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Abstract Global warming is a serious issue that affects the environment and mankind. The anthropogenic emissions of carbon
dioxide, mainly due to fossil fuel burning and deforestation, are among the root cause of global warming. The goal of this work is to
present a mathematical model to analyze the long-term impact of an integrated CO2 taxation-reforestation policy on the mitigation of
atmospheric CO2 levels. It is assumed that carbon tax is applied to anthropogenic CO2 emissions and a part of the money generated
by carbon taxation is invested to accelerate the reforestation programs. The stability theory of differential equations is applied to
examine the qualitative behaviour of the system. Lyapunov stability theory is used to derive sufficient conditions under which the
atmospheric carbon dioxide level gets stabilized. It is found that an increment in the deforestation rate coefficient above a threshold
level leads to stability loss of interior equilibrium and generation of periodic orbits via Hopf-bifurcation. It is found that the amplitude
of the oscillation cycles can be dampened on increasing the maximum efficiency of reforestation programs to increase the forest
biomass and above a threshold value of the maximum efficiency of reforestation programs, the periodic oscillations die out. It is
found that the seasonality in the application of reforestation efforts may lead to the generation of higher periodic solutions above
a threshold level of deforestation rate, making it hard to predict and control the atmospheric CO2 level. The conditions for global
attractivity of positive periodic solution of the seasonally forced model are discussed. Numerical simulation has been presented to
illustrate the theoretical findings.

1 Introduction

The unprecedented increase in the radiative forcing of Earth’s atmosphere over the last few decades has given rise to the threat of
global warming. The anthropogenic carbon dioxide emission is the prime contributor to the increase in the radiative forcing of the
Earth’s atmosphere. Every year human activities, mainly deforestation and fossil fuel burning, are putting more carbon dioxide (CO2)
into the atmosphere than natural processes can remove. The excessive anthropogenic CO2 emissions have pushed the atmospheric
CO2 above the level of 400 ppm, the highest at any time in the past 800,000 years [1]. Deforestation is one of the prime causes
behind the upsurge in CO2 concentrations. Agricultural expansion, logging for fuel, fodder, wood, and paper-based industries, and
infrastructure expansion to support the growing population and economy are mainly attributed to deforestation. Between 1990 and
2020, 420 million ha (hectare) of forest was lost because of deforestation [2]. With the growth in the world’s population and economy,
the deforestation rate is expected to further increase due to agriculture and infrastructure expansion. In this scenario, restoring the
forest cover is imperative to tackle the climate changes caused by enhanced levels of atmospheric carbon dioxide. Many countries
are implementing forest conservation policies to enlarge their forest cover. The adoption of forest conservation policies can have
a profound impact on forest biomass conservation and even cause the reversal of deforestation trends. For instance, Costa Rica
has achieved success in reversing deforestation by increasing the forest cover from 24.4% in 1985 to more than 50% by 2011 by
implementing the forest conservation programs [3]. Reforestation programs are prominent options to restore the forest cover; but
their implementation on a desired scale involves many economical and geographical constraints [4]. One of the constraints is the
economic cost of planting and managing the forests.

Apart from deforestation, fossil fuel burning for energy generation and industrial processes is another prominent source of CO2

emissions. Many countries, such as Canada, South Africa, India, Taiwan, Columbia, Costa Rica and most EU countries, have
implemented environmental regulations to reduce carbon emissions by imposing taxes [5]. The taxation policy is corroborated by
the government to directly price the emissions of carbon dioxide of enterprises, following the taxation principle of “who consumes,
who pays” [6]. The implementation of carbon taxation is an effective option to reduce the carbon dioxide emissions from the point
source. Several empirical, semi-empirical and numerical models are used to study the nexus between carbon taxation and carbon
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Fig. 1 The flowchart of the
methodology

dioxide emissions from anthropogenic sources [7–15]. These studies pointed out that carbon taxation is effective strategy to mitigate
the carbon dioxide levels. In particular, Andersson [12] has used an empirical model to quantify the effect of the implementation
of a carbon tax and a value-added tax on transport fuel in Sweden and showed that the implementation of the carbon tax and a
value-added tax causes a reduction of nearly 11 percent in carbon dioxide emissions from transport. Ghazounani et al. [14] have
also empirically analyzed the effect of a carbon tax on the mitigation of carbon dioxide emissions in the European context and
showed a significant and positive effect of adoption of a carbon tax on the reduction of CO2 emissions. However, these studies
provide a quantitative analysis of the effect of carbon taxation on the control of carbon dioxide emissions and rely entirely on the
data. Apart from these numerical and empirical models, theoretical models that employ qualitative methods can be used to gain an
in-depth understanding of the effect of carbon taxation on the control of anthropogenic carbon dioxide emissions. In recent years,
various differential equation models have been proposed and analyzed qualitatively to study the impact of human activities and
forest biomass over the dynamics of carbon dioxide in the atmosphere [16–30]. In particular, Misra et al. [20] have proposed a
mathematical model to analyze the effect of reforestation and the delay involved in between the measurement of forest data and
implementation of reforestation efforts on the control of carbon dioxide concentration in the atmosphere. Misra and Jha [27] have
proposed a nonlinear model to study the effect of population pressure on the dynamics of carbon dioxide. Their study reveals that
as the reduction rate coefficient of carrying capacity of forest biomass due to population pressure increases, the equilibrium level of
atmospheric carbon dioxide increases. Verma and Gautam [29] have proposed and analyzed a nonlinear mathematical model to study
the effect of forest management programs on the control of atmospheric carbon dioxide. This study indicates that the atmospheric
carbon dioxide level can be reduced by increasing the implementation rate and maximum efficiencies of forest management options
to reduce deforestation rate and increase forest biomass, respectively. Devi and Gupta [31] have proposed a mathematical model to
analyze the effect of environmental tax and time lag in implementation of taxation policy on the concentration of greenhouse gases.
This study shows that the concentration of greenhouse gases can be reduced to innocuous level via increasing the implementation
rate of environment tax. The literature review shows that there is lack of mathematical studies that analyze the long-term effect
of integrated carbon taxation-reforestation policies on the atmospheric CO2 levels. However, such a study is very important as the
integration of carbon taxation and reforestation policies may aid in overcoming the economic constraints that exist in large scale
tree plantation. The goal of the present work is to propose and analyze a nonlinear mathematical model to explore the effect of a
mitigation policy that integrates the reforestation programs with carbon taxation on the atmospheric CO2. We assumed that the carbon
tax is applied to the anthropogenic emission of carbon dioxide that result in the reduction of CO2 emissions from the point source.
Further, a portion of the fund collected through taxation is spent to accelerate reforestation programs. Since the reforestation efforts
are subjected to the seasonal variations, the model is further extended to incorporate seasonality in implementation of reforestation
programs by taking the implementation rate of reforestation programs as periodic function of time.

The remainder of this paper is ordered as follows. The next section presents the formulation of mathematical model used to
examine the effects of the integrated carbon taxation -reforestation policy on the control of carbon dioxide levels. In Sect. 3, the
boundedness of model solutions is discussed. Further, the feasible equilibrium points of the model are identified and their stability
properties are examined. The existence of Hopf-bifurcation is discussed by taking the deforestation rate coefficient of forest biomass
as a bifurcation parameter. Section 4 offers the study of the effect of seasonal variations in reforestation rate over the system dynamics.
We have demonstrated the behavior of autonomous as well as nonautonomous system through numerical simulations in Sect. 5.
Finally, Sect. 6 concludes the important findings of the work. A flowchart of the methodology is given in Fig. 1.
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2 The model

Let in a geographical region, C(t) denotes the atmospheric concentration of CO2 at any time t. Further, let N(t) and B(t) denote the
human population and forest biomass, respectively. Let T (t) and R(t) denote the carbon tax and a measure of reforestation programs,
respectively at time t. The reforestation programs are measured in terms of money invested in their implementation. We formulate a
mathematical model to study the effect of the integrated carbon taxation-reforestation policy on the dynamics of atmospheric CO2

based on the following assumptions:

(i) The natural emission rate of CO2 is constant while the anthropogenic emission rate of CO2 is proportional to the human
population [32, 33].

(ii) The removal rate of CO2 by forests during photosynthesis process depends on the carbon dioxide concentration and the forest
biomass, while the removal rate of carbon dioxide by natural sinks other than forests is proportional to CO2 concentration
[34].

(iii) The population and forest biomass are assumed to evolve with time according to logistic growth law. The population clears
forest for their use which feeds back to the population growth [35]. So, it is considered that the forest biomass’s growth rate
declines because of increase in population and population’s growth rate boosts because of increase in forest biomass.

(iv) It is assumed that the population declines due to the adverse impacts of climate changes caused by the enhancement in the
concentration of CO2 [19].

(v) The implementation of reforestation programs causes increase in forest biomass. Since the forest biomass can not increase
indefinitely with the increase in reforestation programs, so the increment in the forest biomass due to reforestation program
is taken as a increasing saturating function of reforestation programs.

(vi) Carbon tax is assumed to be applied to the anthropogenic CO2 emission at a rate proportional to the anthropogenic CO2

emission rate. The application of carbon tax leads to the reduction in the anthropogenic CO2 emission rate. Since, the reduction
in anthropogenic CO2 emission rate brought by carbon taxation can not increase indefinitely with carbon taxation, therefore
it is taken as a increasing saturating function of carbon tax.

