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Abstract In this paper, we performed a coupled-channel calculation and evaluated the mass shifts for all 1S, 2S, 1P, 2P and 1D
charmonium valence states below 4 GeV, by incorporating the four-quark components (D, D∗, Ds and D∗

s meson pairs) into the
quark model. The valence-continuum coupling is provided by the 3P0 quark-pair creation model. The induced mass shifts appear
to be large and negative with the original transition operator in 3P0 model, which raised up challenges for the valence quark model.
More QCD-motivated models should be employed for the quark-pair creation Hamiltonian. So herein, we recalculated the mass
shifts with the improved 3P0 transition operator introduced in our previous work and the mass shifts are reduced by 75% averagely.
Besides, as a exercise, we adjust the confinement parameter � and recalculate the spectrum of the charmonium states. The masses
of some charmonium states are reproduced well.

1 Introduction

The discovery of many hidden charm states, the so-called X , Y , Z mesons [1] and many bottomonium states, such as ηb(1S) [2],
ϒ(3DJ ) [3] has created challenges for the conventional quenched quark model and given great impetus to study on heavy quarkonium
spectroscopy recent years, because some members of them have unexpected properties. Now, it may be a good time to develop
the unquenched quark model, in which, the effects of hadron loops (also called coupled-channel effects) were also considered. In
recent years, the coupled-channel effects in the charmonium spectrum have been further studied [4–11] and provided important
information on the identifications of the newly reported states.

Godfrey and Isgur gave the predictions of the mass spectra of charmed and charmed-strange states in the nonrelativistic potential
model [12]. However, the observed masses are generally lower than the predicted ones, such as the narrow charm-strange mesons
D∗
s0

(2317)+ [13] and Ds1 (2460)+ [14], which also raised the special concern in both experiment and theory. The coupling to
mesonic channels may be responsible for these anomalously low masses [15–17]. X(3872) is the most widely discussed state in the
charmonium states. As the state sits just at the DD̄∗ threshold, it might be a DD̄∗ molecule bound state. The study [18] indicated that
it may be a mixture of a DD̄∗ molecule and the χc1 (2P) (cc̄) considering the effects of coupled-channel using the 3P0 quark-pair
creation model. B. Q. Li et al. supported the assignment of the X(3872) as χc1 (2P)-dominate charmonium state in two different
models: the coupled-channel model and the screened potential model [7]. Recent study by Zheng Cao and Qiang Zhao investigated
the effects of S-wave thresholds Ds1 D̄s +c.c. and Ds0 D̄

∗
s +c.c. on vector charmonium spectrum and found that it can lead to formation

of exotic states Zcs in the decay of ψ(4415) → J/ψK K̄ [11]. There are many other studies which presented good descriptions of
the charmonium states when considering the mass shifts induced by the intermediate hadron loops [5, 19, 20].

The 3P0 model [21] is the simplest model for light-quark pair creation which is widely applied in the effects of hadron loops in
the most of the above-mentioned papers. It assumes that the pair is created in the vacuum with the 3P0 quantum numbers uniformly
in space. The application of this model to the coupled-channels calculations has a long history. For example, T. Barnes has first
reported results for hadronic mass shifts of lower charmonium due to mixing with D, D∗, Ds and D∗

s meson pairs, calculated within
3P0 model and the shifts appear to be alarmingly large [22]. Refs. [4, 23, 24] also arrived at the same conclusion that qq̄ (q � u,
d) pairs were found to induce very large mass shifts in the 3P0 model. In our previous work [24], we compute the masses of ground
state for the light mesons, incorporating hadron loops in a chiral quark model using the 3P0 model to describe the pair creation,
and explored the impact of physically motivated modifications of the associated operator. For the light-quark system, the coupling
between nn̄ (n � u, d) and meson pairs component is weakened, producing mass shifts that are around 10%∼20% of the hadron

a e-mail: xychen@jit.edu.cn (corresponding author)
b e-mail: 181001003@njnu.edu.cn
c e-mail: yangyc@gues.edu.cn

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjp/s13360-023-04181-0&domain=pdf
http://orcid.org/0000-0002-0995-958X
mailto:xychen@jit.edu.cn
mailto:181001003@njnu.edu.cn
mailto:yangyc@gues.edu.cn


  653 Page 2 of 11 Eur. Phys. J. Plus         (2023) 138:653 

bare masses. In our present work, we will keep exploring the effect of modified operator of the 3P0 model for the heavy-quark
charmonium system and trying to understand the properties of the newly found charmonium states.

In this paper, the effects of coupled-channels for charmonia levels including all 1S, 2S, 1P, 2P and 1D valence states are presented.
We calculated the mass shifts of these charmonium states based on the nonrelativistic chiral quark model and solved the quantum
mechanics problem using the Gaussian expansion method (GEM) [25] instead of the simple harmonic oscillator (SHO) ones [4, 6,
26]. In Sect. 2, the chiral quark model and the GEM are outlined. Sect. 3 introduces the 3P0 model briefly. And Sect. 4 is devoted
to a discussion of the results. In Sect. 5, the paper ends with a short summary.

