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Abstract We investigate Einstein–Gauss–Bonnet–Maxwell massive gravity in 4D AdS background and find an exact black hole
solution. The horizon structure of the black holes studied. Treating the cosmological constant as pressure and Gauss–Bonnet coupling
parameters, and massive gravity parameters as variables we drive the first law of black hole thermodynamics. To study the global
stability of the black holes we compute the Gibbs free energy. The local stability of the black hole is also studied through specific
heat. We analyze the effects of graviton mass and Gauss–Bonnet coupling parameters on the phase transition of the black holes.
Finally, the effects of graviton mass and massive gravity parameters on the Joule–Thomson expansion of the black hole are studied.

1 Introduction

General Relativity (GR) is a theory of gravitation that help us understand gravitational waves, gravitational lensing, an effect of
gravity on time known as gravitational time dilation and black holes. Although GR is not a complete theory of quantum gravity, the
simplest theory of gravity describes various astrophysical phenomena. To complete the GR, people try to modify it in various ways,
for instance, by adding the higher order term to the Einstein–Hilbert action of GR but still, a complete theory is missing. Some other
examples of higher order gravity theory are scalar–tensor theories [1–6], Lovelock gravity [7–9], regular black holes [10–13] and
brane world cosmology [14–16].

Lovelock theories [7, 8] is a special theory of higher-order gravity in 4D spacetime that preserves diffeomorphism invariance,
metricity and second-order equations of motion. From Lovelock’s theories of gravity, Gauss–Bonnet gravity can be obtained in
higher dimensions [17]. The Gauss–Bonnet term does not contribute to the dynamics of the theory in four dimensions but rather
contributes to the dynamics when the dimensions of spacetime are greater than four. In recent days, Glavan and Lin [18] found
the solution to the Einstein–Gauss–Bonnet field equation in four dimensions by rescaling Gauss–Bonnet coupling parameter α by
α/D−4. However, the charged AdS solution of Einstein–Gauss–Bonnet theory was found in Ref. [19]. For a complete discussion on
4D Gauss–Bonnet gravity, see Refs. [20]. Some other static spherically symmetric black hole solutions and their thermodynamics,
phase transition in 4D or higher dimensions Einstein–Gauss–Bonnet gravity studied in Refs. [21–28]. Einstein–Gauss–Bonnet black
hole solution in nonlinear electrodynamics is studied in Refs. [29–37].

Another way of modifying the GR is by adding a mass to the graviton. According to the GR, the graviton is a massless spin-2
particle. But one may ask if that is a self- a consistent theory of massive gravity possible or not. In fact, people have tried to answer
this question by modifying the Einstein–Hilbert action that describes massive graviton. The recent observation of gravitational
waves by LIGO put a maximum limit on the graviton mass, m ≤ 1.2 × 10−22 eV [38]. A theory of massive gravity was first
constructed by Fierz and Pauli [39, 40]. In the curved background, this theory encounters ghost instabilities [41]. A new nonlinear
massive gravity theory proposed by de Rham, Gabadadze and Tolley (dRGT) [42, 43] avoids ghost problems. The charged black
holes in Gauss–Bonnet massive gravity studied [44]. Some other spherically symmetric black holes in massive gravity and their
thermodynamics have also been studied [45–50].

In our theory, we consider the anti-de-Sitter (AdS) background, i.e. we add a negative cosmological constant. The negative
cosmological constant is a crucial ingredient in the AdS/CFT correspondence, a duality between a theory of quantum gravity in
(AdS) space and a conformal field theory (CFT) in one lower dimension. The AdS/CFT correspondence allows for the study of
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strongly coupled field theories using classical gravity, which is a useful tool for investigating non-perturbative phenomena that
cannot be understood through standard perturbative methods. One significant consequence of the negative cosmological constant
is that it leads to the presence of a holographic screen at the AdS boundary, which encodes the bulk geometry’s information. This
holographic principle means that the number of degrees of freedom in the AdS space is proportional to the area of the holographic
screen, rather than the volume, as in ordinary theories. The AdS/CFT correspondence, therefore, implies that the degrees of freedom
in the AdS space are equivalent to those of the boundary CFT. The negative cosmological constant also plays a critical role in the AdS
black hole physics. Black holes in AdS space can have a negative specific heat, which is impossible in flat space. This phenomenon
is related to the AdS space’s boundary conditions, which force the black hole to lose energy and mass through the AdS boundary,
leading to a reduction in temperature. This behavior is known as Hawking-Page phase transition [51], where the black hole is in
thermal equilibrium with a thermal AdS space. The AdS/CFT correspondence allows for the study of the thermodynamic behaviour
of black holes using the corresponding CFT, providing insights into the nature of black hole thermodynamics.

Recently, researchers have considered the cosmological constant as a variable parameter and linked it to the thermodynamic
pressure, which is conjugate to the thermodynamic volume [52–56]. This approach has resulted in an extended phase space, where
the black hole mass is regarded as the enthalpy, instead of the internal energy [53]. Many studies have explored the thermodynamics
and phase transitions of black holes in this extended phase space, revealing new phenomena such as P-V criticality in various black
holes spacetime [57, 58].

In AdS spacetime, the black hole mass is naturally treated as the enthalpy, leading to the consideration of Joule–Thomson expansion
for the black hole. This expansion investigates isenthalpic curves, which are constant mass curves. Previous investigations of the
Joule–Thomson expansion for charged AdS [59] and Kerr AdS [60] black holes have been conducted within the framework of
Einstein gravity. However, extended theories of Einstein gravity introduce new physical degrees of freedom, raising questions about
their role and physical impact on the Joule–Thomson expansion. In this paper, we investigate how the presence of massive gravity
modifies the Joule–Thomson expansion of the charged AdS black hole in Gauss–Bonnet gravity, inspired by recent progress in
understanding massive gravity. The approach taken here is relevant not only for charged AdS black holes in Eiantein–Gauss–Bonnet
massive gravity but also for those in other alternative theories of gravity where additional gravitational modes emerge. For instance,
the Joule–Thomson expansion may be examined for charged AdS black holes in teleparallel f (T ) gravity [61, 62], with T representing
torsion, or in f (R) gravity [63] with a nonlinear electrodynamics field.

