum speed limits are not sensitive to
instantaneous speed; the problem is resolved by the action τQSL [50]. In [48], an important observation was highlighted in that there
exist an infinite family of contractive Riemannian metrics on the set of density matrices, which could serve as a geometric quantifier
of distinguishability between the states, giving rise to a corresponding quantum speed limit (QSL). In particular, the role of the
Wigner–Yanase skew information metric for mixed states was brought out.

2.2 Coherence and mixing

Quantum coherence, a quantum resource, is a significant characteristic arising from the superposition of states. Quantification of
quantum coherence is dependent on the reference basis considered. Different measures are adopted to quantify the coherence of
quantum states. Here, we use the l1 norm measure of quantum coherence, defined for a state ρ and the reference basis {|i〉}

Cl1(ρ) �
∑
i �� j

|ρi , j |. (3)
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We have ρi j � 〈i |ρ| j〉.
A quantum system’s inescapable interaction with its surroundings results in the loss of purity. Linear entropy quantifies the

mixedness of quantum states due to, for example, their environment. For a general d-dimensional state, linear entropy is defined as

SL (ρ) � d

d − 1
(1 − Trρ2). (4)

For a mixed state 0 < SL (ρ) ≤ 1. Trade-off between quantum coherence and mixedness (MCl) for a quantum state ρ is given by
the inequality [74, 75]

SL (ρ) +
C2
l1

(d − 1)2 ≤ 1. (5)

For a maximally coherent mixed state, the above quantity will equal 1.

3 Neutral mesons

Open quantum system formalism can be made use of to analyze the decay of unstable quantum systems. We consider single and
correlated B0 (K 0) neutral meson systems. Decoherence, which is due to the decaying nature of the system, is modeled here by
a single phenomenological parameter [34] which represents the interaction between the one-particle system and its environment.
The the environment could be attributed to quantum gravity effects [76, 77] or due to the detector background itself. Apart from
decoherence, we also consider the effects of CP violation.

The experiments on the B0(K0) meson systems involve the determination of their flavor at the time of production or decay, which
is achieved by analyzing the flavor-specific decays. The charge of the final state lepton in the semileptonic decays of a neutral meson
usually determines the flavor of that meson at the time of decay. This is a consequence of the �B � �Q rule for the semileptonic
decays of B mesons and is usually assumed in experiments. The process of determination of the initial flavor of a neutral meson is
called tagging. This is achieved by making use of the rule of the associated production. The mesons are produced either by strong or
electromagnetic interactions; hence, a quark is always produced in association with its anti-quark, as the flavor is conserved in these
interactions. If two entangled neutral mesons are produced, then detecting the flavor-specific final state of one meson at a particular
time determines the flavor of that meson as well as the other meson at that time. The oscillation probability of the tagged meson is
then determined by identifying its final flavor-specific state.

3.1 Single neutral mesons

Here, we discuss the time decay of B0 (K 0) mesons. The Hilbert space for the decaying meson system is HB0(K 0) ⊕H0, where H0

is for vacuum state |0〉 to incorporate the decay in this system. The orthonormal spanning vectors for B0 meson system are

|B0〉 �
⎛
⎝

1
0
0

⎞
⎠, |B̄0〉 �

⎛
⎝

0
1
0

⎞
⎠, |0〉 �

⎛
⎝

0
0
1

⎞
⎠. (6)

Here B0 stands for B0
d (B0

s ) mesons. Further, |B0〉, |B̄0〉 stand for the flavor eigenstates. Similar basis vectors span the decaying
K 0 meson as well. The time evolution is given by a family of completely positive trace-preserving maps forming a one-parameter
dynamical semi-group and is characterized by the operator-sum representation

ρ(t) �
∑
i

Ki (t)ρ0K
†
i (t). (7)

The Kraus operators in Eq. (7) can be seen in, for example, Ref. [18]. The time evolution is given by a one-parameter dynamical
semi-group. Using this, for example, on a meson initially in the state ρB0 (0) � |B0〉〈B0|, the evolved state ρB0 (t) is given by

