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Abstract We report bound-state solutions of the Klein–Gordon equation with a novel combined potential, the Eckart plus a class of
Yukawa potential, by means of the parametric Nikiforov–Uvarov method. To deal the centrifugal and the coulombic behavior terms,
we apply the Greene–Aldrich approximation scheme. We present any �-state energy eigenvalues and the corresponding normalized
wave functions of a mentioned system in a closed form. We discuss various special cases related to our considered potential which
are utility for other physical systems and show that these are consistent with previous reports in literature. Moreover, we calculate the
non-relativistic thermodynamic quantities (partition function, mean energy, free energy, specific heat and entropy) for the potential
model in question, and investigate them for a few diatomic molecules. We find that the energy eigenvalues are sensitive with regard
to the quantum numbers nr and � as well as the parameter δ. Our results show that energy eigenvalues are more bounded at either
smaller quantum number � or smaller parameter δ.

1 Introduction

Nuclei, atoms and molecules, etc., are bombarded with beams of high-energy particles to understand experimentally structure and
interactions. As it is well-known, these are called scattering experiments. However, theoretical works are conducted by solving
the non-relativistic or the relativistic wave equations for a known potential. For a quantum system to be accurately described, an
analytical solution must be obtained in the form of a wave function that includes all the important properties [1–6]. On other hand,
the dynamical behavior of any particle moving at relativistic velocities is described by relativistic quantum mechanics (QM), which
present a base in obtaining the energy momentum of fine structure of a hydrogen-like atom. Also, for the quantum systems which
put the particles into a condition with a stronger potential field, the relativistic effects become important and thus the non-relativistic
case needs to be added a correction. In the relativistic QM, the motion of the scalar particles, spin-0 particles, are described by
the Klein–Gordon (KG) equation [7–10]. Furthermore, the KG equation is suitable for the relativistic particles subject to a general
Lorentz scalar and vector potentials. In this regard, the analytical solutions of KG equation for the interaction potential models play
an important role in view of relativistic QM.

Many techniques have been developed to solve both non-relativistic and relativistic wave equations with some physical potentials.
The following are some of them: Shifted 1/N expansion method [11, 12], Hartree–Fock method [13], perturbation theory [14], the
path integral method [15], factorization [16], supersymmetry QM (SUSYQM) [17–19], Nikiforov–Uvarov (NU) method [20], and
asymptotic iteration method [21]. Among them, the NU method has attracted great interest, and its different versions such as the
parametric NU method and [22] NU functional analysis (NUFA) method [23] have been developed for this method to be applied
easily. By using this technique, many works have been carried out to solve the KG equation with some familiar potentials as
follows: Yukawa potential [24–26], Manning–Rosen potential [27, 28], Wood–Saxon potential [29–31], Hulthén potential [32, 33],
generalized Hulthén potential [34–36], generalized hyperbolic potential [37], Deng–Fan molecular potentials [38, 39], inversely
quadratic Hellman potential [40] and Kratzer potential [41] and similarly for the case of combined potentials like Hulthén plus Yukawa
potential [42–44], Manning–Rosen plus a class of Yukawa [45], Hellmann plus modified Kratzer potential [46], and Mobius squared
plus Eckart potential [47], etc.

In regard to enriching the previous attempts, in this study, we propose a novel combined potential model, the Eckart potential plus
a class of Yukawa potential, for the first time, in order to calculate the bound state solutions of KG equation. This potential model
could be utilized to describe an interaction system which includes the bound and continuum states, and hence can be implemented
in the various branches such as atom, molecular, nuclear and particle physics.
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The Eckart potential [48] is defined as

VEP(r ) � − V1e−r/b

1 − e−r/b
+

V2e−r/b

(
1 − e−r/b

)2 , (V1, V2 > 0), (1.1)

with the potential range parameter b. Here, V1 and V2 stand for the potential strength parameters. The first part of this potential has a
coulomb-like behavior at small values of r, while it decreases exponentially for large values of r so that its effect on bound states is

smaller compared to the Coulomb potential [49]. This potential has a minimum value of VEP(r0) � − (V1−V2)2

4V2
at r0 � a ln

(
V1+V2
V1−V2

)

for V1 > V2. Also, its second derivative with respect to r at r � r0 leads to the force constant as follows:

d2VEP

dr2

∣
∣∣
∣
r�r0

�
(
V 2

1 − V 2
2

)2

8V 2
1 V 3

2

. (1.2)

Arbitrary l-state solutions of the Eckart-type potential have been earlier presented in Refs. [50–52].
On the other hand, we also take into account a class of Yukawa potential given as

VCYP(r ) � − V3e−δr

r
− V4e−2δr

r2 , (1.3)

with the screening parameter δ. The first part of this potential represents pure the Yukawa potential [53] which can be used for
explaining the interactions between nucleons. The potential is monotonically increasing with r and it is negative, implying the force
is attractive. In plasma physics, it can be used to describe a charged particle in a weakly non-ideal plasma, and also in electrolytes
and colloids, which is also called as the Debye–Hückel potential. The second part is the inversely quadratic Yukawa potential.