Since the charged AdS Einstein–Gauss–Bonnet theory in massive gravity is not studied yet. Therefore, in this paper, we investigate
charged Einstein–Gauss–Bonnet massive gravity and find an exact solution in 4D AdS space. we also discuss the horizon structure
of charged AdS black hole in 4D Einstein–Gauss–Bonnet massive gravity. Moreover, we discuss the thermal properties of this black
hole. To be more precise, we compute the entropy and temperature that satisfy the first law of black hole thermodynamics. In AdS
space, the mass of the black hole is treated as enthalpy. Furthermore, we analyzed the stability and Van der walls like phase transition
of the black holes. Here, we study the Joule–Thomson expansion of charged AdS black hole in 4D Einstein–Gauss–Bonnet massive
gravity, and the constant mass curves are known as isenthalpic curves. Finally, we investigate the effects of graviton mass and the
massive gravity parameters on the Joule–Thomson expansion of charged AdS black holes in 4D Einstein–Gauss–Bonnet massive
gravity.

The paper is organized as follows. In Sect. 2, we discuss the action describing the Einstein–Gauss– Bonnet–Maxwell massive
gravity in 4D AdS space and their field equations. Here, we find the exact black hole solution. The effects of graviton mass on
the horizon structure of the black hole are also depicted. In Sect. 3, we study the first law of black hole thermodynamics and the
effects of graviton mass on Hawking temperature. To investigate the global stability of the black holes, we compute the Gibbs free
energy. Next, in Sect. 5, the effects of graviton mass on the local stability of the black hole are studied. The Van der walls-like
phase transition of the black hole is analyzed in Sect. 7. We numerically investigate the effects of the graviton mass, the charge
of the black hole and Gauss–Bonnet coupling parameter on the critical parameters (namely, critical volume, critical pressure and
critical volume) of the black hole. The effects of critical parameters on the phase transition of the black hole are also studied. we
investigate the Joule–Thomson expansion of the black hole in Sect. 8. Here, we analyze the effects of graviton mass and massive
gravity parameters on the constant mass curve and inverse curve. Finally, we compute Joule–Thomson thermodynamic coefficient
as a function of the black hole horizon radius.

2 Einstein–Gauss–Bonnet massive gravity in 4D

The action for Einstein–Maxwell–Gauss–Bonnet massive gravity with a negative cosmological constant in D dimensions is given
by

S � 1

16π

∫
dDx

√−g

[
R − 2� + αG − FμνF

μν + m2
∑
i

ciUi (g, h)

]
, (2.1)

where g is determinant of the metric gμν ,R is Ricci scalar, α is Gauss–Bonnet coupling parameter,G � Rμνρσ Rμνρσ −4RμνRμν +R2

is the Gauss–Bonnet term, Rμνρσ is Riemann tensor, Rμν is Ricci tensor and Fμν � ∂μAν − ∂ν Aμ is Maxwell tensor. Apart from
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that m is a parameter related to graviton mass, hαν is a fixed symmetric tensor and usually is called the reference metric, ci (i � 1,
2, 3, 4) are constant1 [64] and Ui (g, h) is symmetric polynomials of eigenvalues of matrix Kμ

ν � √
gμαhαν , given by

U1 �[K],
U2 �[K]2−[K2],
U3 �[K]3 − 3

[K][K2] + 2
[K3],

U4 �[K]4 − 6
[K2][K]2 + 8

[K3][K] + 3
[K2]2 − 6

[K4],
(2.2)

where parentheses [...] represents trace of the matrix Kμ
ν . In D � 4 dimensions the Gauss–Bonnet term does not contribute to the

dynamics, so we rescale the Gauss–Bonnet coupling parameter α → α/(D− 4) [18], therefore, the action takes the following form:

S � 1

16π

∫
dDx

√−g

[
R − 2� +

α

D − 4
G − FμνF

μν + m2
∑
i

ciUi (g, h)

]
. (2.3)

Now, we consider a static and spherically symmetric solution of the form

ds2 � −e2A(r )dt2 + e2B(r )dr2 + r2d	2
D−2, (2.4)

and following the Ref. [65] we take the reference metric as

hμν � diag(0, 0, c2, c2 sin2 θ), (2.5)

where c is a dimensionless positive constant. The reference metric hμν is a rank two symmetric tensor. Physically, hμν corresponds
to the background metric around which fluctuations take the Fierz-Pauli form. By using equations (2.2) and (2.5), we obtain

U1 � (D − 2)c

r
,

U2 � (D − 2)(D − 3)c2

r2 ,

U3 � (D − 2)(D − 3)(D − 4)c3

r3 ,

U4 � (D − 2)(D − 3)(D − 4)(D − 4)c4

r4 .

(2.6)

Substituting the metric and the electrostatic potential in action (2.3), the first integral exists [19]

φ′(r ) � − Q

rD−2 e
A+B , (2.7)

and taking the limit D → 4 and using the relation � � −3/ l2 we obtain

S � �2

16π

∫
dtdr2eA+B

[
r3ψ

(
1 + αψ

)
+
r3

l2
+
Q2

r
+ m2

{c1cr2

2
+ c2c

2r
}]′

, (2.8)

where prime denotes differentiation with respect to r, �2 � 2π
3
2

�

(
1+ 1

2

) and ψ � r−2
(

1 − e−2B
)

with

eA+B � 1. (2.9)

If we choose m � 0 or c � 0 then equation (2.8) reduced to action in massless gravity. Now, using the action (2.8), we obtain
solution as

ψ
(

1 + αψ
)

+
1

l2
+
Q2

r4 +
m2

r3

{c1cr2

2
+ c2c

2r
}
−8πM

�2r3 � 0, (2.10)

where M is the integration constant related to the mass of the black hole. Therefore, the exact solution is

e2A � e−2B � 1 +
r2

2α

[
1 ±

√
1 + 4α

{
2M

r3 − Q2

r4 − 1

l2
− m2

2r2

(
cc1r + 2c2c2

)}]
. (2.11)

1 In order to have a self-consistent massive gravity theory, the coupling parameters ci might be required to be negative if the squared mass of the graviton
is positive. However, in the AdS spacetime, the coupling parameters ci can still take the positive values. This is because the fluctuations of the fields with
the negative squared masses in the AdS spacetime could still be stable if their squared masses obey the corresponding Breitenlohner–Freedman bounds.
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(a) M = 5 and α = 0.5 (b) M = 5 and α = 0.8