2 Chiral quark model

In the nonrelativistic quark model, we obtained the meson spectrum by solving a Schrödinger equation:

H� I J
MI MJ

(1, 2) � E I J� I J
MI MJ

(1, 2), (1)

where 1, 2 represents the quark and antiquark labels. � I J
MI MJ

(1, 2) is the wave function of a meson composed of a quark and a

antiquark with quantum numbers I J PC and reads,

� I J
MI MJ

(1, 2) �
∑

α

Cα[ψl (r)χs(1, 2)]JMJ
ωc(1, 2)φ I

MI
(1, 2), (2)

where ψl (r), χs(1, 2), ωc(1, 2), φ I (1, 2) are orbit, spin, color and flavor wave functions, respectively. α denotes the intermediate
quantum numbers, l, s and possible flavor indices. In our calculations, the orbital wave functions is expanded using a series of
Gaussians,

ψlm(r) �
nmax∑

n�1

cnψ
G
nlm(r), (3a)

ψG
nlm(r) � Nnlr

le−νnr2
Ylm(r̂), (3b)

with the Gaussian size parameters chosen according to the following geometric progression

νn � 1

r2
n

, rn � r1a
n−1, a �

(
rnmax

r1

) 1
nmax−1

. (4)

This procedure enables optimization of the ranges using just a small number of Gaussians.
At this point, the wave function in Eq. (2) is expressed as follows:

� I J
MI MJ

(1, 2) �
∑

nα

Cαcn
[
ψG
nl (r)χs(1, 2)

]J
MJ

ωc(1, 2)φ I
MI

(1, 2). (5)

We employ the Rayleigh–Ritz variational principle for solving the Schrödinger equation due to the non-orthogonality of Gaussians,
which leads to a generalized eigenvalue problem

∑

n′,α′
(H I J

nα,n′α′ − E I J N I J
nα,n′α′ )C I J

n′α′ � 0, (6a)

H I J
nα,n′α′ � 〈�I J

MI MJ ,nα|H |�I J
MI MJ ,n′α′ 〉, (6b)

N I J
nα,n′α′ � 〈�I J

MI MJ ,nα|1|�I J
MI MJ ,n′α′ 〉, (6c)

with �I J
MI MJ , nα � [ψG

nl (r)χs(1, 2)]JMJ
ωc(1, 2)φ I

MI
(1, 2), C I J

nα � Cαcn .
We get the mass of the four-quark system also by solving a Schrödinger equation:

H �4 I J
MI MJ

� E I J�4 I J
MI MJ

, (7)

where �4 I J
MI MJ

is the wave function of the four-quark system, which can be constructed as follows. In our calculations, we only
consider the meson-meson picture with the color singlet for the four-quark system in coupled-channel effects. First, we write down
the wave functions of two meson clusters,

(8a)
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(8b)

then the total wave function of the four-quark state is:

(9)

Here, A is the antisymmetrization operator: if all quarks (antiquarks) are taken as identical particles, then

A � 1

2
(1 − P13 − P24 + P13P24). (10)

ψLr (r1234) is the two-cluster relative wave function which is also expanded in a series of Gaussians. Lr describes the relative cluster
orbital angular momentum. Need to be noted that, in our calculations, the angular momentum for the two mesons l1 and l2 equals
zero. So for the 1S, 2S and 1D states, the relative angular momentum Lr equals 1 (P wave); for the 1P and 2P states, we only
consider the Lr � 0 with S wave between the two clusters, and Lr � 2 with D wave is not considered herein, which is our future
work. For the quark model introduction, we take four-quark system as an example. (The two-quark system is relative simple, here
we will omit it). The Hamiltonian of the chiral quark model for the four-quark system consists of three parts: quark rest mass, kinetic
energy, potential energy:

H �
4∑

i�1

mi +
p2

12

2μ12
+

p2
34

2μ34
+

p2
r

2μr

+
4∑

i< j�1

⎛

⎝VC
CON(r i j ) + VC

OGE(r i j ) + V SO
CON(r i j ) + V SO

OGE(r i j ) +
∑

χ�π ,K ,η

V χ
i j + V σ

i j

⎞

⎠. (11)

where mi is the constituent mass of ith quark (antiquark).
p2ij

2μi j
(i j � 12; 34) and p2r

2μr
represents the inner kinetic of two-cluster and

the relative motion kinetic between two clusters, respectively, with

p12 � m2p1 − m1p2

m1 + m2
, (12a)

p34 � m4p3 − m3p4

m3 + m4
, (12b)

pr � (m3 + m4)p12 − (m1 + m2)p34

m1 + m2 + m3 + m4
, (12c)

μi j � mim j

mi + m j
, (12d)

μr � (m1 + m2)(m3 + m4)

m1 + m2 + m3 + m4
. (12e)

VC
CON and VC

OGE is the central part of the confinement and central part of one-gluon-exchange. V SO
CON and V SO

OGE is the noncentral
potential energy. In our calculations, a quadratic confining potential is adopted. For the mesons, the distance between q and q̄ is
relatively small, so the difference between the linear potential and the quadratic potential is very small by adjusting the confinement
strengths. Both of them can conform to the linear Regge trajectories for qq̄ mesons.