The potentials VEP and VCYP have a Coulombic behavior for small values of r but then decrease exponentially when r gets larger.
On the other words, they are the screened Coulomb potentials in simple notation. A linear combination of them can be used to
examine the deformed-pair interactions of the nucleus and spin-orbit coupling inside the potential fields. An additional fascinating
aspect of the combined potential is that it can be utilized to determine the vibrations of the hadronic systems and create a suitable
model for other physical phenomena. Based on the above motivations and previous studies, in this work, we propose the following
combined potential model, Eckart plus a class of Yukawa potential:

VECYP(r ) � VEP(r ) + VCYP(r )

� − V1e−r/b

1 − e−r/b
+

V2e−r/b

(
1 − e−r/b

)2 − V3e−δr

r
− V4e−2δr

r2 .
(1.4)

Our aim is to examine it later inside a large quantum system. To this end, we implement the parametric NU method to the problem
and use a developed approximation scheme to deal with the coulombic behavior and centrifugal terms. We present the energy
eigenvalues and the normalized wave functions for arbitrary �-states. We also discuss the some special cases by comparing them
with the results of the previous works. Furthermore, we provide the thermodynamic quantities of partition function, mean energy,
free energy, specific heat and entropy at non-relativistic limit for the potential model in question.

We organize this article in the following: In Sect. 2, we derive the time-independent KG equation with the Eckart plus the class of
Yukawa potential. In Sect. 3, we summarize the parametric NU method. In Sect. 4, the bound-state solutions of the derived equation
are provided via the parametric NU method. In Sect. 5, we present the energy spectrum of some special cases. In Sect. 6, we provide
the thermodynamic properties of the considered system at the nonrelativistic limit. Next, in Sect. 7, we give the numerical results
for the bound state solutions and thermodynamic quantities. Finally, in Sect. 8, we summarize our results.

2 Governing equation

The KG equation consists of two different terms: The scalar rest mass M and the four-vector momentum operator Pμ, hence two
types of potential coupling could be included in it. The first type is a scalar potential (VS) (with help of exchange M → M + VS),
and the other is a vector potential (VV ) (through minimal coupling Pμ → Pμ − g Aμ) [1]. Accordingly, we have the space-time
VS-potentials and the four VV -potentials as g A0 � V (t, r ). In the presence of such potential types, the time-independent KG
equation is given as [45]

∇2ψ +
1

(�c)2

[
(E − VV )2 − (

Mc2 + VS
)2

]
ψ � 0, (2.1)

with the relativistic energy of system E. We can rewrite this equation in the natural units, � � c � 1, as follows:
[
−∇2 + (M + VS(r))2

]
ψ(r) � (E − VV (r))2ψ(r). (2.2)
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Fig. 1 Combined potential and its
approximation (2.9) as a function
of r for several values of δ. Here,
the potential parameters are set as
V1 � 2V2 � V3 � V4 � 4 and
b � 1/2δ
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In the presence of a spherical symmetric potential, the wave equation ψ(r) ≡ ψ(r, θ, φ) hence can be separated into angular and
radial parts as

ψ(r, θ, φ) � χ(r )

r
Θ(θ )eimφ, (2.3)

where m ∈ Z with m � 0,±1,±2, . . .. Inserting the result Eq. (2.3) into Eq. (2.2) yields the following radial differential equation:

d2χ(r )

dr2 +

[(
E2 − M2) − 2

(
VS(r )M + VV (r )E

)
+

(
V 2

V (r ) − V 2
S (r )

)
− �(� + 1)

r2

]
χ(r ) � 0. (2.4)

In the present work, we assume that VS � VV � V , and hence, Eq. (2.4) becomes

d2χ(r )

dr2 +

[(
E2 − M2) − 2(M + E)V (r ) − �(� + 1)

r2

]
χ(r ) � 0. (2.5)