(c) M = 3 and α = 0.5 (d) M = 1 and α = 0.5

Fig. 1 m � 0.0 denoted by solid green line, m � 0.5 denoted by Solid black line, m � 1.0 denoted by dash red line and m � 1.5 denoted by dash dot blue
line with l � 2, Q � 3, c � 1, c1 � −1 and c2 � 1

The negative branch corresponds to the 4D charged AdS EGB massive black hole, whereas the +ve branch does not lead to a
physically meaningful solution because the positive sign in the mass term indicates graviton instabilities, so we only take the
negative branch of equation (2.11). For the chargeless limit, our solution reduces to a black hole solution as obtained in Ref. [50]

e2A � e−2B � 1 +
r2

2α

[
1 −

√
1 + 4α

{
2M

r3 − 1

l2
− m2

2r2

(
cc1r + 2c2c2

)}]
. (2.12)

In the limit α → 0, equation (2.11) reduces to the charged AdS black hole in massive gravity [66]

e2A � e−2B � 1 − 2M

r
+
Q2

r2 +
r2

l2
+
m2

2
(cc1r + 2c2c2). (2.13)

Also, in the massless limit, the above equation reduces to Reissner-Nordström AdS solution

e2A � e−2B � 1 − 2M

r
+
Q2

r2 +
r2

l2
. (2.14)

Now, we apply a massless limit to equation (2.11) and obtain charged AdS Black Hole in 4D Einstein-Gauss–Bonnet gravity [19] as

e2A � e−2B � 1 +
r2

2α

[
1 ±

√
1 + 4α

{
2M

r3 − Q2

r4 − 1

l2

}]
. (2.15)
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Table 1 Two roots of the metric
function

Figure 1a

m r− r+

0.0 1.1118 2.4489

0.5 1.1337 2.4867

1.0 1.2061 2.6419

1.5 1.3470 3.1853

Figure 1b

m r− r+

0.0 1.1597 2.4165

0.5 1.1833 2.4532

1.0 1.2609 2.6055

1.5 1.4091 3.1500

Fig. 2 m � 0.0 and Q � 2
denoted by solid green line, m � 1
and Q � 2 denoted by Solid black
line, m � 1 and Q � 3 denoted by
dash red line, m � 1 and Q � 4
denoted by dash dot blue line with
M � 10, α � 0.5 with l � 2,
c � 1, c1 � −1 and c2 � 1

To find the position of the event horizon of charged AdS Black Hole in 4D Einstein-Gauss–Bonnet gravity, we set equation (2.15)
equal to zero and obtain [19]

1 − 2M

r
+
Q2 + α

r
+
r2

l2
� 0. (2.16)

In the absence of cosmological constant, we obtain

r± � M ±
√
M2 − Q2 − α. (2.17)

For Einstein-Gauss–Bonnet massive gravity with a nonvanishing cosmological constant the expression for r+ is complicated, so we
do not represent it here. From equation (2.17), we can say that the black hole solution in 4D EGB massless gravity exists if and only
if M > M∗ with M2∗ � Q2 + α. We will loosely follow the condition M > M∗ for charged AdS Einstein-Gauss–Bonnet massive
gravity black holes. In Fig. 1, we plot the metric function (negative branch) of charged AdS Einstein–Gauss–Bonnet massive gravity
black holes for different values of α and M. From Fig. 1a and b, it is clear that the black hole has two horizons, as the value of
graviton mass increases the position of the outer horizon increases. The position of the event horizon increases as massive gravity
parameters increase. In Table 1 two roots of the metric function (2.11) are estimated, the position of the horizon slowly decreases as
Gauss–Bonnet coupling parameter increases. In Fig. 1c and d, we plot the metric function, and it is clear that there are no horizon
and no black hole solutions.

In Fig. 2, we plot the metric function (negative branch) of charged AdS Einstein–Gauss–Bonnet massive gravity in 4D for different
values of the charge. From the figure, it is clear that the position of the outer horizon is the smallest for the massless case. As we
increase the charge and keep the graviton mass fixed, the position of the outer horizon decrease but the position of the outer horizon
is still greater than the massless one which is represented by the solid green line.
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Fig. 3 m � 0 denoted by solid green line, m � 1.5 denoted by dash black line, m � 4.0 denoted by dash red line, m � 5.5 denoted by dash dot blue line
and m � 10.0 denoted by dash dot gold line with l � 2, c � 1 and c2 � 1

3 Black hole thermodynamics

In this section, we study the thermodynamics of charged AdS black holes in 4D Einstein–Gauss–Bonnet massive gravity. The
physical mass of the black holes can be obtained from the metric function (2.11) by setting e−2B

∣∣
r�r+

� 0 as

M � 1

2r+

[
r4

+

l2
+ r2

+ + Q2 + α + m2r2
+

(cc1r+

2
+ c2c2

)]
. (3.1)

The Hawking temperature of the black holes can be obtained from the relation

TH � f ′(r+)

4π
. (3.2)

For the metric (2.11), Hawking temperature reads

TH � 3r4
+ + l2(r2

+ − Q2 − α + m2r2
+(cc1r3

+ + c2c2))

4πr+l2(r2
+ + 2α)

. (3.3)

In the massless limit, the Hawking temperature of charged AdS black holes in Einstein–Gauss–Bonnet 4D massive gravity reduces
to the Hawking temperature [19] of charged AdS black holes in Einstein–Gauss–Bonnet 4D gravity as

TH � 3r4
+ + l2(r2

+ − Q2 − α)

4πr+l2(r2
+ + 2α)

. (3.4)

If we take the limit α → 0, the Hawking temperature (3.4) reduces to the Hawking temperature of Reissner-Nordström AdS black
holes as

TH � 3r4
+ + l2(r2

+ − Q2)

4πr3
+l2

. (3.5)

If we further take the chargeless limit, then the above equation reduces to the Hawking temperature of Schwarzschild AdS black
holes.