V χ�π , K , η
i j , and σ exchange represents the one Goldstone boson exchange. Chiral symmetry suggests dividing the quarks into

two different sectors: light quarks (u, d and s) where the chiral symmetry is spontaneously broken and heavy quarks (c and b) where
the symmetry is explicitly broken. The origin of the constituent quark mass can be traced back to the spontaneous breaking of chiral
symmetry, and consequently, constituent quarks should interact through the exchange of Goldstone bosons. Beginning with the
chiral Lagrangian L � �̄(iγ μ∂μ − MU γ5 )�, through the method of field theory, we can get the potentials of Goldstone bosons.
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The nonrelativistic reduction in this potential has been performed for the study of nuclear forces. The detailed derivation process
can be found in several theoretical works [27, 28]. In this manuscript, for saving space we will not show the particular steps.

The forms of the potentials are [29]:

VC
CON(r i j ) � (−acr

2
i j − �)λc

i · λcj , (13a)

V SO
CON(r i j ) � λc

i · λcj · −ac
2m2

i m
2
j

{(
(m2

i + m2
j )(1 − 2as)

+ 4mim j (1 − as)

)
(S+ · L) + (m2

j − m2
i )

(1 − 2as)(S− · L)

}
, (13b)

VC
OGE(r i j ) � αs

4
λc
i · λc

j

[
1

ri j
− 2π

3mim j
σ i · σ jδ(r i j )

]
, (13c)

V SO
OGE(r i j ) � − 1

16
· αs

m2
i m

2
j

λc
i · λc

j {
1

r3
i j

− e−ri j /rg(μ)

r3
i j

·

(1 +
ri j

rg(μ)
)} ×

{(
(mi + m j )

2 + 2mim j

)

(S+ · L) + (m2
j − m2

i )(S− · L)

}
, (13d)

δ(r i j ) � e−ri j /r0(μi j )

4πri j r2
0 (μi j )

,S± � S1 ± S2, (13e)

Vπ (r i j ) � g2
ch

4π

m2
π

12mim j

�2
π

�2
π − m2

π

mπvπ
i j

3∑

a�1

λai λ
a
j , (13f)

VK (r i j ) � g2
ch

4π

m2
K

12mim j

�2
K

�2
K − m2

K

mK vK
i j

7∑

a�4

λai λ
a
j , (13g)

Vη(r i j ) � g2
ch

4π

m2
η

12mim j

�2
η

�2
η − m2

η

mηv
η
i j

×
[
λ8
i λ

8
j cos θP − λ0

i λ
0
j sin θP

]
, (13h)

v
χ
i j (r i j ) �

[
Y (mχri j ) − �3

χ

m3
χ

Y (�χri j )

]
σ i · σ j , (13i)

Vσ (r i j ) � −g2
ch

4π

�2
σ

�2
σ − m2

σ

mσ

×
[
Y (mσ ri j ) − �σ

mσ

Y (�σ ri j )

]
, (13j)

where S1 and S2 is the spin of the two meson clusters. Y (x) � e−x/x ; r0(μi j ) � s0/μi j ; σ are the SU(2) Pauli matrices; λ, λc

are SU(3) flavor, color Gell-Mann matrices, respectively. For the parameter �i (i � π , K , η, σ ), it is a cut-off parameter, which
is equivalent to the form factor. The aim is to remove the short-range contribution of Goldstone bosons exchanges. Besides, �i is
dependent on the mass of Goldstone bosons, so a unique parameter is not used. g2

ch/4π is the chiral coupling constant, determined
from the π-nucleon coupling; and αs is an effective scale-dependent running coupling [29],

αs(μi j ) � α0

ln
[
(μ2

i j + μ2
0)/�2

0

] . (14)

In our calculations, for the two-quark system, besides the central potential energy, the noncentral potential energy is also included.
But in the four-quark system calculations, we find that the influence of the noncentral potential energy on the mass shift of the state
is tiny.

Lastly, we show the model parameters [30] in Table 1. Need to be noted that, in the reference [30], the confinement item takes the
formVC

i j � (−ac(1−e−μcri j )+�)(λc
i ·λc

j ). And in our present calculations, the usual quadratic confinementVC
i j � (−acr2

i j−�)λc
i ·λc

j
is employed, so some parameters are different such as quark mass, ac and �.
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Table 1 Model parameters,
determined by fitting the meson
spectrum, leaving room for
unquenching contributions in the
case of light-quark systems

Quark masses mu � md 313

(MeV) ms 536

mc 1728

mb 5112

Goldstone bosons mπ 0.70

(fm−1 ∼ 200 MeV ) mσ 3.42

mη 2.77

mK 2.51

�π � �σ 4.2

�η � �K 5.2

g2
ch/(4π ) −0.54

θp(◦) −15

Confinement ac (MeV fm−2) 101

� (MeV) −78.3

OGE α0 3.67

�0(fm−1) 0.033

μ0(MeV) 36.98

s0(MeV) 28.17

Using the model parameters, we calculated the masses of some mesons from light to heavy, especially the relevant charmonium
cc̄ mesons ηc, J/ψ , χcJ (J � 0, 1, 2), hc in the chiral quark model, which are demonstrated in Table 2. In order to obtain the stable
masses, we take the Gaussian size parameters r1 � 0.01, rn � 2, n � 16 in Eq. (4). From the table, we can find that the quark model
achieves great success on describing the hadron spectra, especially for the ground-state mesons such as most light mesons and heavy
mesons ηc(1S), J/ψ(1S). But it still be faced some challenges on the charmonium excited states such as ηc(2 S), ψ(2 S), χcJ (1P),
χcJ (2P) and 1D states since more higher charmonium states have been observed experimentally. For bb̄ system, the masses of the
ground-state ηb(1S) and ϒ(1S) are not so satisfactory, but for the excited states, the masses are well consistent with the experimental
values unexpectedly such as ϒ(2S), χbJ (1P) and χbJ (2P).