It should be noted that the above equation cannot be solved analytically except for � � 0, because of the central term. In this regard,
to effectively apply the combined potential (1.4) to this system, we use the Greene–Aldrich approximation scheme [44, 49, 54–56]
as follows:

1

r2 ≈ 4δ2 e−2δr

(
1 − e−2δr

)2 , (2.6)

which is a good approximation for δr << 1.
We now recall the Eckart potential by setting 1

2b � δ as

V ′
EP(r ) � − V1e−2δr

1 − e−2δr
+

V2e−2δr

(
1 − e−2δr

)2 . (2.7)

Furthermore, the class of Yukawa potential (1.3) can be rewritten under the above approximation scheme as

V ′
CYP(r ) � −2δV3e−2δr

1 − e−2δr
− 4δ2V4e−4δr

(
1 − e−2δr

)2 . (2.8)

Consequently, the Eckart plus a class of Yukawa potential becomes

V ′
ECYP(r ) � V ′

EP(r ) + V ′
CYP(r )

� − α1e−2δr

1 − e−2δr
+

α2e−2δr

(
1 − e−2δr

)2 +
α3e−4δr

(
1 − e−2δr

)2

(2.9)

with new definitions of α1 � (V1 + 2δV3), α2 � V2, and α3 � −4δ2V4. In Fig. 1, we also plot the combined potential (1.4) and its
approximation (2.9) as a function of r for various δ. It is obvious from this figure that the approximation becomes more convenient
as δ gets smaller, as expected. It implies that Eq. (2.6) is a good approximation for the small values of δ. In addition, we observe
that the combined potential leads to model a system with attractive forces at large distances and repulsive forces at short distances.
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Inserting the combined potential (2.9), the Eckart plus a class of Yukawa potential, into Eq. (2.5), then we have

d2χ(r )

dr2 +

[
(
E2 − M2) − 2(E + M)

(

− α1e−2δr

1 − e−2δr
+

α2e−2δr

(
1 − e−2δr

)2 +
α3e−4δr

(
1 − e−2δr

)2

)

− 4δ2�(� + 1)e−2δr

(
1 − e−2δr

)2

]
χ(r ) � 0,

(2.10)

where we define the effective potential as

Veff (r ) � 2(E + M)

[

− α1e−2δr

1 − e−2δr
+

α2e−2δr

(
1 − e−2δr

)2 +
α3e−4δr

(
1 − e−2δr

)2

]

+
4δ2�(� + 1)e−2δr

(
1 − e−2δr

)2 . (2.11)

3 Nikiforov–Uvarov method

In this section, we summarize the parametric NU method, which is the new version of the NU method proposed by Tezcan and
Sever [22]. As it is well-known, the NU method is applied to problems which of the differential equation can be converted into the
following form of hypergeometric-type equation:

d2χ(s)

ds2 +
τ̃

σ

dχ(s)

ds
+

σ̃

σ 2 χ(s) � 0. (3.1)

On the other hand, if the considered differential equation for any potential can be written in the generalized form of the Schrödinger-
like equation,

d2χ(s)

ds2 +
a1 − a2s

s(1 − a3s)

dχ(s)

ds
+

1

s2(1 − a3s)2

(−ξ1s2 + ξ2s − ξ3
)
χ(s) � 0, (3.2)

then the parametric NU method, which is a more practical way and detailed below, can be used. Comparing this with the basic
hypergeometric-type Eq. (3.1) gives

τ̃ (s) � a1 − a2s, (3.3)

σ (s) � s(1 − a3s), (3.4)

σ̃ (s) � − ξ1s2 + ξ2s − ξ3. (3.5)

The function π(s) becomes

π (s) � a4 + a5s ±
√

(a6 − ka3)s2 + (a7 + k)s + a8, (3.6)

with the following parameters

a4 � 1
2 (1 − a1), a5 � 1

2 (a2 − 2a3),

a6 � a2
5 + ξ1, a7 � 2a4a5 − ξ2,

a8 � a2
4 + ξ3.