In Figs. 3 and 4, we plot the Hawking temperature of the black holes with respect to r+ for different values of α and charge. In
Fig. 3a, b, the Hawking temperature is plotted for different values of α. From the figure, it is clear that for a critical value of horizon
radius (say, rmin

+ ) the Hawking temperature is zero, and if we increase the horizon radius from rmin
+ then Hawking temperature

increases. Further increase of horizon radius from rmin
+ Hawking temperature leads to attaining a local maximum for a particular

value of r+ (say, rb+) and local maxima are slowly getting absent as graviton mass decreases. Hawking temperature attains a minimum
for a particular value of horizon radius (say, ra+ and ra+ > rb+ > rmin

+ ) and the minima slowly disappear if we decrease the graviton
mass. After attaining the minima if we further increase the horizon radii then Hawking temperature again increases. In Fig. 4a, b,
we plot the Hawking temperature with respect to the black hole horizon for different values of charge. From figure, it is clear that
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Fig. 4 m � 0.0 denoted by solid green line, m � 1.5 denoted by dash black line, m � 4.0 denoted by dash red line, m � 5.5 denoted by dash dot blue line
and m � 10.0 denoted by dash dot gold line with l � 2, c � 1 and c2 � 1

the behavior is the same as Fig. 3 but the effects of increasing charge are local maxima and the minima now disappear. To observe
the local maxima and the minima, we have to increase the graviton mass further, as shown by the gold dashed dot line in Fig. 4.

In Fig. 5, the effects of charge on the Hawking temperature are shown. The inclusion of charge slowly decreases the position of
local maxima and minima.

To find the entropy of the black hole, we use the relation dM � THdS. Using the Hawking temperature and mass of the black
hole, we obtain the entropy as

S � πr2
+ + 4πα ln(r+) + S0, (3.6)

where S0 is integration constant. From the above equation, one can say that the inclusion of electric charge has no effect on the
entropy of the black hole. To derive the first law of black hole thermodynamics, we treat the massive gravity parameters c1 and
c2 as thermodynamics variables, and the corresponding potential is C1 and C2. Apart from that, the potential corresponding to
Einstein-Gauss–Bonnet parameter α is A. The thermodynamic pressure is defined as P � 3/8πl2. Therefore, the first law of black
hole thermodynamics in extended phase space takes the following form:

dM � THdS + �dQ + VdP + Adα + C1dc1 + C2dc2. (3.7)

Now, from the first law of black hole, one can find the potential and volume as

� �
(

∂M

∂Q

)
S,P ,α,c1,c2 � Q

r+
, (3.8)

V �
(

∂M

∂P

)
S,Q,α,c1,c2 � 4

3
πr3

+, (3.9)

A �
(

∂M

∂α

)
S,Q,P ,c1,c2 � 1

2r+
, (3.10)

C1 �
(

∂M

∂c1

)
S,Q,P ,α,c2 � cm2r2

+

4
, (3.11)

C2 �
(

∂M

∂c2

)
S,Q,P ,α,c1 � c2m2r+

2
. (3.12)

4 Global stability: gibbs free energy

To study the global stability of the black holes we find Gibbs free energy

G � M − TH S − Q�. (4.1)
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Fig. 5 Plot of Gibbs free energy vs. horizon radius with different values of graviton mass (m � 0, 1, 2, 3, 4) with the fixed value of Gauss–Bonnet coupling
(α � 0.1, .3, 0.5, 0.8) and l � 2, c � 1, c1 � −1 and c2 � 1

Using Eqs. (3.1), (3.3), (3.6) and (3.7), we obtain

G �2r4
+ + l2(2r2

+ + 2Q2 + 2α + m2r2
+(cc1r+ + 2c2c2))

4r+l2

−
(
3r4

+ + l2
(
r2

+ − Q2 − α + m2r2
+(cc1r+ + c2c2)

))(
4πα ln(r+) + πr2

+

)
4πr+l2(r2

+ + 2α)
− Q2

r+
. (4.2)

In Figs. 5 and 6, we plot the Gibbs free energy for different values of α and charge of the black hole. From Fig. 5, it is clear that the
Gibbs free energy is zero for two critical values of horizon radius (namely, rc+, rd+ and rc+ > rd+ ). The Gibbs free energy is positive
between rc+ and rd+ . The positive part of the Gibbs free energy increases as the graviton mass increases and the positive part of the
Gibbs free energy decrease as the graviton mass decrease. The positive part of the Gibbs free energy attains its smallest value in the
massless limit. If we further increase the horizon radius r+ > rd+ then Gibbs free energy goes to the negative value. In Fig. 6, we plot
the effects of charge on the Gibbs free energy. Keeping the graviton mass small m ≤ 2, if we increase the charge of the black hole
then Gibbs free energy is completely negative (Fig. 6a and b). The solid cyan points represent rd+ and solid black points represent
rc+. Finally, one can say that the positive part of the Gibbs free energy slowly disappears due to the inclusion of charge for small
graviton mass m ≤ 2. As graviton mass increases from m � 2 the behavior is similar to that in Fig. 5.

5 Local stability: heat capacity

In this section, we study the local thermodynamical stability of the black hole. We compute the specific heat of the black holes. The
local stability of Einstein–Gauss–Bonnet 4D AdS black holes is studied in Ref. [21]. The specific heat of black holes in nonlinear
electrodynamics investigated in Refs. [31]– [36]. The local thermodynamical stability of the black holes can be analyzed from the
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Fig. 6 Plot of heat capacity versus horizon radius with different values of graviton mass (m � 0, 1, 2, 3, 4) with the fixed value of Gauss–Bonnet coupling
(α � 0.1, .3, 0.5, 0.8) and l � 2, c � 1, c1 � −1 and c2 � 1

sign of the specific heat. If heat capacity C� < 0 then the black holes are thermodynamically unstable and for C� > 0 then black
holes are thermodynamically stable. The heat capacity of the black holes is defined as

C� � TH

(
dS

dTH

)
�. (5.1)

Using Eqs. (3.3) and (3.6), this reads

C� �
2π (r2

+ + 2α)2

(
3r4

+ +

(
r2

+ − Q2 − α + m2r2
+(cc1r+ + c2c2)

)
l2
)

(
−(c2c2m2 + 1)r4

+ + 4cm2c1αr3
+ + (2αc2c2m2 + 3Q2 + 5α)r2

+ + 2Q2α + 2α2
)
l2 + 3r6

+ + 18αr4
+

. (5.2)

In Fig. 7, we plot the specific heat for two different values of the Einstein–Gauss–Bonnet coupling parameter and it is discontinuous
at some critical value of horizon radius for a larger value of graviton mass (m > 1) which indicates that a second-order phase transition
occurs for charged AdS black holes in 4D Einstein–Gauss–Bonnet massive gravity. For the smaller value of graviton mass(m � 1),
no divergences occur but the smaller-size black holes are thermodynamically unstable as specific heat is negative. As the size of the
black hole increases a phase transition occurs, i.e., the specific heat of the black hole changes from a negative value to a positive
value. If we take graviton mass as zero then similar kinds of phenomena occur.