ρB0 (t) � 1

2
e−�t

⎛
⎜⎜⎝

cosh
(

��t
2

)
+ e−λt cos(�m t)

(
q
p

)∗(
− sin(�m t) − i e−λt sin(�m t)

)
0(

q
p

)(
− sin(�m t) + i e−λt sin(�m t)

)
| qp |2cosh

(
��t

2

)
− e−λt cos(�m t) 0

0 0 2

(
e�t −

(
1 +

∣∣∣ qp
∣∣∣2

)
cosh

(
��t

2

))

⎞
⎟⎟⎠. (8)

Here �� � �L−�H
2 is the difference in the decay width of light, and heavy mesons, � � �L+�H

2 is the average decay width,
�m � mL−mH

2 and m � mL+mH
2 with mL and mH being the masses of the light and heavy mesons, respectively. Also, λ corresponds

to the decoherence parameter. With the suitable change in notation, the same holds for the K 0 meson as well. Here p and q are the
coefficients connecting the mass eigenstates {|BL 〉, |BH 〉} to the flavor eigenstates {|B0〉, |B̄0〉} and are due to CP violation in the
flavor oscillations. In particular, |BL 〉 � p|B0〉 + q|B̄0〉, |BH 〉 � p|B0〉 − q B̄0〉, with |p|2+|q|2� 1.
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The linear entropy and coherence, without CP-violation (for ease in analysis), can be obtained by using Eq. (8) (without the CP
violating terms) in Eqs. (4) and (3), respectively and are

SL
(
ρB0 (t)

) � 3

4
e−2(�+λ)t

(
4e(�+2λ)t cosh

(
��t

2

)
− 2e2λt cosh(��t) − e2λt − 1

)
(9)

Cl1(ρB0 (t)) � 1

2
e−�t

(
|ieλt sin(�m t) − sinh

(
��t

2

)
|+|i eλt sin(�m t) + sinh

(
��t

2

)
|
)

. (10)

3.2 Correlated mesons

The initial flavor-space correlated neutral meson state of the MM̄ meson system (M � K 0, B0
d , B0

s ) is

|ψ〉 � 1√
2

(|MM̄〉 − |M̄M〉). (11)

For the B0 meson, this happens due to the decay of the ϒ resonance followed by hadronization into a B0 B̄0 pair. The same holds for
the K 0 meson, with the ϒ being replaced by the φ meson. By projecting onto the appropriate Hilbert space [33, 34], the dynamics
can be shown to evolve the state (11) to

ρ(t) � χ

⎛
⎜⎜⎝

|s|4a− 0 0 − s2a−
0 a+ − a+ 0
0 − a+ a+ 0

−s∗2a− 0 0 a−

⎞
⎟⎟⎠, (12)

where a± � (e2λt ± 1)(1 ± δL ), χ � (1−δL )
4(e2λt−δ2

L )
, δL � 2Re(ε)

1+|ε|2 and s � 1+ε
1−ε

. Here ε is a small CP-violating parameter and is of order

∼ 10−3 for K 0 mesons and ∼ 10−5 for B0
d , s mesons while λ is the decoherence parameter.

Using Eq. (12) in Eq. (4), the linear entropy of the time-dependent correlated neutral meson state can be shown to be

SL (ρ) � 4

3
Ps

(
1 − χ(4a2

+ + a2−(1 + s4)2)
)
. (13)

Also, the l1 norm of coherence is obtained by using Eq. (12) in Eq. (3) as

Cl1(ρ) � 2Ps(|χa+|+|χa−s2|), (14)

where the survival probability Ps � e−2�t (1−δ2
Le

−2λt )

1−δ2
L

, and � is the meson decay width.