3 3P0 model

The 3P0 quark-pair creation model [21, 32, 33] has been widely applied to OZI rule allowed two-body strong decays of hadrons
[34–39]. If the quark and antiquark in the source meson are labeled by 1, 2, and the quark and antiquark (uū, dd̄, ss̄) generated in
the vacuum are numbered as 3, 4, the operator of the 3P0 model reads:

T0 � −3 γ
∑

m

〈1m1(−m)|00〉
∫

dp3dp4δ
3(p3 + p4)

× Ym
1 (

p3 − p4

2
)χ34

1−mφ34
0 ω34

0 b†
2(p3)d†

3 (p4), (15)

where γ describes the probability for creating a quark-antiquark pair with momenta p3 and p4 from the 0++ vacuum. It is normally
determined by fitting an array of hadron strong decays. This yields γ � 6.95 for uū and dd̄ pair creation, and γ � 6.95/

√
3 for ss̄

pair creation [40]. ω34
0 and φ34

0 are the color and flavor wave function components, respectively.

4 Numerical results

By incorporating the four-quark components (cc̄qq̄ (q � u, d , s)) into the charmonium cc̄ mesons, we can get the eigenvalues of
the cc̄ + cc̄qq̄ system by solving the Schrödinger equation,

H� � E�, (16)

where � and H is the wave function and the Hamiltonian of the system, it takes,

� � c1�2q + c2�4q , (17)

H � H2q + H4q + T0. (18)

123
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Table 2 The mass spectrum in the
chiral quark model, in comparison
with the experimental data [31] (in
unit of MeV)

Name J P(C) Mass PDG [31]

π 0− 134.9 135.0

K 0− 489.4 493.7

ρ 1−− 772.3 775.3

K ∗ 1− 913.6 892.0

ω 1−− 701.6 782.7

η 0−+ 669.2 547.9

φ(1020) 1−− 1015.9 1019.5

D0 0− 1861.9 1864.8

D∗0 1− 1980.6 2006.9

D+
s 0− 1950.1 1968.4

D∗+
s 1− 2079.9 2112.2

B− 0− 5280.7 5279.3

B∗ 1− 5319.6 5324.7

B0
s 0− 5367.4 5366.9

B∗
s 1− 5410.2 5415.4

ηc(1S) 0−+ 2964.4 2983.9

ηc(2S) 0−+ 3507.8 3637.5

J/ψ 1−− 3096.4 3096.0

ψ(2S) 1−− 3605.0 3686.1

χc0 (1P) 0++ 3362.8 3414.7

χc0 (2P) 0++ 3814.7 χc0 (3915)?

χc1 (1P) 1++ 3393.9 3510.7

χc1 (2P) 1++ 3851.9 χc1 (3872)?

χc2 (1P) 2++ 3435.8 3556.2

χc2 (2P) 2++ 3901.1 χc2 (3930)?

hc(1P) 1+− 3416.1 3525.4

hc(2P) 1+− 3877.4 Zc(3900)?

ηb(1S) 0−+ 9561.5 9398.7

ϒ(1S) 1−− 9647.8 9460.3

ϒ(2S) 1−− 10016.7 10023.3

χb0 (1P) 0++ 9916.8 9859.4

χb0 (2P) 0++ 10198.4 10232.5

χb1 (1P) 1++ 9925.4 9892.8

χb1 (2P) 1++ 10208.2 10255.5

χb2 (1P) 2++ 9938.9 9912.2

χb2 (2P) 2++ 10223.2 10268.7

hb(1P) 1+− 9932.4 9899.3

hb(2P) 1+− 10216.1 10259.8

ηc2 (1D) 2−+ 3675.1 ?

ψ(1D) 1−− 3653.3 ψ(3770)?

ψ2(1D) 2−− 3668.3 ψ2(3823)?

ψ3(1D) 3−− 3688.1 ψ3(3842)?

Because the number of particles is conserved in the nonrelativistic quark model, the H2q only acts on the wave function of two-quark
cc̄ system, �2q , and the H4q only acts on the wave function of four-quark system, �4q . The transition operator T0 (Eq. (15)) in the
3P0 model is responsible for the coupling of the two- and four-quark system.

In this way, we can get the matrix elements of the Hamiltonian,

〈�|H |�〉 � 〈c1�2q + c2�4q |H |c1�2q + c2�4q〉
� c2

1〈�2q |H2q |�2q〉 + c2
2〈�4q |H4q |�4q〉

123
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+ c1c
∗
2〈�4q |T0|�2q〉 + c∗

1c2〈�2q |T †
0 |�4q〉, (19)

and the block-matrix structure for the Hamiltonian and overlap takes,

(H ) �
[

(H2q ) (H24)
(H42) (H4q )

]
, (N ) �

[
(N2q ) (0)

(0) (N4q )

]
, (20)

with

(H2q ) � 〈�2q |H2q |�2q〉, (21a)

(H24) � 〈�4q |T0|�2q〉, (21b)

(H4q ) � 〈�4q |H4q |�4q〉, (21c)

(N2q ) � 〈�2q |1|�2q〉, (21d)

(N4q ) � 〈�4q |1|�4q〉. (21e)

where (H2q ) and (H4q ) is the matrix for the pure two-quark cc̄ system and pure four-quark system, respectively. (H24) is the coupling
matrix of two-quark system and four-quark system.