In Ref. [50], the specific heat of EGB massive gravity black hole is studied with Q � 0. In the chargeless case, Q � 0 two diverging
points appear for two critical values of horizon radius which separate three regions, i.e. two-second order phase transition occurs for
such a black hole. Between two diverging points, specific heat is negative, which indicates that the black hole is thermodynamically
unstable in this region. The inclusion of charge removes one diverging point and we are left with only one diverging point, i.e. in
the case of charged black hole only one second-order phase transition occurs. For m � 0 behavior of specific heat same as Q � 0
and Q �� 0.
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Fig. 7 m � 0.0 denoted by solid green line, m � 1.0 denoted by dash black line, m � 2.0 denoted by dash red line, m � 3.0 denoted by dash dot blue line
and m � 4.0 denoted by dash dot gold line with Q � 1, l � 3, c � 1, c1 � −1 and c2 � 1

Table 2 The numerical values of
QNMs with different values of
gravitation mass (m) and
Gauss–Bonnet coupling (α) with a
fixed value of M � 1, Q � 1,
c � 1, c1 � −1, c2 � 1, n � 1,
and l � 10

m α � 0.1 α � 0.2 α � 0.3
ω � ωR + iωI ω � ωR + iωI ω � ωR + iωI

1 0.0036-0.0036 i 0.0011-0.001 i 0.0012-0.0012 i

2 0.0082-0.0091 i 0.0036-0.0039 i 0.0036-0.0038 i

3 0.0065-0.0074 i 0.0042-0.0047 i 0.0054-0.0058 i

4 0.0052-0.0060 i 0.0056-0.0062 i 0.0034-0.0036 i

5 0.0065-0.0071 i 0.0043-0.0046 i 0.0052-0.0055 i

Table 3 Values of critical volume
(vc), critical pressure (Pc), critical
temperature (Tc) and
ρc � Pcvc/Tc for different
graviton mass with Q � 1,
α � 0.1, c � 1 c1 � −2 and
c2 � 0.75

m vc Pc Tc ρc

0.0 5.4328 0.0025 0.0380 0.3702

0.1 5.4030 0.0026 0.0369 0.3806

0.2 5.3161 0.0027 0.0337 0.4259

0.3 5.1788 0.0030 0.0285 0.5451

0.4 5.0010 0.0034 0.0213 0.7982

0.5 4.7940 0.0040 0.0123 1.5590

6 Dynamic stability: quasinormal modes

One of the methods to study the dynamic stability of the black holes is studying the nature of quasinormal modes (QNM) which are
characterized by complex numbers. If the imaginary part of QNM is positive, the black hole is unstable; however, if negative, the
black hole is stable.

We compute the QNM and quasinormal frequency (QNF) of the above black hole using the scalar field perturbation. We need to
consider the scalar field � in the background of the black hole (2.11). The equation of these perturbations takes the form

1√−g
∂μ

(√−ggμν∂ν

)
� � 0, (6.1)

where gμν are the metric components of the metric (2.4). The mode decomposition of the scalar perturbation in terms of spherical
harmonics is given by

� � 1

r

∑
lm

eiωtφlmY
m
l (θ , φ), (6.2)
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Table 4 Values of critical
volume(vc), critical pressure (Pc),
critical temperature (Tc) and
ρc � Pcvc/Tc for different
charged of the black hole with
m � 0.5, α � 0.1, c � 1 c1 � −2
and c2 � 0.75

Q vc Pc Tc ρc

0.0 1.9620 0.0206 0.0733 0.5513

0.2 2.1519 0.0177 0.0659 0.5779

0.4 2.6326 0.0125 0.0501 0.6568

0.6 3.2763 0.0083 0.0345 0.7882

0.8 4.0092 0.0057 0.0219 1.0434

1.0 4.7940 0.0040 0.0123 1.5577

Table 5 Values of critical volume
(vc), critical pressure (Pc), critical
temperature (Tc) and
ρc � Pcvc/Tc for different
Gauss–Bonnet coupling parameter
with Q � 0.1, m � 0.2, c � 1
c1 � −2 and c2 � 0.75

α vc Pc Tc ρc

0.0 0.4827 0.3516 0.4464 0.3801

0.1 2.2693 0.0132 0.0778 0.3834

0.2 3.1460 0.0068 0.0543 0.3939

0.3 3.8142 0.0046 0.0437 0.4014

0.4 4.3728 0.0035 0.0373 0.4103

0.5 4.8610 0.0028 0.0330 0.4124

here l, m, Ym
l , and ω are respectively the angular quantum number, magnetic quantum numbers, spherical harmonic, and the

oscillating frequency of the scalar field. Substituting the value of � in Eq. (6.1) and using the tortoise coordinate dr∗ � dr/e2A,
we get the Schrodinger-like form, (

d2

dr∗2 + ω2 − V (r∗)

)
φ � 0, (6.3)

where V (r∗) is the effective potential and has the form

V (r∗) � e2A
(
A′(r ) +

l(l + 1)

r2

)
, (6.4)

where l is the harmonic index. To find the QNF one has to impose boundary conditions near the event horizon. These boundary
conditions can be written as

φ(r�) → eiωr� , r� → −∞, (6.5)

φ(r�) → e−iωr� , r� → ∞, (6.6)

where the + sign corresponds to ingoing waves at the horizon and − sign corresponds to outgoing waves at the infinity. The
frequencies corresponding to the QNM are given by ω � ωR + iωI , whose ωR and ωI are the oscillating damping components of
the frequency. We use the WKB approximation to find the QNMs and QNFs of the obtained black hole solution (2.11). The WKB
formula has the form [67–69]

i
ω2 − V0√

−2V ′′
0

� n +
1

2
. (6.7)

where V0 is the height of the barrier and V ′′
0 is the second derivative of the potential with respect to the tortoise coordinate. The

numerical value of QNM and QNF for different values of graviton mass is depicted in Table 2
From the Table 2, we can see clearly that the imaginary part of the QNMs in the obtained black hole solution (2.11) is negative.

So the black hole solution is stable.