(vii) It is assumed that some taxation policies will be scraped with time due to their inefficacy.
(viii) The reforestation programs are executed with a rate proportional to the difference between the carrying capacity of forest

biomass and its current density. A portion of carbon tax is invested on reforestation programs that enhance the implemen-
tation rate of reforestation programs. Further, it is considered that some reforestation programs are diminished due to their
inefficiency or some economical barriers.

The above assumptions give rise to the following system of differential equations governing the time evolutions of the model
variables:

Ċ � Q + λ

(
1 − ηT

l + T

)
N − αC − λ1BC ,

Ṅ � sN

(
1 − N

L

)
− θCN + ξNB,

Ḃ � uB

(
1 − B

M

)
− φNB +

βRB

p + R
,

Ṫ � γ (λN ) − γ0T ,

Ṙ � (δ1 + δ2T )(M − B) − δ0R, (1)

with initial conditions C(0) > 0, N (0) ≥ 0, B(0) ≥ 0, T (0) ≥ 0 and R(0) ≥ 0. The parameters used in system (1) are specified in
Table 1.

3 Qualitative analysis of the system (1)

Since the model system (1) is highly non-linear, it is not possible to find the exact solution to the system. Instead, we will determine
the long-term behaviour of the system by applying the stability theory of ordinary differential equations. In this regard, we will
determine the feasible equilibrium states of the system (1) and examine their stability properties.

3.1 Boundedness

Boundedness of a system demonstrates that it is well behaved, and ensures that the model variables will not grow exponentially
as time increases indefinitely. The results regarding the boundedness of the solution of model system (1) are given in following
Lemma 1.

Lemma 1 The region of attraction [36] for the solution of the system (1) initiating in the positive cone of R5 is given by the set
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Table 1 Description and values of
the model parameters of system
(1) with their unit and source

Parameter Description Values with unit Source

Q Natural emission rate of carbon dioxide 1 ppm month−1 [19]

λ Anthropogenic emission rate coefficient of
CO2

0.05 ppm person−1 month−1 [19]

η Maximum efficacy of carbon taxation
programs to reduce the anthropogenic
CO2 emission rate

0.3 Assumed

l Half saturation constant representing the
level of carbon taxation at which half of
maximum efficacy of carbon taxation
programs to reduce the anthropogenic
CO2 emission rate is attained

300 million dollar Assumed

α Removal rate coefficient of atmospheric
CO2 by natural sinks

0.003 month−1 [19]

λ1 Removal rate coefficient of atmospheric
CO2 by forest biomass

0.0001 ton−1 month−1 [19]

ξ Growth rate coefficient of the population
due to the forest biomass

0.000001 ton−1 month−1 Assumed

s Intrinsic growth rate of human population 0.01 month−1 [19]

L Carrying capacity of human population 1000 person [19]

θ Declination rate coefficient of population
due to increase in atmospheric CO2

0.00001 ppm−1 month−1 [19]

φ Deforestation rate coefficient 0.0003 person−1 month−1 [19]

u Intrinsic growth rate of forest biomass 0.2 month−1 [19]

M Carrying capacity of forest biomass 2000 ton [19]

β Maximum efficiency of reforestation
programs to enhance forest biomass

0.2 month−1 Assumed

p Half saturation constant representing the
reforestation programs at which half of
maximum efficiency of reforestation
programs to enhance forest biomass is
attained

400 million dollar Assumed

γ Imposition rate coefficient of carbon tax 0.4 million dollar ppm−1 Assumed

γ0 Declination rate coefficient of carbon tax 0.015 month−1 Assumed

δ1 Implementation rate coefficient of
reforestation programs

1 million dollar ton−1 month−1 Assumed

δ2 Expenditure rate of carbon tax on
reforestation programs

0.001 ton−1 month−1 Assumed

δ0 Declination rate coefficient of
reforestation programs

4 month−1 Assumed

Γ � {(C , N , B, T , R) ∈ R
5
+ : 0 < C ≤ Cm ; 0 ≤ N ≤ Nm ; 0 ≤ B ≤ Bm ; 0 ≤ T ≤ Tm ; 0 ≤ R ≤ Rm},

where Cm � Q+λNm
α

, Nm � L
s (s + ξM), Bm � M , Tm � γ λNm

γ0
and Rm � (δ1+δ2Tm )M

δ0
, which is invariant with respect to system

(1).

Proof From third equation of system (1), we have

dB

dt
≤ uB

(
1 − B

M

)
+

βRB

p + R
.

From the last equation of model system (1), we note that as B increases to M, R becomes zero, suggesting that dB
dt ≤ 0 for B ≥ M .

Thus, B → M for large t > 0.

⇒ lim sup
t→∞

B(t) ≤ M � Bm (say),

From second equation of system (1), we have
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dN

dt
≤ sN − sN 2

L
+ ξNM.

⇒ lim sup
t→∞

N (t) ≤ L

s
(s + ξM) � Nm (say),

From first equation of system (1), we have

dC

dt
≤ Q + λNm − αC.

⇒ lim sup
t→∞

C(t) ≤ Q + λNm

α
� Cm (say),

From fourth equation of system (1), we have

dT

dt
≤ γ λNm − γ0T .

⇒ lim sup
t→∞

T (t) ≤ γ λNm

γ0
� Tm (say),

From fifth equation of system (1), we have

dR

dt
≤ (δ1 + δ2Tm)M − δ0R

⇒ lim sup
t→∞

R(t) ≤ (δ1 + δ2Tm)M

δ0
� Rm (say).

This proves the lemma. �

3.2 Equilibria

An equilibrium point of dynamical system (1) represents the state of the system which does not change with time. The equilibrium
states of system (1) are obtained by putting the rate of change of all dynamical variables with respect to time ′t ′ equal to zero. It is
found that system (1) has four feasible equilibria; three boundary equilibria and one interior equilibrium.

3.2.1 Boundary equilibria

System (1) has three feasible boundary equilibria, which are given below:

1. S1

(
Q
α

, 0, 0, 0, δ1M
δ0

)
always exists.

2. S2

(
Q

α+λ1M
, 0, M , 0, 0

)
always exists.

3. S3(C3, N3, 0, T3, R3) exists provided

s >
θQ

α
, (2)

The existence of the boundary equilibria S1 and S2 are obvious. In the equilibrium S3(C3, N3, 0, T3, R3), the values of C3, N3,
T3 and R3 are found by solving the given set of differential equations:

Q + λ

(
1 − ηT

l + T

)
N − αC � 0, (3)

s

(
1 − N

L

)
− θC � 0, (4)

γ (λN ) − γ0T � 0, (5)

(δ1 + δ2T )M − δ0R � 0. (6)

From the equation (5), we have

T � γ λN

γ0
. (7)
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Using equation (7) in equation (6), we have

R � M

δ0

(
δ1 +

δ2γ λN

γ0

)
. (8)

Using Eq. (7) in Eq. (3), we have

C � 1

α

[
Q + λN

(
lγ0 + γ λN (1 − η)

lγ0 + γ λN

)]
. (9)

Using Eq. (9) in Eq. (4), we have a two degree polynomial in N

âN 2 + b̂N + ĉ � 0 (10)

where â � sγ λ
L + γ λ2θ (1−η)

α
, b̂ � slγ0

L + θλ(lγ0+γ Q)
α

− sγ λ and ĉ � −lγ0

(
s − θQ

α

)
. Clearly, â > 0 and ĉ < 0 provided s − θQ

α
> 0.

Thus, a unique positive root of N , say N3, of Eq. (10) exists provided condition (2) holds. Putting N � N3 in Eqs. (7), (8) and (9),
we get the positive values of T � T3, R � R3 and C � C3, respectively.

3.2.2 Interior equilibrium

The components of interior equilibrium S∗(C∗, N∗, B∗, T ∗, R∗) are obtained by solving the following equations:

Q + λ

(
1 − ηT

l + T

)
N − αC − λ1BC � 0, (11)

s

(
1 − N

L

)
− θC + ξ B � 0, (12)

u

(
1 − B

M

)
− φN +

βR

p + R
� 0, (13)

γ (λN ) − γ0T � 0, (14)

(δ1 + δ2T )(M − B) − δ0R � 0, (15)

From Eq. (14), we have

T � γ λN

γ0
. (16)

Using this value of T in Eqs. (11) and (15), we get

C � 1

α + λ1B

[
Q + λN

(
1 − ηγ λN

lγ0 + γ λN

)]
. (17)

and

R �
(
M − B

δ0

)(
δ1 +

δ2γ λN

γ0

)
. (18)

Using Eq. (17) in Eq. (12), we get the following equation in N and B:

s

(
1 − N

L

)
− θ

α + λ1B

[
Q + λN

(
1 − ηγ λN

lγ0 + γ λN

)]
+ ξ B � 0. (19)

Using Eq. (18) in Eq. (13), we get another equation in N and B as:

u

(
1 − B

M

)
− φN +

β
(
M−B

δ0

)(
δ1 + δ2γ λN

γ0

)

p +
(
M−B

δ0

)(
δ1 + δ2γ λN

γ0

) � 0. (20)

Now to establish the existence of S∗, we plot the isoclines given by Eqs. (19) and (20).
From Eq. (19), we may noted that:

(i) When N � 0, we get the following quadratic equation in B

ξλ1B
2 + (sλ1 + ξα)B + (sα − θQ) � 0,

which has negative roots under the condition (2).
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Fig. 2 Intersection of the isoclines
(19) (shown by red colour) and
(20) (shown by green colour) at a
unique point (B∗, N∗) in the
region Ω ′ � {(B,
N ) ∈ R

2
+ : 0 ≤ B ≤ M , N ≥ 0}

of positive quadrant
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(ii) When B � 0, we get the following equation in N :(
sγ λ

L
+

γ λ2θ (1 − η)

α

)
N 2 −

[(
s − θQ

α

)
γ λ − lγ0

(
s

L
+

λθ

α

)]
N − lγ0

(
s − θQ

α

)
� 0.