4 Results and discussions: quantum-mechanical time-evolution speed limit

Figures 1, 2 and 3 depict τQSL Eq. (1) for neutral K 0, B0
d and B0

s mesons, along with their anti-particles, plotted with respect to the
evolution time τ . Both τQSL and τ are made dimensionless by scaling with respect to the lifetime of the corresponding mesons. This
is pertinent as the mesons are decaying systems and would have ceased to exist after their corresponding lifetime. Generally, the
actual time required for a quantum system to evolve from one state to another will be longer than the QMTSL, which is evident from
the figures. It is clear from Fig. 3 the τQSL for the decay of B0

s is much less than its lifetime compared to other mesons. The figures

Fig. 1 QMTSL in terms of Bures measure for the decay of the K 0 and K̄ 0 meson system with and without decoherence effects (left and central subplots,
respectively). For the K 0 meson system, the mean lifetime is τK � 1.7889×10−10s, � � 5.59×109s−1, �� � 1.1174×1010s−1, �m � 5.302×109 s−1,
m � 7.532 × 1023s−1, λ � 2.0 × 108 s−1. The insets of the plots highlight the difference caused by taking decoherence, parameterized by λ, into account.
The impact of the coherence-mixedness trade-off on QMTSL is also shown (right subplot)
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Fig. 2 QMTSL in terms of Bures measure for the decay of the B0
d and B̄0

d meson system with and without decoherence effects (left and central subplots,

respectively). For the B0
d meson system, the mean lifetime is τBd � 1.518 × 10−12s, � � 6.58 × 1011 s−1, �� � 0 s−1, �m � 0.5064 × 1012 s−1,

m � 7.9917 × 1024s−1, λ � 0.012 × 1012s−1. The inset of the plots highlights the difference caused by taking decoherence, parameterized by λ, into
account. The impact of the coherence-mixedness trade-off on QMTSL is also shown (right subplot)

Fig. 3 QMTSL in terms of Bures measure for the decay of the B0
s and B̄0

s meson system with and without decoherence effects (left and central subplots,
respectively). For the B0

s meson system, the mean lifetime is τBs � 1.509 × 10−12s, � � 0.6645 × 1012s−1, �� � 0.086 × 1012s−1, �m �
17.757 × 1012s−1, m � 8.123 × 1024s−1, λ � 0.012 × 1012s−1. The inset of the plots highlights the difference caused by taking decoherence,
parameterized by λ, into account. The impact of the coherence-mixedness trade-off on QMTSL is also shown (right subplot)

Fig. 4 Difference in QMTSL for
the decoherence-free evolution of
K 0 and B0

d/s mesons

also bring out the effect of coherence and mixing, brought by the quantity Mcl Eq. (5), on the τQSL. As observed, the τQSL and Mcl

are not able to distinguish between the mesons and their anti-particles, denoted by K̄ 0, B̄0
d and B̄0

s . The insets of the plots highlight
the difference caused by taking decoherence, parameterized by λ, into account. This can be seen to be of the order 10−3 for K 0

and B0
d mesons, and of the order of 10−4 for B0

s mesons. The QMTSL increases with the evolution time τ for K 0 and B0
d mesons.

This is a signature of the underlying semi-group nature of the evolution [43]. It is consistent with the corresponding behavior under
other Markovian evolutions [52] generated by a quantum dynamical semi-group [42, 44]. Different from the K 0 and B0

d mesons,
the τQSL for B0

s mesons exhibit a wiggling pattern, which could be attributed to the parameter values it takes. This is in accord
with a similar behavior seen for the Leggett–Garg quantity for B0

s mesons [18]. The mass term �m for B0
s meson, which plays the

role of frequency, is more than 35 times the corresponding value for the B0
d meson. This would account for the difference in the
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Fig. 5 τQSL in terms of Bures measure for the decay of the correlated K 0 meson system (left subplot), the mean lifetime is τK 0 � 1.7889 × 10−10s,

� � 5.59×109 s−1, �� � 1.1174×1010s−1, �m � 5.302×109 s−1, m � 7.532×1023s−1, λ � 2.0×108s−1. The impact of the coherence-mixedness
trade-off on QMTSL is given in the right subplot