7 Van der Waals like phase transition

In this section, we study the phase transition of charged AdS black holes in 4D Einstein–Gauss–Bonnet massive gravity. The phase
transition of the black holes in massive gravity is studied in [50, 70]. Hawking-Page phase transition for static and rotating 4D
Gauss–Bonnet black hole is studied in Refs. [23, 71]. The phase transition of charged AdS black hole in Einstein–Gauss–Bonnet
massless gravity is studied in Ref. [21]. Phase transition of charged AdS 4D Einstein–Gauss–Bonnet black hole in nonlinear
electrodynamics is also studied [31]. The Van der Waals equation of state for real fluids is given by

P � T

v − b
− a

v2 , (7.1)
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Fig. 8 P � 0.25Pc denoted by solid black line, P � Pc denoted by dash red line and P � 3Pc denoted by dash dot blue line with c � 1, c2 � 1 and
m � 1.5

where v is the specific volume of the fluids, a represents the interaction between the molecules of the fluids and b describes the
non-zero of the molecules. Now, from the Hawking temperature (3.3), we obtain

P � T

v
+

8Tα

v3 +
2Q2

v4π
− 1

2v2π
+

2α

v4π
− c2c2m2

2v2π
− cc1m2

4vπ
, (7.2)

where specific volume v is defined by [72]

v � 6V

A
≈ 2r+, (7.3)

where A is the area of the black hole. To obtain the critical points, we use the following conditions:
(

∂P

∂v

)
Tc ,vc �

(
∂2P

∂v2

)
Tc ,vc � 0. (7.4)
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Fig. 9 P � 0.25Pc denoted by solid black line, P � Pc denoted by dash red line and P � 3Pc denoted by dash dot blue line with c � 1, c1 � −0.1,
c2 � 1 and m � 1

Using Eqs. (7.2) and (7.4), we obtain the condition for critical volume as

−2(c2c2m
2 + 1)v4

c + 24αcc1m
2v3

c + 48(αc2c2m
2 + Q2 + 2α)v2

c + 384Q2α + 384α2 � 0. (7.5)

Equation (7.5) can not be solved analytically, we numerically solved the above equation and estimate the critical points as shown in
the tables below.

In Tables 3, 4 and 5, we numerically solve Eq. (7.5) for different values of graviton mass, charge and Einstein–Gauss–Bonnet
coupling parameter, we estimate the value of critical volume (vc), critical pressure (Pc), critical temperature (Tc) and ρc. From Table
3, we can say that as graviton mass increases from zero then the critical volume (vc), critical temperature (Tc) decreases, critical
pressure (Pc), and ρc increases. The effects of black hole charge on the critical parameters are shown in Table 4, keeping the graviton
mass fixed. As the charge of the black holes increases critical volume (vc) and ρc increase, however, critical pressure and critical
temperature decrease. The effects of the Gauss–Bonnet coupling parameter (α) on the critical parameters are shown in Table 5. In
Fig. 7, we plot the Hawking temperature for different values of Gauss–Bonnet coupling parameter and charge with P < Pc, P � Pc
and P > Pc.
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Fig. 10 M � 2 denoted by solid black line, M � 2.5 denoted by red dash line, M � 3 denoted by blue dash-dot line with m � 1, Q � 1, c � 1, c1 � −1
and c2 � 1. A solid gold line denotes an inverse curve

Fig. 11 m � 0 denoted by solid black line, m � 1 denoted by red dash line, m � 2 denoted by blue dash dot line and m � 3 denoted by green dash dot line
with M � 5, Q � 1, c � 1, c1 � −1 and c2 � 1

In Fig. 8a and b, the Hawking temperature is depicted for different values of α keeping pressure fixed. When pressure is less
than critical pressure (Pc), the curve has two critical points (one of them is maxima and another is minima). For the pressure equal
to the critical pressure (Pc), two turning points come to an inflection point and when P > Pc the curve does not attain any turning
points. The effects of charge on the Hawking temperature are shown in Fig. 8c and d. The inclusions of charge basically reduced the
position of local maxima and minima when P < Pc. Furthermore, if we increase the charge then the position of local maxima and
minima decrease by a significant amount (Fig. 8d). The rest of the behaviour is similar to Fig. 8a and b. The behaviour of Hawking
temperature of charged less black hole for P ≤ Pc and P > Pc is shown in Ref. [50]. The Hawking temperature of the black hole
with Q � 0 attains local maxima and minima when P < Pc. In the chargeless case position of local maxima and minima is higher
than the charged black hole.
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Fig. 12 M � 20, α � 0.5 and c � 1. Left panel: m � 0 denoted by the solid black line, m � 3 denoted by a red dash line, m � 5 denoted by a blue dash-dot
line and m � 7 denoted by an orange dash-dot line. Right panel: m � 0 denoted by the solid black line, m � 1 denoted by a red dash line, m � 2 denoted
by a blue dash-dot line and m � 3 denoted by an orange dash-dot line

Fig. 13 M � 2, Q � 1, α � 0.5 and c � 1. Left panel: c2 � 0.1 denoted by an orange dash line, c2 � 1 denoted by a red dash line, c2 � −1 denoted by a
green dash-dot line, and c2 � −2 denoted by a blue dash-dot line. Right panel: c1 � 1 denoted by a red dash line, c1 � 2 denoted by an orange dash line,
c1 � −1 denoted by a green dash-dot line and c2 � −2 denoted by a blue dash-dot line

In Fig. 9, we plot Gibbs free energy Vs. temperature for different values of Gauss–Bonnet coupling parameter and black holes
charge with P < Pc, P � Pc and P > Pc. In Fig. 9a and b, Gibbs free energy for different values of Gauss–Bonnet coupling
parameters is depicted. When pressure is less than the critical pressure (Pc), Gibbs free energy shows swallow tail (triangular shape)
behavior, which indicates that the system undergoes a first-order phase transition, i.e., below the critical pressure a transition between
small black hole (SBH) and large black hole (LBH) occurs. The Gibbs free energy of LBH is smaller compared to the SBH. At the
point of intersection of the curve (P < Pc), where first-order phase transition occurs, the entropy of the system is discontinuous as
entropy depends on the horizon radius of the black holes and the radius of the SBH and LBH is different. For P � Pc, the swallow
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Fig. 14 m � 0 denoted by solid black line, m � 0.5 denoted by dash red line, m � 1 denoted by dash orange line, m � 1.5 denoted by blue dash dot line
and m � 2 denoted by dash dot green line with M � 2, Q � 1, α � 0.5 and c � 1

Fig. 15 m � 0 denoted by solid black line, m � 0.5 denoted by dash red line, m � 1 denoted by dash orange line, m � 1.5 denoted by blue dash dot line
and m � 2 denoted by dash dot green line with M � 2, Q � 1, α � 0.5 and c � 1

tail behavior disappears at which a second-order phase transition occurs. For P > Pc swallow tail behavior completely disappears
and no phase transition occurs. A similar kind of behavior is shown in Fig. 9c and d for different values of charge.