This equation has unique positive root, say Na provided the condition (2) holds.
(iii) dN

dB > 0.

Similarly, from Eq. (20), we may noted that:

(i) When N � 0, we get B � M .
(ii) When B � 0, we get the following equation in N :

δ2φγλM

δ0γ0
N 2 −

[
uδ2γ λM

δ0γ0
− φ

(
p +

δ1M

δ0

)
+

βMδ2γ λ

γ0δ0

]
N −

[
u

(
p +

δ1M

δ0

)
+

βMδ1

δ0

]
� 0.

The above equation has unique positive root, say Nb.
(iii) dN

dB < 0.

Now, the isoclines given by (19) and (20) will intersect at a unique point (B∗, N∗) in the region Ω ′ � {(B, N ) ∈ R
2
+ : 0 ≤ B ≤ M ,

N ≥ 0} of positive quadrant as shown in Fig. 2 provided

Nb > Na . (21)

Using the values of N∗ and B∗ in (16), (17) and (18), we get the positive value of T � T ∗, C � C∗ and R � R∗, respectively.
Thus, a unique interior equilibrium S∗ exists under the conditions (2) and (21).

3.3 Local stability analysis

In order to examine the faith of solution trajectories of the system (1) initiating in small neighborhood of the non-negative equilibria
S1, S2, S3 and S∗, the local stability analysis is performed. The local stability analysis tells about the faith of solution trajectories
that initiated close to but not precisely at the equilibrium point. The local stability behavior of equilibrium points is investigated
by determining the sign of the eigenvalues of Jacobian matrix evaluated at the equilibrium points [37] and the following result is
obtained:

Theorem 1 (i) The equilibrium S1 is unstable.
(ii) The equilibrium S2 is unstable whenever S∗ exists.
(iii) The equilibrium S3 is unstable whenever u − φN3 + βR3

p+R3
> 0.
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(iv) The equilibrium S∗ is locally asymptotically stable if and only if conditions stated below hold:

A5 > 0, A1A2 − A3 > 0, A3(A1A2 − A3) − A1(A1A4 − A5) > 0,

A4{A3(A1A2 − A3) − A1(A1A4 − A5)} − A5{A2(A1A2 − A3) − (A1A4 − A5)} > 0. (22)

where A′
i s(i � 1, 2, 3, 4, 5) are defined in the proof.

Proof The variational matrix J for system (1) is given as

J �

⎛
⎜⎜⎜⎜⎝

J11 J12 J13 J14 0
J21 J22 J23 0 0
0 J32 J33 0 J35
0 J42 0 J44 0
0 0 J53 J54 J55

⎞
⎟⎟⎟⎟⎠,

where J11 � −(α + λ1B), J12 � λ
(

1 − ηT
l+T

)
, J13 � −λ1C , J14 � − ληlN

(l+T )2 ,

J21 � −θN , J22 � s
(
1 − 2N

L

) − θC + ξ B, J23 � ξN ,

J32 � −φB, J33 � u
(
1 − 2B

M

) − φN + βR
p+R , J35 � βpB

(p+R)2 ,
J42 � γ λ, J44 � −γ0, J53 � −(δ1 + δ2T ), J54 � δ2(M − B), J55 � −δ0. Let JS1 , JS2 , JS3 and JS∗ denote the variational

matrix J evaluated at S1, S2, S3 and S∗, respectively. Then we have

(i) The eigenvalues of matrix JS1 are −α, s − θQ
α

, u + βδ1M
pδ0+δ1M

, −γ0, −δ0. It is clear that one value is u + βδ1M
pδ0+δ1M

, which is
always positive and hence S1 is always unstable.

(ii) The eigenvalues of JS2 are −(α + λ1M), s − θQ
α+λ1M

+ ξM , −γ0 and the other two values are the roots of the quadratic

equation ψ̂2 + (u + δ0)ψ̂ + uδ0 + βMδ1
p � 0, which are either negative or with negative real part. It is clear that one value of

JS2 is s − θQ
α+λ1M

+ ξM , which is positive whenever S∗ exists. Thus, the equilibria S2 is unstable whenever S∗ exists.

(iii) Two eigenvalues of JS3 are u − φN3 + βR3
p+R3

, −δ0 and the other three eigenvalues are the roots of the characteristic equation

ϕ3 + D1ϕ
2 + D2ϕ + D3 � 0, (23)

where

D1 � sN3

L
+ γ0 + α,

D2 � α

(
sN3

L
+ γ0

)
+
sN3γ0

L
+ θλN3

(
1 − ηT3

l + T3

)
,

D3 � αsN3γ0

L
+ γ0θλN3

(
1 − ηT3

l + T3
− ηlT3

(l + T3)2

)
.

All D′
i s(i � 1, 2, 3) are positive. Also, we find that D1D2 −D3 > 0. Using the Routh-Hurwitz (R-H) criterion, it is concluded

that all roots of equation (23) will fall in left half of the complex plane. Thus, S3 is unstable whenever u − φN3 + βR3
p+R3

> 0.

(iv) The characteristic equation of matrix JS∗ is given as

ψ5 + A1ψ
4 + A2ψ

3 + A3ψ
2 + A4ψ + A5 � 0, (24)

where

A1 � α + λ1B
∗ +

sN∗

L
+
uB∗

M
+ γ0 + δ0,

A2 � (α + λ1B
∗)

(
sN∗

L
+
uB∗

M
+ γ0 + δ0

)
+ (γ0 + δ0)

(
sN∗

L
+
uB∗

M

)
+
sN∗

L

uB∗

M

+ γ0δ0 +
βpB∗

(p + R∗)2 (δ1 + δ2T
∗) + θN∗λ

(
1 − ηT ∗

l + T ∗

)
+ ξN∗φB∗,

A3 � γ0δ0

(
α + λ1B

∗ +
sN∗

L
+
uB∗

M

)
+

(
sN∗

L

uB∗

M
+ ξN∗φB∗

)(
α + λ1B

∗ + γ0 + δ0
)

+ (γ0 + δ0)(α + λ1B
∗)

(
sN∗

L
+
uB∗

M

)
+

βpB∗

(p + R∗)2 (δ1 + δ2T
∗)

(
α + λ1B

∗ +
sN∗

L
+ γ0

)

+ θN∗λ
(

1 − ηT ∗

l + T ∗

)(
uB∗

M
+ δ0

)
+ θN∗λγ0

(
1 − ηT ∗

l + T ∗ − ηlT ∗

(l + T ∗)2

)
+ θN∗φB∗λ1C

∗,
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A4 � γ0δ0

[
(α + λ1B

∗)

(
sN∗

L
+
uB∗

M

)
+
sN∗

L

uB∗

M
+ ξN∗φB∗

]
+ (γ0 + δ0)

[
(α + λ1B

∗)

(
sN∗

L

uB∗

M

+ξN∗φB∗) + θN∗φB∗λ1C
∗] +

βpB∗

(p + R∗)2 (δ1 + δ2T
∗)

[
(α + λ1B

∗)

(
sN∗

L
+ γ0

)
+
sN∗

L
γ0

]

+ θN∗λ
(

1 − ηT ∗

l + T ∗

)(
uB∗

M
δ0 +

βpB∗

(p + R∗)2 (δ1 + δ2T
∗)

)
+ θN∗λγ0

(
uB∗

M
+ δ0

)(
1 − ηT ∗

l + T ∗

− ηlT ∗

(l + T ∗)2

)
− ξN∗γ λ

βpB∗δ2(M − B∗)

(p + R∗)2 ,

A5 � γ0δ0

{
(α + λ1B

∗)

(
sN∗

L

uB∗

M
+ ξN∗φB∗

)
+ θN∗λ1C

∗φB∗
}

− γ λβpB∗δ2(M − B∗)

(p + R∗)2

{(α + λ1B
∗)ξN∗ + θN∗λ1C

∗} +
γ0βpB∗

(p + R∗)2 (δ1 + δ2T
∗)(α + λ1B

∗)
sN∗

L

+ θN∗λγ0

(
uB∗

M
δ0 +

βpB∗(δ1 + δ2T ∗)

(p + R∗)2

)(
1 − ηT ∗

l + T ∗ − ηlT ∗

(l + T ∗)2

)
.

Applying the Routh-Hurwitz criterion, the roots of the characteristic equation (24) are either negative or with negative real
parts iff the conditions given in (22) are satisfied.

�

Remark 1 The conditions stated in (22) give the necessary and sufficient conditions under which the atmospheric concentration of
carbon dioxide, forest biomass and other model variables settle down to a positive equilibrium state as time grows indefinitely if
their initial states are close to the equilibrium state.