Finally, the eigenvalues (En) and eigenvectors (Cn) of the system are obtained by solving the diagonalization problem,
[

(H ) − En(N )
][

Cn

]
� 0. (22)

In our calculations, a convergence factor e− f 2p2
was inserted into the operator T0 in Eq. (15) in order to be Fourier transformed,

because the two- and four-quark system are solved in coordinate space. The Fourier transformed factor is written as,

T1 � − i3γ
∑

m

〈1m1(−m)|00〉
∫

dr3dr4(
1

2π
)

3
2 2− 5

2 f −5

rY1m(r̂)e
− r2

4 f 2 χ34
1−mω34

0 φ34
0 b†

3(r3)d†
4 (r4). (23)

There is one more parameter f in the transition operator T1. When f takes the limit to zero, the original form of the 3P0 quark model
is recovered. By the way, r in Eq. (23) is the relative distance between the quark pair in the vacuum, r � r3 − r4.

By solving Eq. (22) with the transition operator in Eq. (23) and in the limit f → 0, γ � 6.95, we obtained the mass shifts
for ηc(1 S), ηc(2 S), J/ψ(1 S), J/ψ(2 S), χc0 (1P), χc1 (1P), χc2 (1P), hc(1P) charmonium valence states, as well as the higher
charmonium 2P and 1D states, by incorporating the four-quark components (D, D∗, Ds and D∗

s meson pairs) into the two-quark cc̄
system. The results are shown in Table 3. In order to get the stable mass shifts of the states, we take the Gaussian size parameters
r1 � 0.01, rn � 2, n � 16 in Eq. (4) for the two-quark charmonium system. For the four-quark system, we take r1 � 0.1, rn � 2,
n � 8 for inner two meson pairs, and the relative Gaussian size parameters between the two meson pairs take r1 � 0.1, rn � 6,
n � 9.

There exist three open channels in our calculations, χc0 (2P) → DD̄, χc1 (2P) → DD̄∗, hc(2P) → DD̄∗. For these open
channels, the mass shifts of the states will change with the Gaussian distribution. Especially, the mass shifts will change with the
increasing of spatial volume periodically. In our calculations, we picked up the biggest mass shifts as the contributions of this open
channel by varying the Gaussian size parameter rn between the two meson pairs. Let us take the channel χc0 (2P) → DD̄ as an
example. For DD̄ state, it has the discrete energy levels which will change with the varying Gaussian distribution in the theoretical
calculations even if it is a scattering state. When considering the coupling of the DD̄ and χc0 (2P), the strength of coupling will be
increased as the energy of DD̄ state is close to that of χc0 (2P), and the induced mass shift will become bigger. We take the biggest
one as the mass shift of the state χc0 (2P) to the DD̄ state. Besides, if we expand the space further with higher rn values, the same
biggest mass shift will be repeated. From the table, we can also find that for the open channels, the mass shifts are always larger
than the close channels.

In Table 3, the bare mass of the states is obtained in the quenched quark model, viz. solved with only the cc̄ component. When
considering the coupled-channel effects, we get the large negative mass shifts. Such large shifts invalidate the traditional quenched
quark model. In our previous work [24], when we investigate the hadron loop effects of the nn̄ (n � u, d) states, similarly, large
mass shifts are obtained with the original operator T1 in Eq. (23) in the limit f → 0. In order to develop a more realistic unquenching
procedure, in the work [24], we gave some modifications of the operator T1. It reads,

T2 � −3γ
∑

m

〈1m1(−m)|00〉
∫

dr3dr4(
1

2π
)

3
2 ir2− 5

2 f −5

Y1m(r̂)e
− r2

4 f 2 e
− R2

AV
R2

0 χ34
1−mφ34

0 ω34
0 b†

3(r3)d†
4 (r4), (24)
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compared with Eq. (23), the factor e
− R2

AV
R2

0 is introduced because the creation of quark-antiquark pairs should become less likely as
the distance from the bare-hadron source is increased. RAV is the relative distance between the source particle and quark-antiquark
pair in the vacuum. In Eq. (24), there are three parameters need to identify, γ , f and R0. According to our previous work [24], we
find

γ � 32.2, f � 0.5 fm , R0 � 1 fm . (25)

In the present work, we also apply the transition operator in Eq. (24) with improvements and remain the values of parameters γ ,
f and R0 in Eq. (25). The newly mass shifts of the charmonium valence states are demonstrated in Table 4. From the table, we
found that the mass shifts are reduced greatly by 75% averagely, compared with the results in Table 3. Plainly, our modified 3P0

pair-creation model generates modest unquenching corrections, with mass renormalizations just 1% − 4% of a given meson’s bare

mass. So the effects of including the new term e
− R2

AV
R2

0 on the mass shifts are relatively stable. On the other hand, we calculated the
decay width of mesons using the transition amplitude T2 in Eq. (24), and we find that the results are similar with the ones using the
original transition amplitude T1 with f → 0 in Eq. (23).