8 Joule–Thomson expansion

In this section, we discuss the effects of massive gravity on the Joule–Thomson expansion of charged AdS black holes in 4D
Einstein–Gauss–Bonnet massive gravity. The Joule–Thomson expansion of charged AdS black holes was first studied in Ref.
[59]. After that Joule–Thomson expansion of D dimensional black holes was studied in Ref. [73]. Using numerical investigation,
Joule–Thomson expansion of Kerr-AdS and Kerr-Newman-AdS is also studied [60, 74]. Joule–Thomson expansion of charged AdS
black hole in 4D Einstein massive gravity discussed in Ref. [66]. Joule–Thomson expansion of charged AdS 4D Einstein massive
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Fig. 16 Q � 1, c � 1, c1 � −1 and c2 � 1. Left panel: m � 0 denoted by the solid black line, m � 1 denoted by red dash line, m � 2 denoted by orange
dash line, m � 3 denoted by blue dash-dot line, m � 4 denoted by green dash-dot line and m � 5 denoted by a gold dash-dot line. Right panel: α � 0
denoted by a solid black line, α � 0.1 denoted by red dash line, α � 0.2 denoted by orange dash line, α � 0.3 denoted by blue dash-dot line, α � 0.4
denoted by green dash-dot line and α � 0.5 denoted by a gold dash-dot line

Fig. 17 Q � 1, c � 1, α � 0.5 and m � 1. Left panel: c1 � 2 denoted by a red dash line, c1 � 1 denoted by an orange dash line, c1 � −1 denoted by
a blue dash-dot line, c1 � −2 denoted by a green dash-dot line. Right panel: c2 � 2 denoted by a red dash line, c2 � 1 denoted by an orange dash line,
c2 � −1 denoted by a blue dash-dot line, c2 � −2 denoted by a green dash-dot line

gravity black hole in Maxwell and Born–Infeld electrodynamics discussed in Ref. [21, 75]. The Joule–Thomson thermodynamic
coefficient is given by

μJ �
(

∂T

∂P

)
M � 1

CP

[
T
(∂V

∂P

)
P − V

]
� (∂T/∂r+)M

(∂P/∂r+)M
. (8.1)

The Joule–Thomson effect is an isenthalpic process, which means that enthalpy remains constant during the process. In the
Joule–Thomson process pressure always decrease but the temperature can increase/decrease, thus Joule–Thomson thermodynamic
coefficient (μ) can be negative/positive. When μ > 0 the Joule–Thomson expansion corresponds to the cooling region of the
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Fig. 18 M � 2.5, Q � 1, c � 1, α � 0.5 and m � 1. Left panel: c2 � −2 denoted by a red dash line, c2 � −1 denoted by an orange dash line, c2 � 1
denoted by a blue dash-dot line, c2 � 2 denoted by a green dash-dot line. Right panel: c1 � −2 denoted by a red dash line, c1 � −1 denoted by an orange
dash line, c1 � 1 denoted by a blue dash-dot line, c1 � 2 denoted by a green dash-dot line

isenthalpic or constant mass curve and μ < 0 corresponds to the heating region of the isenthalpic or constant mass curve. The Joule
- Thomson thermodynamic coefficient vanishes for some particular value of temperature, which is known as inverse temperature
(Ti ) and corresponding pressure is known as inverse pressure (Pi ). The cooling and heating regions are separated by the set of points
(Pi , Ti ) and the curved formed by the set of points (Pi , Ti ) known as the inverse curve. Clearly, the region above the inverse curve
is known as the cooling region and the region below the inverse curve is known as the heating region. At inverse temperature sign
of Joule–Thomson coefficient changes μJ (Ti ) � 0. From the above equation, we obtain inverse temperature

Ti � V

(
∂T

∂V

)
P � r+

3

(
∂T

∂r+

)
P . (8.2)

From Eq. (3.1) and using P � 3/8πl2, we obtain pressure in terms of black hole mass

P � 3

4πr2
+

[
M

r+
− Q2

2r2
+

− 1

2
− α

2r2
+

− m2c2c2

2
− m2cc1r+

4

]
. (8.3)

Now, from Hawking temperature and using the relations P � 1/8πl2, we obtain

T � 1

4πr (r2
+ + 2α)

[
8π Pr4

+ − Q2 + r2
+ − α + c2c2m

2r2
+ + m2cc1r

3
+

]
. (8.4)

Using Eqs. (8.3) and (3.4) constant mass curve can be obtained. In Figs. 10, 11, 12, 13 and 14 we plot the constant mass curve.
In Fig. 10, constant mass and an inverse curve are shown for different values of black hole mass. The left region of the inverse curve
represents cooling and the right region represents heating. In Figs. 11 and 12 constant mass curve is shown for different values of
Gauss–Bonnet coupling parameter and charge of the black hole. The effects of parameters c1 and c2 are shown in Figs. 13, 14 and
15.

We use Eqs. (8.2) and (8.4) and obtain the inverse pressure as

Pi � 6Q2r2
+ − 4r4 + 8Q2α + 2αr2

+ + 8α2 − 4c2c2m2r4
+ − 3cc1m2r5

+ − 4αc2c2m2r2
+ − 2αcc1m2r3

+

16πr6
+

. (8.5)

Now, using the relations (8.4) and (8.5), we obtain

Ti � −m2cc1r3
+ + (−2c2c2m2 − 2)r2

+ + 4Q2 + 4α

8πr3
+

. (8.6)

Finally, we will drive the Joule–Thomson thermodynamic coefficient using Eqs. (8.1), (8.3) and (8.4)

μJ �
8r3

+

(
6Mr3

+ − 6Q2r2
+ − r4

+ − 4Q2α − 4αr2
+ − 4α2 − c2c2m2r4

+ + 2αc2c2m2r2
+ + αcc1m2r3

+

)

3(r2
+ + 2α)2

(
12Mr+ − 8Q2 − 4r2

+ − 8α − 4c2c2m2r2
+ − m2cc1r3

+

) . (8.7)
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Fig. 19 m � 0 denoted by solid black line, m � 0.5 denoted by red dash line, m � 1 denoted by orange dash line, m � 1.5 denoted by blue dash-dot line,
m � 2 denoted by green dash-dot line with M � 2.5, Q � 1, c � 1, and α � 0.5

(Figs. 16, 17)
In Figs. 18 and 19, Joule–Thomson thermodynamic coefficient is plotted. μ < 0 represent heating phase and μ > 0 represent

cooling phase.