(3.7)

The function under the square root in Eq. (3.6) is to be the square of a polynomial [20]. This condition gives the roots of the parameter
k written as

k± � −(a7 + 2a3a8) ± 2
√

a8a9, (3.8)

where the k-values can be imaginary or real, and a9 � a3a7 + a2
3a8 + a6 . It is obvious that k+ and k− in Eq. (3.8) lead to different

π(s)-functions in Eq. (3.6). For k−, the function π (s) becomes

π (s) � a4 + a5s − [(
a3

√
a8 +

√
a9

)
s − √

a8
]
, (3.9)

and also we have

τ (s) � a1 + 2a4 − (a2 − 2a5)s − 2
[(√

a9 + a3
√

a8
)
s − √

a8
]
. (3.10)

It should be imposed here the following expression for fulfilling the condition that the derivative of the function τ (s) must be negative
in the method

τ ′(s) � − (a2 − 2a5) − 2
(
a3

√
a8 +

√
a9

)
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� − 2a3 − 2
(
a3

√
a8 +

√
a9

)
< 0. (3.11)

In this approach, the energy spectrum equation is calculated from [22]

a2n − (2n + 1)a5 + n(n − 1)a3 + (2n + 1)
(
a3

√
a8 +

√
a9

)
+ a7 + 2a3a8 + 2

√
a8a9 � 0. (3.12)

The weight function ρ(s) from NU-method can be written as

ρ(s) � sa10−1(1 − a3s)
a11
a3

−a10−1
, (3.13)

and then we have

yn(s) � P

(
a10−1,

a11
a3

−a10−1
)

n (1 − 2a3s), (3.14)

where

a10 � a1 + 2a4 + 2
√

a8 and a11 � a2 − 2a5 + 2
(√

a9 + a3
√

a8
)
. (3.15)

The P (α,β)
n (1 − 2a3s) are the Jacobi polynomials. The other part of the general solution is given as

φ(s) � sa12(1 − a3s)
−a12− a13

a3 (3.16)

with the parameters

a12 � a4 +
√

a8 and a13 � a5 − (√
a9 + a3

√
a8

)
. (3.17)

Hence, the general solution χ(s) � φ(s)y(s) reads

χ(s) � sa12(1 − a3s)
−a12− a13

a3 P

(
a10−1,

a11
a3

−a10−1
)

n (1 − 2a3s). (3.18)

4 Bound-state solutions for the Eckart plus a class of Yukawa potential

In this section, we solve the bound eigenstates of the KG equation in the presence of our combined potential by means of the
parametric NU method.

To this end, we continue from Eq. (2.10) laid out in Sect. 2. Inserting the transformation s � e−2δr 1 into Eq. (2.10), we get

d2χ(s)

ds2 +
1 − s

s(1 − s)

dχ(s)

ds
+

[
1

s(1 − s)

]2[
−ε2(1 − s)2 − γ 2s2 − η2s + β2s(1 − s) − �(� + 1)s

]
χ(s) � 0 (4.1)

with the new parameters

ε �
√

M2 − E2

2δ
> 0 , γ �

√
2(E + M)α3

2δ
> 0 , (4.2)

η �
√

2(E + M)α2

2δ
> 0 , β �

√
2(E + M)α1

2δ
> 0. (4.3)

We note that Eq. (4.1) has a suitable form for implementing the parametric NU method. By comparing Eq. (4.1) with Eq. (3.1), we
find the expressions as follows:

τ̃ (s) � 1 − s,

σ (s) � s(1 − s),

σ̃ (s) � −ε2(1 − s)2 − γ 2s2 − η2s + β2s(1 − s) − �(� + 1)s.

(4.4)

We can also rewrite the Eq. (4.1) as

d2χ(s)

ds2 +
1 − s

s(1 − s)

dχ(s)

ds
+

[
1

s(1 − s)

]2[
−s2(β2 + γ 2 + ε2) + s

(
β2 − η2 + 2ε2 − �(� + 1)

) − ε2
]
χ(s) � 0. (4.5)

1 It should be noted that s ∈ [0, 1] for r ∈ [0, ∞)
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Comparing Eq. (4.5) with (3.2), we obtain the parameter set

ξ1 � β2 + γ 2 + ε2, ξ2 � β2 − η2 + 2ε2 − l(l + 1), ξ3 � ε2,

a1 � a2 � a3 � 1, a4 � 0, a5 � − 1
2 ,

a6 � 1
4 + ξ1, a7 � −ξ2, a8 � ξ3.

a9 � 1
4 + ξ1 − ξ2 + ξ3,

(4.6)

From Eq. (3.6), we obtain the function π (s) as

π (s) � −1

2
s ±

√(
1

4
+ ξ1 − k

)
s2 + (k − ξ2)s + ξ3. (4.7)

Substituting (4.6) into (3.8), we obtain its roots as

k± � −(−ξ2 + 2ξ3) ± 2

√

ξ3

(
1

4
+ ξ1 − ξ2 + ξ3

)
. (4.8)