In Table 2, we obtained the masses of the charmonium mesons in the quenched quark model, and the masses of 1S, 2S, 1P, 2P
and 1D are all smaller than the experimental values from PDG [31]. In the unquenched quark model, the coupled-channel effects
result in the negative mass shifts, which leads to the smaller unquenched masses for the states. Notably, although the mass shifts
reported in Table 4 are sensible, they destroy agreement with the empirical masses. This is because the model parameters in Table 1
were determined by fitting the meson spectrum from light to heavy, without considering the coupled-channel effects. As a exercise,
we choose to illustrate a remedy. We adjust the confinement parameter � in order to increase the quenched masses for only cc̄
mesons such that unquenching delivers the empirical masses, an outcome achieved with

� � −62 MeV . (26)

The results are listed in Table 5. We can find that the mass shifts are not very sensitive to the parameter �. Having made our point,
we leave for the future a complete refit of the parameters in Table 1 in order to arrive finally at a fully unquenched quark model.

Now, let us focus on the numerical analysis on the results in Table 5. Firstly, the mass shift of the each single coupled-channel
D(∗)
s D(∗)

s is smaller than and is about 1
3 of the D(∗)D(∗), due to the γ values. For open channels, the mass shifts are also larger

than the close channels. For example, for χc0 (2P) → DD̄, the mass shift is about 60 MeV. For χc1 (2P) → DD̄∗ + D∗ D̄ and
hc(2P) → DD̄∗ + D∗ D̄, the mass shift is about 58 MeV and 36 MeV, respectively, and they are all much larger than the other close
channels. Because the coupling of all channels is not so significant, as an approximation, the “Total” column represents the total
mass shifts of the state, which is obtained by summing the mass shifts of the each coupled-channel simply.

Secondly, the J/ψ − ηc and ψ(2 S) − ηc(2 S) loop-induced mass splitting has been discussed previously by Eichten et al. [41].
The authors find a small loop-induced J/ψ −ηc mass splitting of − 3.7 MeV and a ψ(2S)−ηc(2S) splitting of − 20.9 MeV, bringing
their model into good agreement with the experimental ψ(2S)−ηc mass difference. Table 5 shows that we find a numerically similar
ψ(2S) − ηc(2S) splitting of −18.4 MeV, but the ground state J/ψ − ηc mass difference is −13.4 MeV. In Ref. [4], Barnes and
Swanson get the ψ(2S) − ηc(2S) splitting of -24 MeV, which is well consistent with our results. But the J/ψ − ηc mass difference
is − 34 MeV which is larger than ours.

Thirdly, let us compare our “Unquenched mass” (the last column in the table) with the experiment values. By simple correction
of model confinement parameter � in Table 1, the bare masses of cc̄ states are increased. After considering the coupled-channel
effects, the unquenched masses of the states, ηc(1 S), J/ψ , χc0 (1P), χc1 (2P), χc2 (2P) and hc(2P) are well consistent with the
experimental values. In our future work, we will adjust the model parameters related to the charm quark in Table 1 and keep the
light meson sector unchanged as much as possible.

What’s more, for comparisons, we show some theoretical results about the mass shifts of charmonium mesons in Table 6. In the
table, the mass shifts have minus sign overall. The second column �M1 are the mass shifts with the original transition operator
of the 3P0 model. For 1S and 2S states, the mass shifts are larger than the other theoretical works in Table 6. For 1P states, our
results are basically consistent with the references [5–8]. Therein, the spherical harmonic oscillator (SHO) wave function is applied
to describe the meson dynamics, and the relative motion between two mesons is described by plane-wave functions. Besides, the
mass shifts are dependent on the parameter β in SHO and γ in the 3P0 model. The systematic errors due to the approximations are
unpredictable for the bound-state calculation, although they are not a bad approximation for the decay width calculation. Our results
�M2 in the third column, obtained with the improved 3P0 model, are comparable to each other, and some of them are much smaller
than the other theoretical results in 4-8 columns.

5 Summary

In the present work, the spectrum of 1S, 2S, 1P, 2P and 1D charmonium states below 4 GeV is calculated taking into account
coupling to the pairs of lowest D and Ds pairs. To minimize the error from the calculation, a powerful method for dealing with
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Table 3 Mass shifts computed for cc̄ charmonium mesons using the transition matrix constructed from T1 in Eq. (23) with f → 0, γ � 6.95. (Units of
MeV)

Bare cc̄ state Mass shifts by channels cc̄ + qqq̄q̄

State(n2S+1L J ) Bare mass Exp DD̄ DD̄∗ D∗ D̄ D∗ D̄∗ Ds D̄s Ds D̄∗
s D∗

s D̄s D∗
s D̄

∗
s Total Unquenched

mass

ηc(1S)(11S0) 2964.4 2983.9 – −197.6 −197.6 −369.4 – −80.7 −80.7 −155.8 −1081.8 1882.6

ηc(2S)(21S0) 3507.8 3637.5 – −127.8 −127.8 −228.7 – −46.9 −46.9 −89.0 −667.1 2840.6

J/ψ(1S)(13S1) 3096.4 3096.0 −60.6 −111.6 −111.6 −370.5 −22.1 −41.6 −41.6 −139.6 −899.2 2197.2

ψ(2S)(23S1) 3605.0 3686.1 −48.4 −83.7 −83.7 −259.5 −15.5 −29.1 −29.1 −96.2 −645.3 2959.7