3.4 Global stability analysis

In the following, the stability analysis of the interior equilibrium S∗ is extended to the whole region of attraction Γ using the
Lyapunov’s direct method [38]. The basic idea of this method for determining the global stability of equilibrium point is to construct
a scalar valued positive definite function, called Lyapunov function or energy function, that decreases with time along the trajectories
of the system. Using Lyapunov’s direct method, we have obtained some sufficient conditions under which the solution trajectories
of the system (1) initiating inside the region of attraction converge to S∗ as t → ∞. The result regarding the global stability of S∗
is stated in the following theorem:

Theorem 2 The equilibrium S∗, if feasible, is globally asymptotically stable inside the domain Γ if the inequalities given below
are satisfied:

λ2
1Cm

2 <
ξλu

θφM
(α + λ1B

∗)

(
1 − ηT ∗

l + T ∗

)
, (25)

βR2
m

(p + Rm)2(p + R∗)
<

uδ0

M(δ1 + δ2T ∗)
, (26)

max

⎧⎨
⎩

λη2N 2
m

(l + T ∗)2(α + λ1B∗)
,

ξβδ2
2M

2
(

1 − ηT ∗
l+T ∗

)
θφδ0(p + R∗)(δ1 + δ2T ∗)

⎫⎬
⎭ <

8

9

sγ 2
0

θλ2γ 2L

(
1 − ηT ∗

l + T ∗

)
. (27)

Proof Consider the positive definite function V : Γ → R defined as:

V (C , N , B, T , R) � 1

2
(C − C∗)2 + m1

(
N − N∗ − N∗ ln

N

N∗

)
+ m2

(
B − B∗ − B∗ ln

B

B∗

)

+
m3

2
(T − T ∗)2 +

m4

2
(R − R∗)2,

where m1, m2, m3 and m4 are positive constants.
The time derivative of V is given by

V̇ � − (α + λ1B
∗)(C − C∗)2 − m1s

L
(N − N∗)2 − m2u

M
(B − B∗)2 − m3γ0(T − T ∗)2

− m4δ0(R − R∗)2 − λ1C(C − C∗)(B − B∗) +

[
λ

(
1 − ηT ∗

l + T ∗

)
− m1θ

]
(C − C∗)(N − N∗)

− ληlN

(l + T )(l + T ∗)
(C − C∗)(T − T ∗) + (m1ξ − m2φ)(N − N∗)(B − B∗)
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+

(
m2 pβ

(p + R)(p + R∗)
− m4(δ1 + δ2T

∗)

)
(B − B∗)(R − R∗) + m3γ λ(N − N∗)(T − T ∗)

+ m4δ2(M − B)(T − T ∗)(R − R∗).

Choosing m1 � λ
θ

(
1 − ηT ∗

l+T ∗
)

and m2 � m1ξ
φ

� ξλ
θφ

(
1 − ηT ∗

l+T ∗
)

and m4 � m2β
(p+R∗)(δ1+δ2T ∗) � ξλβ

(
1− ηT∗

l+T∗
)

θφ(p+R∗)(δ1+δ2T ∗) , we have

V̇ � − (α + λ1B
∗)(C − C∗)2 − sλ

θL

(
1 − ηT ∗

l + T ∗

)
(N − N∗)2 − ξλu

θφM

(
1 − ηT ∗

l + T ∗

)

(B − B∗)2 − m3γ0(T − T ∗)2 −
ξλβδ0

(
1 − ηT ∗

l+T ∗
)

θφ(p + R∗)(δ1 + δ2T ∗)
(R − R∗)2 − λ1C(C − C∗)(B − B∗)

− ληlN

(l + T )(l + T ∗)
(C − C∗)(T − T ∗) − ξλβR

θφ(p + R)(p + R∗)

(
1 − ηT ∗

l + T ∗

)
(B − B∗)

(R − R∗) + m3γ λ(N − N∗)(T − T ∗) +
ξλβδ2(M − B)

(
1 − ηT ∗

l+T ∗
)

θφ(p + R∗)(δ1 + δ2T ∗)
(T − T ∗)(R − R∗).

Now, V̇ will be negative definite inside Γ under the following inequalities:

λ2
1Cm

2 <
ξλu

θφM
(α + λ1B

∗)

(
1 − ηT ∗

l + T ∗

)
(28)

m3 >
3

2

λ2η2Nm
2

γ0(α + λ1B∗)(l + T ∗)2 (29)

βR2
m

(p + R∗)(p + Rm)2 <
uδ0

M(δ1 + δ2T ∗)
(30)

m3 <
4

3

sγ0

θλγ 2L

(
1 − ηT ∗

l + T ∗

)
(31)

m3 >
3

2

ξλβδ2
2M

2

θφγ0δ0(p + R∗)(δ1 + δ2T ∗)

(
1 − ηT ∗

l + T ∗

)
(32)

From inequalities (29), (31) and (32), we can choosem3 > 0 provided condition (27) holds. Thus, the time derivative of V is negative
definite inside � if conditions (25), (26) and (27) are satisfied. �

Remark 2 The conditions (25)–(27) are the sufficient conditions under which the atmospheric concentration of carbon dioxide and
other model variables settle down to positive equilibrium level.

Remark 3 The conditions (25)–(27) may not hold for large values of λ, λ1, θ and φ, indicating that these parameters may have
destabilizing effect on dynamic behavior of the system (1).

3.5 Analysis of Hopf-bifurcation

It is noted that on increasing the value of deforestation rate coefficient φ, the condition for local stability of interior equilibrium S∗
stated in (22) is violated. Thus, there is a possibility of occurrence of Hopf-bifurcation around the equilibrium S∗ with respect to
the parameter φ. Hopf bifurcation is a local bifurcation described by the appearance of a limit cycle around an equilibrium point of
system accompanied by a sudden change in stability of the equilibrium point as a parameter of system varies [39]. In the following,
we investigate the conditions for the occurrence of Hopf-bifurcation around the equilibrium S∗(C∗, N∗, B∗, T ∗, R∗) by considering
the deforestation rate coefficient of forest biomass ‘φ’ as bifurcation parameter.

Theorem 3 The system (1) experiences Hopf-bifurcation around the equilibrium S∗(C∗, N∗, B∗, T ∗, R∗) atφ � φc if the following
conditions hold:

(i) χ(φc) ≡ {A3(φc) − A1(φc)A2(φc)}{A5(φc)A2(φc) − A3(φc)A4(φc)}
− {A5(φc) − A1(φc)A4(φc)}2 � 0,

(i i) A1(φc) > 0, A1(φc)A2(φc) − A3(φc) > 0, A3(φc) − A1(φc)ω0c > 0,

ω0c � A5(φc) − A1(φc)A4(φc)

A3(φc) − A1(φc)A2(φc)
> 0,

(i i i)
dχ(φ)

dφ

∣∣∣∣
φ�φc

�� 0.
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Proof The characteristic Eq. (24) has purely imaginary roots ψ1, 2 � ±i
√

ω0, ω0 > 0 iff it can be rewritten as

f (ψ) � (ψ2 + ω0)g(ψ) � 0, where g(ψ) � ψ3 + B1ψ
2 + B2ψ + B3. (33)

Thus, we have

f (ψ) � ψ5 + B1ψ
4 + (B2 + ω0)ψ3 + (B3 + B1ω0)ψ2 + B2ω0ψ + B3ω0 � 0. (34)

Equating the coefficients of (24) and (34), we get

A1 � B1, A2 � B2 + ω0, A3 � B3 + B1ω0, A4 � B2ω0, A5 � B3ω0. (35)

For the consistence of above relations, we have

ω2
0 − A2ω0 + A4 � 0, A1ω

2
0 − A3ω0 + A5 � 0. (36)

The elimination of ω2
0 gives

(A3 − A1A2)ω0 � A5 − A1A4. (37)

Thus (24) can be written as

f (ψ) � ψ5 + A1ψ
4 + A2ψ

3 + A3ψ
2 + ω0(A2 − ω0)ψ + ω0(A3 − A1ω0) � 0. (38)

If (A3 − A1A2), (A5 − A1A4) > 0, then from (37), we have

ω0 � ω0c � A5 − A1A4

A3 − A1A2
> 0. (39)

Substituting ω0 � ω0c in (38), we find that (24) and (38) are identical if and only if

χ � (A3 − A1A2)(A5A2 − A3A4) − (A5 − A1A4)2 � 0. (40)

Now, the polynomial

g(ψ) � ψ3 + A1ψ
2 + (A2 − ω0)ψ + A3 − A1ω0 � 0 (41)

does not have zero roots iff

A3 − A1ω0 �� 0. (42)

Now, using Routh-Hurwitz criteria we can infer that all roots of polynomial (41) have negative real parts iff

A1 > 0, A1A2 − A3 > 0, A3 − A1ω0 > 0. (43)

Thus the remaining roots ψ3, 4, 5 of Eq. (34) are either negative or have negative real parts under the condition (43). Now, to show
the existence of Hopf-bifurcation, we need to verify the transversality condition.

The function χ(φ) can be written in the form of Orlando’s formula as:

χ(φ) �(ψ1 + ψ2)(ψ1 + ψ3)(ψ1 + ψ4)(ψ1 + ψ5)(ψ2 + ψ3)(ψ2 + ψ4)(ψ2 + ψ5)

(ψ3 + ψ4)(ψ3 + ψ5)(ψ4 + ψ5). (44)

As χ(φc) is a continuous function, there exists an open interval Iφc � (φc − ε, φc + ε), where ψ1 and ψ2 are complex conjugates for
all φ ∈ Iφc . Let ψ1(φ) � ζ1(φ) + iζ2(φ), ψ2(φ) � ζ1(φ) − iζ2(φ) with ζ1(φc) � 0, ζ2(φc) � √

ω0 > 0 while Re(ψ3, 4, 5(φc)) �� 0.

Then, we have

χ(φ) �2ζ1{(ψ3 + ζ1)2 + ζ 2
2 }{(ψ4 + ζ1)2 + ζ 2

2 }{(ψ5 + ζ1)2 + ζ 2
2 }(ψ3 + ψ4)(ψ3 + ψ5)(ψ4 + ψ5),

χ(φc) �0.