For k−, we find the convenient functions π (s) and τ (s) from Eqs. (3.9) and (3.10), respectively, as

π (s) � −1

2
s −

[(√
1

4
+ ξ1 − ξ2 + ξ3 +

√
ξ3

)

s − √
ξ3

]

, (4.9)

and

τ (s) � 1 − 2s − 2

[(√
1

4
+ ξ1 − ξ2 + ξ3 +

√
ξ3

)

s − √
ξ3

]

. (4.10)

The derivative of the function τ (s) from Eq. (3.11) can be obtained as

τ ′(s) � −2 − 2

(√
1

4
+ ξ1 − ξ2 + ξ3 +

√
ξ3

)
< 0, (4.11)

which is the essential condition for bound-state real solution. In this approach, substituting (4.6) into Eq. (3.12), we obtain the energy
spectrum equation for the Eckart plus a class of Yukawa potential as

M2 − E2
nr ,�

�
⎡

⎣
β2 − η2 − �(� + 1) − 1/2 − nr (nr + 1) − (2nr + 1)

√
1
4 + γ 2 + η2 + �(� + 1)

nr + 1
2 +

√
1
4 + γ 2 + η2 + �(� + 1)

× δ

⎤

⎦

2

(4.12)

or in more compact form as

M2 − E2
nr ,�

� 4δ2
[

β2 + γ 2 − (nr + ω)2

2(nr + ω)

]2

, (4.13)

where ω � 1
2 +

√
1
4 + γ 2 + η2 + �(� + 1). We can calculate numerically the energy eigenvalues from the above relation.

We now move on derivation of the radial eigenfunctions. First, we write the weight function ρ(s) from Eq. (3.13) as

ρ(s) � s2ε(1 − s)2ω−1 (4.14)

with a10 � 1 + 2ε and a11 � 2 + 2

(√
1
4 + ξ1 − ξ2 + ξ3 + ε

)
. In order to find the exact solution, we set the wave function as

χ(s) � y(s)φ(s). Thus, for the first part of wave function, we have

ynr (s) � Cnr P (2ε,2ω−1)
nr

(1 − 2s) (4.15)

from Eq. (3.14). We obtain the other part of wave function from Eq. (3.16) as

φ(s) � sε(1 − s)ω, (4.16)

with a12 � √
ξ3 � ε and a13 � − 1

2 −
√

1
4 + ξ1 − ξ2 + ξ3 − ε.

Then, inserting Eqs. (4.15) and (4.16) into the general solution gives

χnr (s) � Cnr sε(1 − s)ω P (2ε,2ω−1)
nr

(1 − 2s). (4.17)
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Using the following relation [57]

P (a,b)
n (1 − 2s) � Γ (n + a + 1)

n! Γ (a + 1)
2 F1(−n, 1 + n + a + b, 1 + a; s), (4.18)

we can write Eq. (4.17) as

χnr (s) � Cnr sε(1 − s)ω
Γ (nr + 2ε + 1)

nr ! Γ (2ε + 1)
2 F1(−nr , nr + 2ε + 2ω, 1 + 2ε; s). (4.19)

where we can determine the normalization constant Cnr by

∞∫

0

|R(r )|2r2dr �
∞∫

0

|χ(r )|2dr � 1

2δ

1∫

0

1

s
|χ(s)|2ds � 1. (4.20)

With help of the following identity[57]

1∫

0

(1 − z)2(ν+1)z2λ−1[2F1(−n, 2(ν + λ + 1) + n, 2λ + 1; z)]2dz � n! (n + ν + 1)Γ (2λ)Γ (n + 2ν + 2)Γ (2λ + 1)

(n + ν + λ + 1)Γ (n + 2λ + 1)Γ (2(ν + λ + 1) + n)
, (4.21)

where ν > −3
2 and λ > 0, we calculate the normalization constant as

Cnr �
√

2nr ! δ(nr + ω + ε)Γ (nr + 2ε + 2ω)Γ (2ε + 1)

(nr + ω)Γ (2ε)Γ (nr + 2ε + 1)Γ (nr + 2ω)
. (4.22)

Hence, we can write the total wave function ψ(r, θ, φ) for the Eckart plus a class of Yukawa potential as

ψ(r, θ, φ) � Nnr l
1

r

(
e−r/2b

)ε(
1 − e−r/2b

)ω

2 F1

(
−nr , 2ε + 2ω + nr , 1 + 2ε; e−r/2b

)
Ylm(θ, φ), (4.23)

where Ylm(θ, φ) is the spherical harmonics.