χc0 (1P)(13P0) 3362.8 3414.7 −111.5 – – −30.4 −36.0 – – −10.5 −188.5 3174.3

χc1 (1P)(13P1) 3393.9 3510.7 – −65.3 −65.3 – – −20.7 −20.7 – −172.2 3221.7

χc2 (1P)(13P2) 3435.8 3556.2 – – – −113.8 – – – −35.6 −149.5 3286.3

hc(1P)(11P1) 3416.1 3525.4 – −32.5 −32.5 −57.3 – −9.9 −9.9 −18.6 −160.7 3255.4

χc0 (2P)(23P0) 3814.7 χc0 (3915)? −130.8 – – −29.8 −33.7 – – −9.8 −204.1 3610.6

χc1 (2P)(23P1) 3851.9 χc1 (3872)? – −74.2 −74.2 – – −19.8 −19.8 – −188.0 3663.9

χc2 (2P)(23P2) 3901.1 χc2 (3930)? – – – −111.2 – – – −34.8 −145.9 3755.1

hc(2P)(21P1) 3877.4 Zc(3930)? – −49.8 −49.8 −57.8 – −9.7 −9.7 −18.0 −194.8 3682.6

ηc2 (1D)(11D2) 3675.1 ? – −32.2 −32.2 −53.8 – −8.7 −8.7 −16.2 −151.8 3523.4

ψ(1D)(13D1) 3653.3 ψ(3770)? −62.8 −27.0 −27.0 −18.5 −16.3 −7.5 −7.5 −5.6 −172.1 3481.2

ψ2(1D)(13D2) 3668.3 ψ2(3823)? – −47.4 −47.4 −28.5 – −13.1 −13.1 −8.2 −157.8 3510.5

ψ3(1D)(13D3) 3688.1 ψ3(3842)? – – – −106.5 – – – −31.6 −138.2 3549.9

Table 4 Mass shifts computed for cc̄ charmonium mesons using the transition matrix constructed from T2 in Eq. (24) with f � 0.5 fm, γ � 32.2, R0 � 1
fm. (Units of MeV)

Bare cc̄ state Mass shifts by channels cc̄ + qqq̄q̄

State(n2S+1L J ) Bare mass Exp DD̄ DD̄∗ D∗ D̄ D∗ D̄∗ Ds D̄s Ds D̄∗
s D∗

s D̄s D∗
s D̄

∗
s Total Unquenched

mass

ηc(1S)(11S0) 2964.4 2983.9 – −14.5 −14.5 −27.1 – −3.2 −3.2 −6.4 −68.9 2895.4

ηc(2S)(21S0) 3507.8 3637.5 – −31.6 −31.6 −53.1 – −4.9 −4.9 −9.1 −135.3 3372.5

J/ψ(1S)(13S1) 3096.4 3096.0 −6.4 −11.8 −11.8 −38.9 −1.4 −2.6 −2.6 −8.7 −84.2 3012.2

ψ(2S)(23S1) 3605.0 3686.1 −16.5 −25.2 −25.2 −71.2 −2.1 −3.7 −3.7 −11.9 −159.5 3445.5

χc0 (1P)(13P0) 3362.8 3414.7 −20.5 – – −5.2 −3.4 – – −1.0 −30.1 3332.7

χc1 (1P)(13P1) 3393.9 3510.7 – −12.9 −12.9 – – −2.2 −2.2 – −30.3 3363.5

χc2 (1P)(13P2) 3435.8 3556.2 – – – −25.1 – – – −4.5 −29.6 3406.1

hc(1P)(11P1) 3416.1 3525.4 – −6.9 −6.9 −11.7 – −1.2 −1.2 −2.2 −30.1 3386.0

χc0 (2P)(23P0) 3814.7 χc0 (3915)? −106.5 – – −11.7 −6.6 – – −1.3 −126.1 3688.6

χc1 (2P)(23P1) 3851.9 χc1 (3872)? – −49.7 −49.7 – – −3.4 −3.4 – −106.2 3745.7

χc2 (2P)(23P2) 3901.1 χc2 (3930)? – – – −56.3 – – – −6.0 −62.3 3838.8

hc(2P)(21P1) 3877.4 Zc(3930)? – −44.8 −44.8 −28.2 – −1.8 −1.8 −2.9 −124.3 3753.1

ηc2 (1D)(11D2) 3675.1 ? – −12.1 −12.1 −18.3 – −1.6 −1.6 −2.8 −48.4 3626.8

ψ(1D)(13D1) 3653.3 ψ(3770)? −25.4 −9.3 −9.3 −5.8 −2.8 −1.2 −1.2 −0.9 −55.9 3597.3

ψ2(1D)(13D2) 3668.3 ψ2(3823)? – −17.4 −17.4 −9.5 – −2.3 −2.3 −1.4 −50.2 3618.0

ψ3(1D)(13D3) 3688.1 ψ3(3842)? – – – −38.3 – – – −5.8 −44.1 3644.1
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Table 5 Mass shifts computed for cc̄ charmonium mesons using the transition matrix constructed from T2 in Eq. (24) with f � 0.5 fm, γ � 32.2, R0 � 1
fm and � � 62 MeV. (Units of MeV)