Differentiating χ(φ) with respect to φ and then putting φ � φc, we get[
dχ(φ)

dφ

]
φ�φc

�
[

2(ζ 2
2 + ψ2

3 )(ζ 2
2 + ψ2

4 )(ζ 2
2 + ψ2

5 )(ψ3 + ψ4)(ψ3 + ψ5)(ψ4 + ψ5)
dζ1(φ)

dφ

]
φ�φc

. (45)

Since, at φ � φc, roots ψ3, 4, 5 have negative real part, hence[
dζ1(φ)

dφ

]
φ�φc

�� 0 ⇐⇒
[
dχ(φ)

dφ

]
φ�φc

�� 0. (46)

Thus the Eq. (46) is the transversality condition. Hence the claim. �
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4 Seasonally forced model

The forest plantation programs are subjected to seasonal variations. Thus, we have taken the implementation rate of reforestation
programs δ1 and the expenditure rate of carbon tax on reforestation programs δ2 to vary seasonally. By considering time variation
in δ1 and δ2, system (1) takes the following form:

Ċ � Q + λ

(
1 − ηT

l + T

)
N − αC − λ1BC ,

Ṅ � sN

(
1 − N

L

)
− θCN + ξNB,

Ḃ � uB

(
1 − B

M

)
− φNB +

βRB

p + R
,

Ṫ � γ (λN ) − γ0T ,

Ṙ � (δ1(t) + δ2(t)T )(M − B) − δ0R, (47)

Denote δM1 � maxt>0 δ1(t), δM2 � maxt>0 δ2(t) and δm1 � mint>0 δ1(t), δm2 � mint>0 δ2(t).

Lemma 2 Consider a non-negative, integrable and uniformly continuous function f on [κ , +∞), where κ be a real number, then
limt→+∞ f (t) � 0.

4.1 Global attractivity

Theorem 4 The positive periodic solution of (47), if exists, is unique and globally attractive if ∃ μi > 0(i � 1 − 5) such that the
conditions stated below are satisfied:

μ1Q

e2ρ1
+

μ1λeρ22

e2ρ1
− μ1ληeρ2+ρ4

e2ρ11 (l + eρ44 )
− μ2θ > 0, (48)

μ2s

L
− μ1

{
λ

eρ11
+

ληeρ4

eρ11 (l + eρ44 )

}
− μ3φ − μ4γ λ

eρ44
> 0, (49)

μ3u

M
− μ1λ1 − μ2ξ − μ5δ

M
1

eρ55
− μ5δ

M
2 eρ4

eρ55
> 0, (50)

μ4γ λeρ22

e2ρ4
− μ1

ληleρ2

eρ11 (l + eρ44 )2 − μ5δ
M
2 M

eρ55
− μ5δ

M
2 eρ3

eρ55
> 0, (51)

μ5
δm1 M

e2ρ5
+ μ5

δm2 Meρ44

e2ρ5
− μ5

δM1 eρ3

e2ρ55
− μ5

δM2 eρ3+ρ4

e2ρ55
− μ3βp

(p + eρ55 )2 > 0. (52)

Proof Consider that the system (47) has at least one positive periodic solution (C(t), N (t), B(t), T (t), R(t)). Let

eρ11 ≤ C(t) ≤ eρ1 , eρ22 ≤ N (t) ≤ eρ2 , eρ33 ≤ B(t) ≤ eρ3 , eρ44 ≤ T (t) ≤ eρ4 , eρ55 ≤ R(t) ≤ eρ5 .

Let (C(t), N(t), B(t), T (t), R(t)) be any positive periodic solution of the system (47).
We define a Lyapunov functional as,

V (t) �μ1|lnC(t) − lnC(t)|+μ2|ln N (t) − ln N (t)|+μ3|ln B(t) − ln B(t)|
+ μ4|ln T (t) − ln T (t)|+μ5|ln R(t) − ln R(t)|.

Computing the right hand Dini’s derivatives, we have

D+V (t) �μ1sgn(C(t) − C(t))

[
Ċ(t)

C(t)
− Ċ(t)

C(t)

]
+ μ2sgn(N (t) − N (t))

[
Ṅ (t)

N (t)
− Ṅ (t)

N (t)

]

+ μ3sgn(B(t) − B(t))

[
Ḃ(t)

B(t)
− Ḃ(t)

B(t)

]
+ μ4sgn(T (t) − T (t))

[
Ṫ (t)

T (t)
− Ṫ (t)

T (t)

]

+ μ5sgn(R(t) − R(t))

[
Ṙ(t)

R(t)
− Ṙ(t)

R(t)

]
.
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Now, we have

μ1sgn(C(t) − C(t))

[
Ċ(t)

C(t)
− Ċ(t)

C(t)

]
≤ μ1

[
− Q

C(t)C(t)
|C(t) − C(t)|+ λ

C(t)
|N (t) − N (t)|

− λN (t)

C(t)C(t)
|C(t) − C(t)|+λ1|B(t) − B(t)|

+λη

{
N (t)T (t)

C(t)C(t)(l + T (t))
|C(t) − C(t)|+ T (t)

C(t)(l + T (t))
|N (t) − N (t)|

+
lN (t)

C(t)(l + T )(l + T (t))
|T (t) − T (t)|

}]

μ2sgn(N (t) − N (t))

[
Ṅ (t)

N (t)
− Ṅ (t)

N (t)

]
≤ μ2

[
− s

L
|N (t) − N (t)|+ξ |B(t) − B(t)|

+θ |C(t) − C(t)|]

μ3sgn(B(t) − B(t))

[
Ḃ(t)

B(t)
− Ḃ(t)

B(t)

]
≤ μ3

[
− u

M
|B(t) − B(t)|+φ|N (t) − N (t)|

+
βp

(p + R(t))(p + R(t))
|R(t) − R(t)|

]

μ4sgn(T (t) − T (t))

[
Ṫ (t)

T (t)
− Ṫ (t)

T (t)

]
≤ μ4

[
− γ λN (t)

T (t)T (t)
|T (t) − T (t)|+ γ λ

T (t)
|N (t) − N (t)|

]

μ5sgn(R(t) − R(t))

[
Ṙ(t)

R(t)
− Ṙ(t)

R(t)

]
≤ μ5

[
−δ1(t)(M − B(t))

R(t)R(t)
|R(t) − R(t)|+δ1(t)

R(t)
|B(t) − B(t)|

+
δ2(t)M

R(t)
|T (t) − T (t)|−δ2(t)(M − B(t))T (t)

R(t)R(t)
|R(t) − R(t)|

+
δ2(t)T (t)

R(t)
|B(t) − B(t)|+δ2(t)B(t)

R(t)
|T (t) − T (t)|

]
.

Thus, we have

D+V (t) ≤ −
[

μ1Q

C(t)C(t)
+

μ1λN (t)

C(t)C(t)
− μ1ληN (t)T (t)

C(t)C(t)(l + T (t))
− μ2θ

]
|C(t) − C(t)|

−
[
μ2

s

L
− μ1

{
λ

C(t)
+

ληT (t)

C(t)(l + T (t))

}
− μ3φ − μ4γ λ

T (t)

]
|N (t) − N (t)|

−
[
μ3

u

M
− μ1λ1 − μ2ξ − μ5δ1(t)

R(t)
− μ5δ2(t)T (t)

R(t)

]
|B(t) − B(t)|

−
[

μ4γ λN (t)

T (t)T (t)
− μ1ληlN (t)

C(t)(l + T (t))(l + T (t))
− μ5δ2(t)M

R(t)
− μ5δ2(t)B(t)

R(t)

]
|T (t) − T (t)|

−
[

μ5δ1(t)(M − B(t))

R(t)R(t)
+

μ5δ2(t)MT (t)

R(t)R(t)
− μ5δ2(t)T (t)B(t)

R(t)R(t)
− μ3βp

(p + R(t))(p + R(t))

]
|R(t) − R(t)|.

Therefore,

D+V (t) ≤ − k1|C(t) − C(t)|−k2|N (t) − N (t)|−k3|B(t) − B(t)|
− k4|T (t) − T (t)|−k5|R(t) − R(t)|, (53)

where,

k1 �μ1Q

e2ρ1
+

μ1λeρ22

e2ρ1
− μ1ληeρ2+ρ4

e2ρ11 (l + eρ44 )
− μ2θ ,
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k2 �μ2s

L
− μ1

{
λ

eρ11
+

ληeρ4

eρ11 (l + eρ44 )

}
− μ3φ − μ4γ λ

eρ44
,

k3 �μ3u

M
− μ1λ1 − μ2ξ − μ5δ

M
1

eρ55
− μ5δ

M
2 eρ4

eρ55
,

k4 �μ4γ λeρ22

e2ρ4
− μ1

ληleρ2

eρ11 (l + eρ44 )2 − μ5δ
M
2 M

eρ55
− μ5δ

M
2 eρ3

eρ55
,

k5 �μ5
δm1 M

e2ρ5
+ μ5

δm2 Meρ44

e2ρ5
− μ5

δM1 eρ3

e2ρ55
− μ5

δM2 eρ3+ρ4

e2ρ55
− μ3βp

(p + eρ55 )2 .

If the conditions (48)–(52) hold, then V (t) is monotonically decreasing on [0, ∞). Now integrating the inequality (53) over [0, t], we
get

V (t) +
∫ t

0
[k1|C(t) − C(t)|+k2|N (t) − N (t)|+k3|B(t) − B(t)|+k4|T (t) − T (t)|

+ k5|R(t) − R(t)|]dt ≤ V (0) < ∞, ∀ t ≥ 0.