Fig. 6 QMTSL in terms of Bures measure for the decay of the correlated B0
d meson (left subplot), the mean lifetime is τB0

d
� 1.518 × 10−12s, � �

6.58 × 1011s−1, �� � 0 s−1, �m � 0.5064 × 1012s−1, m � 7.9917 × 1024s−1, λ � 0.012 × 1012s−1. The impact of the coherence-mixedness trade-off
on τQSl is given in the right subplot

τQSL between the B0
d and the B0

s mesons. Figure 4 brings out the difference in QMTSL for the evolution of K 0 and B0
d/s mesons,

with respect to evolution time τ , scaled with the lifetime of the B0
d meson, in the absence of decoherence. The wiggle in the curves

showing the difference with the B0
s meson can be attributed to the above-mentioned feature of these mesons.

From Figs. 5, 6 and 7, for correlated mesons under decoherence, it can be seen that as the evolution time increases to around
0.24 τlifetime, τQSL increases, and then falls. This implies that for an evolution time of up to approximately 1/4th of the lifetime,
the evolution of correlated mesons slows down, and beyond this, as it decays, the evolution is sped up. This is consistent with the
behavior of coherence-mixing balance depicted in the right panel of the figures. Here, it can be seen that, following the direction
indicated by the arrows, as the Mcl quantity decreases, τQSL first increases and then falls. The difference in speed limit (τD) of
evolution for different correlated mesons with respect to evolution time τ , taking decoherence into account, and scaled with the
lifetime of the B0

d meson, are depicted in Fig. 8. These curves highlight that τD for B0
d , K 0 and B0

s , K 0 are of the order 10−3, whereas
for B0

d , B0
s , it is negligible. This difference approaches zero very quickly, within the B0

d meson lifetime. We also observe that the
maximum speed limit time for correlated mesons is lesser than that for single mesons. This shows that correlated mesons evolve
faster than single uncorrelated mesons. This is consistent with observations made in different systems that quantum correlations
can speed up the evolution, see for example [54]. Further, the impact of CP violation on the dynamics of τQSL is negligible for the
mesons studied.
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Fig. 7 τQSL in terms of Bures measure for the decay of the correlated B0
s meson (left subplot), the mean lifetime is τB0

s
� 1.509 × 10−12s, � �

0.6645 × 1012s−1, �� � 0.086 × 1012s−1, �m � 17.757 × 1012s−1, m � 8.123 × 1024s−1, λ � 0.012 × 1012s−1. The impact of the coherence-
mixedness trade-off on τQSl is given in the right subplot

Fig. 8 Difference in the minimum
time required for the evolution of
correlated K 0, B0

d and B0
s

mesons, with decoherence

5 Conclusion

In this work, we investigated the quantum-mechanical time-evolution speed limit (QMTSL) in neutralK andBmesons, both single as
well as correlated, within the framework of open quantum systems. The aim was to better understand the dynamics of these unstable
subatomic systems by investigating the impact of decoherence and CP violation on the QMTSL. The impact of decoherence is seen
to be minimal. The coherence–mixing, a crucial feature of the open system evolution of the underlying quantum systems (here,
the neutral mesons), has an important influence on the QMTSL. Both the QMTSL and coherence–mixing balance are not able to
distinguish single neutral mesons and their anti-particles.

The results showed that for single mesons, the QMTSL increased with the evolution time, which is consistent with the semi-group
nature of the evolution. However, for correlated mesons, the evolution slowed down for a quarter of the meson’s lifetime and then
sped up, reflecting the balance between decoherence and quantum correlations in the evolution. The difference in speed limit τD of
evolution for correlated B0

d , K 0 and B0
s , K 0 were seen to be of the same order, whereas they were negligible for B0

s , K 0. The results
also showed that correlated mesons evolve faster than single, uncorrelated mesons, suggesting that quantum correlations can speed
up evolution.
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