Bare cc̄ state Mass shifts by channels cc̄ + qqq̄q̄

State(n2S+1L J ) Bare mass Exp DD̄ DD̄∗ D∗ D̄ D∗ D̄∗ Ds D̄s Ds D̄∗
s D∗

s D̄s D∗
s D̄

∗
s Total Unquenched

mass

ηc(1S)(11S0) 3051.3 2983.9 – −13.7 −13.7 −25.7 – −3.1 −3.1 −6.1 −65.4 2985.9

ηc(2S)(21S0) 3594.7 3637.5 – −27.9 −27.9 −48.2 – −4.5 −4.5 −8.4 −121.3 3473.4

J/ψ(1S)(13S1) 3183.3 3096.0 −5.9 −11.0 −11.0 −36.3 −1.3 −2.4 −2.4 −8.3 −78.8 3104.6

ψ(2S)(23S1) 3691.9 3686.1 −13.2 −21.6 −21.6 −63.9 −1.8 −3.4 −3.4 −10.9 −139.7 3552.3

χc0 (1P)(13P0) 3449.7 3414.7 −18.1 – – −4.7 −3.1 – – −1.0 −26.9 3422.8

χc1 (1P)(13P1) 3480.8 3510.7 – −11.5 −11.5 – – −2.1 −2.1 – −27.2 3453.5

χc2 (1P)(13P2) 3522.7 3556.2 – – – −22.7 – – – −4.2 −26.9 3495.8

hc(1P)(11P1) 3502.9 3525.4 – −6.1 −6.1 −10.7 – −1.1 −1.1 −2.0 −27.1 3475.9

χc0 (2P)(23P0) 3901.7 χc0 (3915)? −60.5 – – −9.2 −4.8 – – −1.2 −75.8 3825.9

χc1 (2P)(23P1) 3938.8 χc1 (3872)? – −28.6 −28.6 – – −2.8 −2.8 – −62.9 3875.9

χc2 (2P)(23P2) 3988.0 χc2 (3930)? – – – −42.1 – – – −5.2 −47.3 3940.7

hc(2P)(21P1) 3964.3 Zc(3930)? – −17.8 −17.8 −20.7 – −1.5 −1.5 −2.5 −61.8 3902.5

ηc2 (1D)(11D2) 3762.1 ? – −9.8 −9.8 −15.9 – −1.4 −1.4 −2.5 −41.1 3721.0

ψ(1D)(13D1) 3740.2 ψ(3770)? −19.2 −7.6 −7.6 −5.1 −2.5 −1.1 −1.1 −0.8 −45.3 3694.9

ψ2(1D)(13D2) 3755.2 ψ2(3823)? – −14.3 −14.3 −8.2 – −2.1 −2.1 −1.3 −42.3 3712.8

ψ3(1D)(13D3) 3775.0 ψ3(3842)? – – – −33.3 – – – −5.3 −38.6 3736.4

Table 6 The comparison of the
mass shifts of the charmonium
mesons between several
theoretical works. The second and
third column denote our results
corresponding to Table 3 and
Table 4. (Units of MeV)

States �M1 �M2 [7] [5] [8] [6] [4]

11S0 −1081.8 −68.9 −148 −148 −208 −165 −423

21S0 −667.1 −135.3 −208 −158 −84 −200 −416

13S1 −899.2 −84.2 −159 −148 −238 −177 −457

23S1 −645.3 −159.5 −228 −157 −99 −216 −440

13P0 −188.5 −30.1 −181 −157 −141 −198 −459

13P1 −172.2 −30.3 −195 −173 −191 −215 −496

13P2 −149.5 −29.6 −210 −154 −218 −228 −521

11P1 −160.7 −30.1 −201 −150 −189 −219 −504

23P0 −204.1 −126.1 −179 −218 −38 – –

23P1 −188.0 −106.2 −300 −214 −58 – –

23P2 −145.9 −62.3 −268 −203 −64 – –

21P1 −194.8 −124.3 −230 −153 −51 – –

11D2 −151.8 −48.4 −226 – −112 – –

13D1 −172.1 −55.9 −233 −188 −125 – –

13D2 −157.8 −50.2 −226 – −121 – –

13D3 −138.2 −44.1 −230 – −116 – –

few-body systems (GEM) was used. In our work, the angular momentum of the two mesons takes zero, and the relative motion
between the two mesons denotes to P wave for 1S, 2S and 1D states. For 1P and 2P states, we only consider the relative motion to
be S wave for the preliminary work, and D wave-related calculations will be our future work.

The transition operator of the 3P0 model is required to relate the valence part to the four-quark components. We demonstrated the
mass shifts of the charmonium states with the original transition operator of the 3P0 model, as well as with the modified version of
the transition operator. By contrast, the masses shifts are reduced greatly by 75% averagely within the modified 3P0 model. Plainly,
our modified 3P0 pair-creation model generates modest unquenching corrections, with mass renormalizations just 1% − 4% of a
given meson’s bare mass.
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As a preliminary work, we only fine-tune the model confinement parameter �, and we obtained unquenched masses for the
charmonium states. We find that the masses of the charmonium states, ηc(1 S), J/ψ , χc0 (1P), χc1 (2P), χc2 (2P) and hc(2P) are
well consistent with the experimental values. We leave for the future a complete refit of the model parameters in order to arrive
finally at a fully unquenched quark model. More experimental data in the future can help us better understand the spectrum of the
charmonium states.
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