Using the Lemma 2, we have

lim
t→∞|C(t) − C(t)|� 0, lim

t→∞|N (t) − N (t)|� 0, lim
t→∞|B(t) − B(t)|� 0,

lim
t→∞|T (t) − T (t)|� 0, lim

t→∞|R(t) − R(t)|� 0.

Hence, the positive periodic solution (C(t), N (t), B(t), T (t), R(t)) is globally attractive.
To prove the uniqueness of globally attractive positive periodic solution (C(t), N (t), B(t), T (t), R(t)), we consider that the

system (47) has one more globally attractive solution as (C1(t), N 1(t), B1(t), T 1(t), R1(t)) with period 1. If this solution is
different from (C(t), N (t), B(t), T (t), R(t)), then there exists at least one κ ∈ [0, 1] such that C(κ) �� C1(κ), which means
|C(κ) − C1(κ)|� ε11 > 0. Therefore,

ε11 � lim
n→∞|C(κ + n) − C1(κ + n)|

� lim
t→∞|C(t) − C1(t)|> 0,

which contradicts the fact that the positive periodic solution (C , N , B, T , R) is globally attractive. Hence, C(t) � C1(t) ∀t ∈ [0,
1]. We can use the similar arguments for the remaining components N , B, T and R. Thus, the system (47) has unique globally
attractive positive periodic solution. �

5 Numerical simulations

5.1 Simulation of system (1)

To show the impact of integrated carbon taxation-reforestation policy on the atmosphericCO2 and forest biomass, we have performed
numerical simulations using the software environment MATLAB. MATLAB ode solver ‘ode45’ is used to integrate the system of
differential equations (1) [40]. Unless until stated the parameter values in figures will be same as in Table 1. For the given set of
parameter values, the eigenvalues of the variational matrix ′ J ′ corresponding to the interior equilibrium S∗ are given by −3.95993,
−0.138065, −0.06631, −0.026177 and −0.012615. Here, we can see that all eigenvalues of JS∗ are negative, which means that the
interior equilibrium S∗ of the system (1) is locally asymptotically stable. The non-linear stability of S∗ in C − B− R space is shown
in Fig. 3 by taking the parameter values same as in Table 1 except λ � 0.005, φ � 0.00008, λ1 � 0.000001 and θ � 0.000001.

From this figure, we may see that the solution trajectories starting at any point inside the region ′Γ ′ are approaching to S∗, showing
the non-linear stability behavior of the interior equilibrium S∗ of system (1) in C − B − R space.

Figure 4 depicts that an increase in the efficacy of carbon taxation policy to cut down the anthropogenic CO2 emission rate i.e., η
causes a decline in equilibrium CO2 levels. A decrease in half saturation constant l representing the level of carbon taxation at which
half of maximum possible reduction in CO2 emission rate is attained via CO2 taxation causes decline in the equilibrium CO2 level.
This shows that the taxation policies which leads to higher cuts in CO2 emission rate at low taxation levels are more beneficial to
control atmospheric CO2 concentration. In Fig. 5, we have drawn contour lines depicting changes in equilibrium CO2 concentration
C∗ and forest biomass B∗ on varying the imposition rate of carbon tax γ and CO2 emission rate from human sources λ at a time.
It can be seen that the CO2 settles to low level for high values of imposition rate of carbon tax γ and low values of CO2 emission
rate λ. The equilibrium CO2 level rises with the rise in anthropogenic CO2 emission rate, while it declines with the increase in the
imposition rate of carbon tax. The second plot of Fig. 5 shows that forest biomass settles to high level for high values of λ and
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Fig. 3 Non-linear stability of
equilibrium S∗ of system (1) in
C − B − R space. Other
parameters take same values as
specified in Table 1 except
λ � 0.005, φ � 0.00008,
λ1 � 0.000001 and θ � 0.000001

Fig. 4 Variations of atmospheric carbon dioxide with time for different values of η and l for system (1). The other parameters take same values as specified
in Table 1

γ . This happens because a part of carbon tax which is imposed on anthropogenic CO2 emission is invested in reforestation which
cause increase in forest biomass.

In Fig. 6, we have plotted the contour lines of equilibrium values C∗, B∗, T ∗, and R∗ by varying the implementation rate of
reforestation programs δ1 and expenditure rate of carbon tax on reforestation programs δ2 at a time. This figure depicts a reduction in
equilibrium CO2 concentration and upsurge in equilibrium levels of forest biomass, carbon tax and reforestation programs with an
increase in δ1 and δ2. It can be observed that for high values of δ1 and δ2, the impact of increments in their value over the reduction
in C∗ and increment in B∗ is low in comparison to the scenario when δ1 and δ2 are low. This shows that the impact of increase in δ1

and δ2 on B∗ and C∗ saturates at high values of δ1 and δ2. Fig. 7 depicts the contour plots of equilibrium levels of CO2 C∗ and forest
biomass B∗ as a function of maximum efficiency of reforestation programs to enhance forest biomass (β) and deforestation rate
coefficient (φ). This figure depicts that on increasing the value of β and decreasing the value of φ, C∗ decreases while B∗ increases.
Fig. 8 is drawn to show the time evolutions of carbon dioxide and forest biomass in different carbon taxation and reforestation
scenarios. From this figure, we can observe that in comparison to the scenario in which only reforestation programs are implemented
and the scenario in which carbon taxation is not used to boost the reforestation rate, the increment in equilibrium level of forest
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Fig. 5 Contour plots of equilibrium level of a carbon dioxide (i.e. C∗) and b forest biomass (i.e. B∗) as functions of imposition rate of carbon tax γ and per
capita anthropogenic emission rate λ for system (1). The other parameters take same values as specified in Table 1

biomass and decline in equilibrium level of CO2 is more in the scenario when an integrated carbon taxation-reforestation programs
is used. This shows that integration of carbon taxation and reforestation policy to boost the implementation rate of reforestation
efforts is beneficial to bring down the atmospheric CO2 levels.

5.1.1 Sensitivity analysis

To study the effect of changes in the parameters η, β, γ , δ1 and δ2 on the state variables of system (1), we performed the basic
sensitivity analysis of differential equations for the same set of parameter values given in Table 1 following Bortz and Nelson [41].
The sensitivity systems with respect to the parameters η, β, γ , δ1 and δ2 are given by

Ċη(t , η) �λNη(t , η) − ληT (t , η)

l + T (t , η)
Nη(t , η) − ληlN (t , η)

(l + T (t , η))2 Tη(t , η) − λT (t , η)N (t , η)

l + T (t , η)

− αCη(t , η) − λ1B(t , η)Cη(t , η) − λ1C(t , η)Bη(t , η),

Ṅη(t , η) �sNη(t , η) − 2s

L
N (t , η)Nη(t , η) − θC(t , η)Nη(t , η) − θN (t , η)Cη(t , η)

+ ξN (t , η)Bη(t , η) + ξ B(t , η)Nη(t , η),

Ḃη(t , η) �uBη(t , η) − 2u

M
B(t , η)Bη(t , η) − φN (t , η)Bη(t , η) − φB(t , η)Nη(t , η)

+
βR(t , η)

p + R(t , η)
Bη(t , η) +

βpB(t , η)

(p + R(t , η))2 Rη(t , η),

Ṫη(t , η) �γ λNη(t , η) − γ0Tη(t , η),

Ṙη(t , η) � − δ1Bη(t , η) + δ2MTη(t , η) − δ2T (t , η)Bη(t , η) − δ2B(t , η)Tη(t , η)

− δ0Rη(t , η),

Ċβ (t , β) �λNβ (t , β) − ληT (t , β)

l + T (t , β)
Nβ (t , β) − ληlN (t , β)

(l + T (t , β))2 Tβ (t , β) − αCβ (t , β)

− λ1B(t , β)Cβ (t , β) − λ1C(t , β)Bβ (t , β),

Ṅβ (t , β) �sNβ (t , β) − 2s

L
N (t , β)Nβ (t , β) − θC(t , β)Nβ (t , β) − θN (t , β)Cβ (t , β)

+ ξN (t , β)Bβ (t , β) + ξ B(t , β)Nβ (t , β),

Ḃβ (t , β) �uBβ (t , β) − 2u

M
B(t , β)Bβ (t , β) − φN (t , β)Bβ (t , β) − φB(t , β)Nβ (t , β)
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Fig. 6 Contour plots of equilibrium levels of a atmospheric carbon dioxide, b forest biomass, c carbon tax and d reforestation programs as functions of δ1
and δ2 for system (1). The other parameters take same values as specified in Table 1

+
βR(t , β)

p + R(t , β)
Bβ (t , β) +

βpB(t , β)

(p + R(t , β))2 Rβ (t , β) +
R(t , β)B(t , β)

p + R(t , β)
,

Ṫβ (t , β) �γ λNβ (t , β) − γ0Tβ (t , β),

Ṙβ (t , β) � − δ1Bβ (t , β) + δ2MTβ (t , β) − δ2T (t , β)Bβ (t , β) − δ2B(t , β)Tβ (t , β)

− δ0Rβ (t , β),

Ċγ (t , γ ) �λNγ (t , γ ) − ληT (t , γ )

l + T (t , γ )
Nγ (t , γ ) − ληlN (t , γ )

(l + T (t , γ ))2 Tγ (t , γ ) − αCγ (t , γ )

− λ1B(t , γ )Cγ (t , γ ) − λ1C(t , γ )Bγ (t , γ ),

Ṅγ (t , γ ) �sNγ (t , γ ) − 2s

L
N (t , γ )Nγ (t , γ ) − θC(t , γ )Nγ (t , γ ) − θN (t , γ )Cγ (t , γ )