9 Conclusions

In this work, we have found an exact solution of Einstein–Gauss–Bonnet massive gravity with charge in 4D AdS space and the
horizon structure of the black holes is discussed. The physical mass (enthalpy) and Hawking temperature of the black holes were
computed. Treating the cosmological constant as the pressure, we drive the first law of black hole thermodynamics. To check global
stability, the Gibbs free energy of the black hole was computed. For the local stability of the black holes we estimated the specific
heat. Here, we found that as the mass of the graviton increases one divergent point appears. For m � 0, 1, the specific heat of
the black hole goes from a negative value (unstable phase) to a positive one (stable phase) and when m > 1 a second-order phase
transition occurs. Furthermore, we investigated the Van der Walls-like phase transition of the black holes. The effects of graviton
mass, the charge of the black holes and the Gauss–Bonnet coupling parameter on the critical points were also studied. As the mass
of the graviton increase, critical pressure also increases and critical temperature shows the opposite behavior. When charge and
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Gauss–Bonnet coupling parameters of the black hole increase, we found that both critical pressure and temperature decrease. From
the G − T plot, we observed that a swallow tail appears below the critical point which indicates a first-order phase transition, and
at the critical point, a second-order phase transition occurs. Finally, Joule–Thomson expansion of charged AdS black hole in 4D
Einstein–Gauss–Bonnet massive gravity was studied. The effects of the Gauss–Bonnet coupling parameter and massive gravity
parameters on the constant mass and inverse curve are also depicted.
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Appendix

The Ricci and Kretschmann scalar for the metric function (2.11) are given by

R � − frr (r )r2 + 4 fr (r )r + 2 f (r ) − 2

r2 ,

K � f 2
rr (r ) +

4 f 2
r (r )

r2 +
4(−1 + f (r ))2

r4 , (.1)

where we use f (r ) � e2A(r ), frr (r ) stands for d2 f (r )/dr2 and fr (r ) stands for df (r)/dr.
The differentiation of f (r) with respect to r is given by

fr � r

α

⎡
⎣1 −

√
1 + 4α

{
2M

r3 − Q2

r4 − 1

l2
− m2(2c2c2 + cc1r )

2r2

}⎤
⎦

−
r2
[

− 6M
r4 + 4Q2

r5 − m2cc1
2r2 + m2(2c2c2+cc1r )

r3

]
√

1 + 4α

{
2M
r3 − Q2

r4 − 1
l2

− m2(2c2c2+cc1r )
2r2

} , (.2)

frr � 1

α

[
1 −

√
1 + 4α

{
2M

r3 − Q2

r4 − 1

l2
− m2(2c2c2 + cc1r )

2r2

}]

+
2αr2

[
− 6M

r4 + 4Q2

r5 − m2cc1
2r2 + m2(2c2c2+cc1r )

r3

]2

[
1 + 4α

{
2M
r3 − Q2

r4 − 1
l2

− m2(2c2c2+cc1r )
2r2

}] 3
2

+
l(−2c2c2m2r2 − m2cc1r3 + 4Q2)

r2

√{
(−4c2c2m2r2 − 2m2cc1r3 + 8Mr − 4Q2)l2 − 4r4

}
α + r4l2

. (.3)

Therefore, using (.2) and (.3), Ricci and Kretschmann scalar are given by

R � 6

α

[
− 1 +

√
1 +

8αM

r3 − 4αQ2

r4 − 4α

l2
− 4αm2c2c2

r2 − 2αm2cc1

r

]

− (−4c2c2m2r2 − m2cc1r3 + 12Mr − 8Q2)2αl3

2r2
[
{(−4c2c2m2r2 − 2m2cc1r3 + 8Mr − 4Q2)l2 − 4r4}α + r4l2

] 3
2

− l(−10c2c2m2r2 − 3m2cc1r3 + 24Mr − 12Q2)

r2
√{(−4c2c2m2r2 − 2m2cc1r3 + 8Mr − 4Q2)l2 − 4r4}α + r4l2

, (.4)

K �
[

1

α

⎡
⎣1 −

√
1 + 4α

{
2M

r3 − Q2

r4 − 1

l2
− m2(2c2c2 + cc1r )

2r2

}⎤
⎦

−
4r
[

− 6M
r4 + 4Q2

r5 − m2cc1
2r2 + m2(2c2c2+cc1r )

r3

]
√

1 + 4α

{
2M
r3 − Q2

r4 − 1
l2

− m2(2c2c2+cc1r )
2r2

}
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Fig. 20 M � 5, Q � 1, c � 1, c1 � −1 and c2 � 1. m � 0 denoted by solid black line, m � 1 denoted by dash red line, m � 2 denoted by blue dash line,
m � 3 denoted by gold dash line

+
2αr2

[
− 6M

r4 + 4Q2

r5 − m2cc1
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[
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{
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− m2(2c2c2+cc1r )
2r2

}] 3
2

−
r2
[

24M
r5 − 20Q2

r6 + 2m2cc1
r3 − 3m2(2c2c2+cc1r )

r4

]
√

1 + 4α
{

2M
r3 − Q2

r4 − 1
l2

− m2(2c2c2+cc1r )
2r2

}
]2

+
4

r2

[
r

α

⎡
⎣1 −

√
1 + 4α

{
2M

r3 − Q2

r4 − 1

l2
− m2(2c2c2 + cc1r )

2r2

}⎤
⎦

−
r2
[

− 6M
r4 + 4Q2

r5 − m2cc1
2r2 + m2(2c2c2+cc1r )

r3

]
√

1 + 4α
{

2M
r3 − Q2

r4 − 1
l2

− m2(2c2c2+cc1r )
2r2

}
]2

+
1

α2

[
1 −

√
1 + 4α

{2M

r3 − Q2

r4 − 1

l2
− m2(2c2c2 + cc1r )

2r2

}]2

(.5)

In Fig. 20, Kretschmann scalar is plotted. From the figure, it is clear that 4D Einstein–Gauss–Bonnet massive gravity black hole
has a true singularity at r � 0.
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