+ ξN (t , γ )Bγ (t , γ ) + ξ B(t , γ )Nγ (t , γ ),

Ḃγ (t , γ ) �uBγ (t , γ ) − 2u

M
B(t , γ )Bγ (t , γ ) − φN (t , γ )Bγ (t , γ ) − φB(t , γ )Nγ (t , γ )

+
βpB(t , γ )

(p + R(t , γ ))2 Rγ (t , γ ) +
βR(t , γ )

p + R(t , γ )
Bγ (t , γ ),
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Fig. 7 Contour plots of equilibrium level of a carbon dioxide (i.e. C∗) and b forest biomass (i.e. B∗) as functions of maximum efficiency of reforestation
programs to enhance forest biomass β and deforestation rate coefficient φ for system (1). The other parameters take same values as specified in Table 1

Fig. 8 Time evolutions of carbon dioxide and forest biomass in different carbon taxation and reforestation scenarios. The red solid lines represent the scenario
when carbon taxation-reforestation policy is not applied (i.e. system (1) with η � 0, l � 0, β � 0, p � 0, γ � 0, γ0 � 0, δ0 � 0, δ1 � 0,and δ2 � 0),
the green dash-dotted lines represent the scenario when only the reforestation policy is applied (i.e. system (1) with η � 0, l � 0, γ � 0, γ0 � 0, and
δ2 � 0), the blue dashed lines represent the scenario when non-integrated taxation-reforestation policy is applied (i.e. system (1) with δ2 � 0), and the black
lines with cross markers represent the scenario when integrated taxation-reforestation policy is applied. The other parameters take same values as specified
in Table 1
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Ṫγ (t , γ ) �γ λNγ (t , γ ) + λN (t , γ ) − γ0Tγ (t , γ ),

Ṙγ (t , γ ) � − δ1Bγ (t , γ ) + δ2MTγ (t , γ ) − δ2T (t , γ )Bγ (t , γ ) − δ2B(t , γ )Tγ (t , γ )

− δ0Rγ (t , γ ),

Ċδ1 (t , δ1) �λNδ1 (t , δ1) − ληT (t , δ1)

l + T (t , δ1)
Nδ1 (t , δ1) − ληlN (t , δ1)

(l + T (t , δ1))2 Tδ1 (t , δ1) − αCδ1 (t , δ1)

− λ1B(t , δ1)Cδ1 (t , δ1) − λ1C(t , δ1)Bδ1 (t , δ1),

Ṅδ1 (t , δ1) �sNδ1 (t , δ1) − 2s

L
N (t , δ1)Nδ1 (t , δ1) − θC(t , δ1)Nδ1 (t , δ1) − θN (t , δ1)Cδ1 (t , δ1)

+ ξN (t , δ1)Bδ1 (t , δ1) + ξ B(t , δ1)Nδ1 (t , δ1),

Ḃδ1 (t , δ1) �uBδ1 (t , δ1) − 2u

M
B(t , δ1)Bδ1 (t , δ1) − φN (t , δ1)Bδ1 (t , δ1) − φB(t , δ1)Nδ1 (t , δ1)

+
βpB(t , δ1)

(p + R(t , δ1))2 Rδ1 (t , δ1) +
βR(t , δ1)

p + R(t , δ1)
Bδ1 (t , δ1),

Ṫδ1 (t , δ1) �γ λNδ1 (t , δ1) − γ0Tδ1 (t , δ1),

Ṙδ1 (t , δ1) �M − B(t , δ1) − δ1Bδ1 (t , δ1) + δ2MTδ1 (t , δ1) − δ2T (t , δ1)Bδ1 (t , δ1) − δ2B(t , δ1)Tδ1 (t , δ1)

− δ0Rδ1 (t , δ1),

and

Ċδ2 (t , δ2) �λNδ2 (t , δ2) − ληT (t , δ2)

l + T (t , δ2)
Nδ2 (t , δ2) − ληlN (t , δ2)

(l + T (t , δ2))2 Tδ2 (t , δ2) − αCδ2 (t , δ2)

− λ1B(t , δ2)Cδ2 (t , δ2) − λ1C(t , δ2)Bδ2 (t , δ2),

Ṅδ2 (t , δ2) �sNδ2 (t , δ2) − 2s

L
N (t , δ2)Nδ2 (t , δ2) − θC(t , δ2)Nδ2 (t , δ2) − θN (t , δ2)Cδ2 (t , δ2)

+ ξN (t , δ2)Bδ2 (t , δ2) + ξ B(t , δ2)Nδ2 (t , δ2),

Ḃδ2 (t , δ2) �uBδ2 (t , δ2) − 2u

M
B(t , δ2)Bδ2 (t , δ2) − φN (t , δ2)Bδ2 (t , δ2) − φB(t , δ2)Nδ2 (t , δ2)

+
βpB(t , δ2)

(p + R(t , δ2))2 Rδ2 (t , δ2) +
βR(t , δ2)

p + R(t , δ2)
Bδ2 (t , δ2),

Ṫδ2 (t , δ2) �γ λNδ2 (t , δ2) − γ0Tδ2 (t , δ2),

Ṙδ2 (t , δ2) � − δ1Bδ2 (t , δ2) + δ2MTδ2 (t , δ2) + MT (t , δ2) − δ2T (t , δ2)Bδ2 (t , δ2) − δ2B(t , δ2)Tδ2 (t , δ2)

− T (t , δ2)B(t , δ2) − δ0Rδ2 (t , δ2),

respectively. Here, the semi-relative sensitivity function ofX with respect to the parameterw is given by Xw(t , w) � ∂
∂w

X (t , w). The
semi-relative sensitivity solutions are calculated by multiplying the sensitivity functions by the parameter w i.e., wXw(t , w). The
semi-relative sensitivity solution gives the information about the change in the state variables when a parameter value is doubled. To
show the impact of doubling of parameters η, β, γ , δ1 and δ2 on the state variables, semi- relative sensitivity solutions are plotted
in Fig 9 for the time period of 100 months. The first plot in Fig. 9 shows that the positive perturbations in the parameters η, β, γ ,
δ1 and δ2 have negative impact on the atmospheric carbon dioxide concentration. A doubling of the parameters η, β and γ lead to
decrease of 60.043 ppm, 149.434 ppm and 40.6334 ppm, respectively, in CO2 concentration, while the doubling of parameters δ1

and δ2 lead to decrease of 32.5985 ppm and 31.4580 ppm, respectively, in CO2 concentration over the period of 100 months. The
second plot in Fig. 9 shows that the positive perturbations in the parameters η, β, γ , δ1 and δ2 have positive impact on the human
population. The third plot in Fig. 9 shows that the positive perturbations in the parameters β, γ , δ1 and δ2 have positive impact on
the forest biomass, while the positive perturbation in η has negative impact on forest biomass. A doubling of the parameters β, γ ,
δ1, δ2 lead to increase of 570.2917, 95.1760, 124.0634 and 119.6411 million tons, respectively, in the biomass, while the doubling
of parameter η lead to decrease of 59.120 million tons, respectively, in the biomass over the period of 100 months. The fourth plot
in Fig. 9 shows that the positive perturbations in all the parameters η, β, γ , δ1 and δ2 have positive impact on the carbon taxation.
The fifth plot in Fig. 9 shows that the positive perturbations in the parameters η, γ , δ1 and δ2 have positive impact on the measure
of reforestation programs while the positive perturbation in β has negative impact on the measure of reforestation programs. The
variables C(t), N(t), B(t) and R(t) are most sensitive to changes in the parameter β while T (t) is most sensitive to the changes in
the parameter γ . The sensitivity analysis shows that the parameter β is more influential parameter than η, γ , δ1 and δ2 in respect
to the control of carbon dioxide concentrations and increment in the forest biomass. This suggests that the selection of reforestation
policies greatly influence the carbon dioxide concentrations in the atmosphere.
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Fig. 9 Semi-relative sensitivity solutions for the state variables of system (1) with respect to parameters η, β, γ , δ1 and δ2

5.1.2 Bifurcation results

It is observed that the variations in the deforestation rate φ, may significantly influence the dynamical behaviour of system (1).
It is found that for φ ∈ (0, φc), system (1) exhibits a stable positive equilibrium state S∗. At φ � φc, positive equilibrium state
S∗ losses stability and periodic oscillations arise via Hopf-bifurcation. The Hopf-bifurcation threshold value is computed to be
φc � 0.0008943. The variation of C(t), N (t), B(t), T (t) and R(t) with respect to time t for φ < φc is shown in Fig. 10. This
figure illustrates that when φ < φc, all the state variables settle to equilibrium values showing that positive equilibrium state
S∗ is stable. Further, in Fig. 11, we can see that if φ > φc, system show sustained oscillations around equilibrium S∗. These
periodic oscillations may die out and positive equilibrium state S∗ again becomes stable if we increase the maximum efficacy of
reforestation programs to enhance forest biomass β. Fig. 12 depicts that all the variables of system (1) attain their equilibrium
values for φ � 0.0009(> φc) and β � 0.35. This means that increment in the maximum efficacy of reforestation programs to
enhance forest biomass β exert stabilizing effect of system’s dynamics and may cause the interior equilibrium S∗ to switch from
instablity to stability. In order to present a more clear glimpse of the impact of changes in parameters φ and β on the dynamics
of system 1, we have drawn the bifurcation diagrams of the system by taking φ and β as bifurcation parameters in Figs. 13 and
14 respectively. From Fig. 13, it can be easily seen that when φ < φc, a stable interior equilibrium exists but as φ passes through
φc, the interior equilibrium losses stability and periodic oscillations of increasing amplitude developed around interior equilibrium
through Hopf-bifurcation. The amplitude of the periodic oscillations declines as the value of β increases. Figure 14 presents the
bifurcation diagram of the system by taking β as bifurcation parameter for φ � 0.001(> φc) . From this figure, it is evident that
increment in β decreases the amplitude of periodic oscillations that exist for high deforestation rates and after a critical threshold, the
periodic oscillations die out and all the variables of system (1) approach their equilibrium values. Thus, we conclude that plantation
of plants having high biomass production may not only reduce the atmospheric CO2 concentration but may also aid in stabilization
of atmospheric carbon dioxide concentrations.
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Fig. 10 Time variations of variables of system (1) for φ=0.0003. The other parameters take same values as specified in Table 1

Fig. 11 Time variations of variables of system (1) for φ=0.0009. The other parameters take same values as specified in Table 1
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Fig. 12 Time variations of variables of system (1) for φ=0.0009 and β=0.35. The other parameters take same values as specified in Table 1

Fig. 13 Bifurcation diagrams of system (1) with respect to φ. The other parameters take same values as in Table 1. In this figure, red and blue dots represent
the maximum and minimum value of oscillation cycles, respectively

5.2 Simulation of system (47)

To depict the effect of seasonality in plantation efforts on the dynamics of forest biomass and CO2 levels, we have simulated the
nonautonomous system (47) by taking the seasonally forced parameters δ1(t) and δ2(t) of the form:

δ1(t) � δ1 + δ11 sin ωt and δ2(t) � δ2 + δ22 sin ωt
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Fig. 14 Bifurcation diagrams of system (1) with respect to β at φ � 0.001(> φc). The other parameters take same values as in Table 1. In this figure, red
and blue dots represent the maximum and minimum value of oscillation cycles, respectively

Fig. 15 Time series of C(t), B(t) and R(t) for system (47) at δ11 � 0.1, δ22 � 0.0001 and ω � 2π/12. The other parameters take same values as in Table 1

with a period of 12 months. The benefit of considering the above form of δ1 and δ2 is that they encompass both high and low seasons
corresponding to positive and negative values of sin ωt , respectively. Here, parameters δ11(0 < δ11 < δ1) and δ22(0 < δ22 < δ2)
decide the strength of seasonal forcing in δ1(t) and δ2(t), respectively. We have plotted the solution trajectories for the nonautonomous
system (47) in Fig. 15 by taking the same set of parameter values specified in Table 1 and δ11 � 0.1, δ22 � 0.0001, ω � 2π/12.
This figure shows the periodic oscillations in the non-autonomous system (47), whereas the corresponding autonomous system (1)

123



  552 Page 24 of 27 Eur. Phys. J. Plus         (2023) 138:552 

Fig. 16 Time series of (a) atmospheric carbon dioxide and forest biomass for system (1) and (b) atmospheric carbon dioxide and forest biomass for system
(47) at δ11 � 0.1, δ22 � 0.0001 and ω � 2π/12 for different initial starts. The other parameters take same values as in Table 1

shows a stable solution (see Fig. 10). Figure 16a and b depict the time evolutions of atmospheric carbon dioxide and forest biomass
for three different initial starts for the autonomous system (1) and the non-autonomous system (47) respectively. From the Fig. 16a,
it can be noted that for autonomous system, carbon dioxide and forest biomass settle to an equilibrium level irrespective of the initial
start, showing the stability of interior equilibrium state of system (1). Figure 16b shows that for the non-autonomous system (47),
the solutions initiating from three different initial values converge to a single periodic solution, showing that the system (47) exhibits
a globally attractive positive periodic solution. This shows that the inclusion of seasonality in the system cause the translation of the
system from having a globally stable interior equilibrium to have a global attractive periodic solutions. Thus, seasonality in plantation
programs cause sustained oscillations in the forest biomass and atmospheric carbon dioxide levels. In Fig. 17, we set φ � 0.0009,
at which the autonomous system (1) shows a simple periodic solution (see Fig. 11) and consider seasonality in δ1 and δ2. It can be
seen that for φ � 0.0009, the non-autonomous system shows higher periodic solutions. This shows that the enhancement in the
deforestation rate affects the global stability of the nonautonomous system and may lead to generation of higher periodic solutions.
The existence of the higher periodic oscillation makes it difficult to predict the future levels of carbon dioxide and forest biomass.

6 Conclusion

Restoring the forest cover can aid in mitigating the climate changes caused by the increase in carbon dioxide levels in the atmosphere.
However, several economic and geographical constraints limit the large-scale implementation of reforestation programs. Carbon
taxation is another crucial strategy adopted by policymakers that aids to limit anthropogenic carbon dioxide emissions from the point
source. A part of the money generated via carbon taxation may be used to boost the implementation rate of plantation programs.
Thus, an integrated carbon taxation-reforestation policy may be a better option to control atmospheric CO2 levels by cutting down
anthropogenic CO2 emissions and overcoming the economic constraints that existed in large-scale plantation programs. This paper
presents a mathematical framework to evaluate the effect of integrated carbon taxation-reforestation policy on the mitigation of
atmospheric CO2. The model is formulated by considering five dynamical variables namely, atmospheric concentration of CO2,
human population, forest biomass, carbon tax and reforestation programs. To model the phenomenon, we have assumed that the
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Fig. 17 Time series of C(t), B(t) and R(t) for system (47) at δ11 � 0.1, δ22 � 0.0001 and ω � 2π/12. The other parameters take same values as in Table 1
except φ � 0.0009

carbon tax is implemented on the anthropogenic CO2 emissions and a part of the money generated via taxation is invested to
accelerate the reforestation programs. The qualitative analysis of the model is presented and the local and global stability conditions
of the system’s equilibria are investigated. Our analysis reveals that increasing the implementation rates of reforestation programs
and carbon taxation causes declination in equilibrium CO2 levels. It is evident that deforestation rate coefficient ‘φ’ may affect the
stability of positive equilibrium state S∗ of system (1). It is found that an increase in deforestation rate beyond a threshold value φc

destabilizes the positive equilibrium state S∗ and system enters into sustained oscillations around S∗. This shows that if deforestation
rate exceeds the Hopf-bifurcation threshold φc, the concentration of carbon dioxide and other model variables will not settle to the
equilibrium state but oscillates about the equilibrium level. The amplitude of the periodic oscillations grows as the deforestation
rate increase. It is observed that an increment in the maximum efficacy of reforestation programs to enhance forest biomass ‘β’
can dampen the periodic oscillations and above a threshold value of ‘β’, periodic oscillations die out and system gets stabilized to
a positive equilibrium state. This suggests that reforestation programs that focus on plantation of fast-growing trees high biomass
production not only contributes to reduction in atmospheric CO2 levels but also aids in stabilization of system. It is found that
integration of carbon taxation and reforestation programs to boosts the reforestation rate bringing more increment in equilibrium
level of forest biomass and decline in equilibrium level of CO2 in comparison to the scenario in which only reforestation programs
are implemented and the scenario in which carbon taxation is not used to boost the reforestation rate.

We have extended our model to examine the effect of seasonal variations in the application of reforestation efforts on the
system’s dynamics by considering the implementation rate coefficient of reforestation programs and expenditure rate of carbon tax
on reforestation programs as a periodic function of time having a period of 12 months. The conditions for the global attractivity
of positive periodic solutions of the nonautonomous system are derived. Numerical simulation illustrates that the nonautonomous
system possesses globally attractive positive periodic solutions whenever the corresponding autonomous system exhibits stable
dynamics. It is found that the high deforestation rates can alter the global attractivity of the periodic solution and the nonautonomous
system may show higher periodic solutions at critically high deforestation rates. It is shown that the solution trajectories of the
system (47) for different initial starts, when the deforestation rate φ is less than the threshold value φc, converge to a unique
periodic solution. This depicts that for a range of deforestation rate, the positive periodic solution is globally asymptotically stable.
However, if the deforestation rate is increased above a threshold value, then the system (47) exhibits higher periodic oscillations.
Thus, it can be concluded that the high deforestation rate together with the seasonal forcing in application of reforestation efforts
is responsible for the generation of higher periodic solution that was absent in the autonomous system. The existence of higher
periodic oscillation in the system makes it difficult to predict the future atmospheric level of carbon dioxide and consequently
the formulation and implementation of effective reforestation-taxation policy becomes a tedious job. The outcomes of the present
investigation suggest that the application of reforestation efforts and carbon tax act as effective control parameters by reducing
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the equilibrium level of carbon dioxide. An increase in the efficiency of reforestation programs to increase the forest biomass can
alter the prevalence of limit cycle oscillations induced by the high deforestation rate and ultimately lead the system to settle to a
stable state. Moreover, the deforestation rate and seasonal variations in the application of reforestation efforts have synergism effect
for inducing higher periodic oscillations in the system. For the formulation of an effective integrated carbon taxation-reforestation
policy the effects of deforestation rate and seasonal variations in the application of reforestation efforts must be taken into account.
Overall, the present study provides a mathematical framework to identify the carbon taxation-reforestation policies for the control
of atmospheric CO2 levels. However, there are several limitations in the current modeling work. One of the main limitations of
current modeling framework is that the energy factors and macroeconomic factors that influence carbon tax pricing have not been
taken into account. The present work can be extended to include the impact of energy factors and macroeconomic factors on the
carbon taxation.
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