5 Particular cases

In this section, we discuss some particular cases. These are several well-known potentials that are useful for other physical systems.
We construct them by adjusting our potential parameters.

1. Taking V3 � V4 � 0, the total potential reduces to the central Eckart potential. Hence, we obtain the energy spectrum equation
of the new case as

M2 − E2
nr ,�

� 4δ2

[ (E+M)
2δ2 V1 − (nr + ω)2

2(nr + ω)

]2

, (5.1)

where ω � 1
2 +

√
1
4 + �(� + 1) + η2. This result is the same with expression (16) of Ref. [58] under exchange V1 ↔ V2. Also,

for the s-wave case (l � 0), this is consistent with that given in Eq. (15) of Ref. [52]. Also, the corresponding wave function can
be written as

χnr ,�(s) � Cnr ,�s

√
M2−E2

2δ (1 − s)
1
2 +

√
1
4 +�(�+1)+η2

P

(√
M2−E2

δ
,2

√
1
4 +�(�+1)+η2

)

nr (1 − 2s). (5.2)

2. Furthermore, it is known that the Eckart potential can be reduced to the Hulthén potential. This is achieved by taking V2 � V3 �
V4 � 0. If so, we have from Eq. (4.13)

M2 − E2
nr ,�

� 4δ2

[ (E+M)
2δ2 V1 − (nr + � + 1)2

2(nr + � + 1)

]2

. (5.3)

This is the same as the previously obtained expression in Eq. (50) of Ref. [42] by selecting S(r ) � V (r ). The corresponding
wave function can be written as

χnr ,�(s) � Cnr ,�s

√
M2−E2

2δ (1 − s)1+� P

(√
M2−E2

δ
,1+2�

)

nr (1 − 2s). (5.4)
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3. Setting V2 and V4 to zero leads to the case of the Hulthén plus a class of Yukawa potential. If so, we have from Eq. (4.13)

M2 − E2
nr ,�

� 4δ2
[

β2 − (nr + � + 1)2

2(nr + � + 1)

]2

. (5.5)

This result is consistent with the expressions obtained in Eq. (47) of Ref. [42] and Eq. (42) of Ref. [43]. We present the
corresponding wave function as

χnr ,�(s) � Cnr ,�s

√
M2−E2

2δ (1 − s)1+� P

(√
M2−E2

δ
,1+2�

)

nr (1 − 2s). (5.6)

4. Setting V1 and V2 to zero leads to the case of a class of Yukawa potential (1.3). If so, we have the following equation for energy
eigenvalues:

M2 − E2 �
⎡

⎣
ξ2 − 1/2 − �(� + 1) − nr (nr + 1) − (2nr + 1)

√
1
4 + �(� + 1) + ζ 2

nr + 1
2 +

√
1
4 + �(� + 1) + ζ 2

⎤

⎦

2

δ2, (5.7)

with parameters

ξ �
√

4δV3(E + M)

2δ
, (5.8)

and

ζ � √−2V4(E + M). (5.9)

The associated wave function can be written as

χnr ,�(s) � Cnr ,l s

√
M2−E2

2δ (1 − s)
1
2 +

√
1
4 +�(�+1)+ζ 2

P

(√
M2−E2

δ
,2

√
1
4 +�(�+1)+ζ 2

)

nr (s). (5.10)

These results are the same with the relations obtained in Eqs.(77) and (78) of Ref. [45].
5. By limiting δ → 0, the class of Yukawa potential can be approximated as

VKFP � lim
δ→0

(
− V3e−δr

r
− V4e−2δr

r2

)

� − V3

r
− V4

r2 .

(5.11)

Setting V3 � 2re De and V4 � −r2
e De in above expression, then we have the Kratzer–Fues potential. The parameters De and re

stand for the separation energy and the equilibrium distance between two bodies, respectively. We obtain its energy spectrum as

M2 − E2 � (2re De)
2(E + M)2

�(� + 1) + nr (nr + 1) + 1
2 + 2r2

e De(E + M) +
(
nr + 1

2

)√
(2� + 1)2 + 8r2

e De(E + M)
. (5.12)

6. Taking V1 � V2 � V4 � 0 in the combined potential, we obtain the central Yukawa potential. Then, we can write its energy
eigenvalue equation as

M2 − E2 �
[

ξ2 − 1/2 − �(� + 1) − nr (nr + 1) − (2nr + 1)
(
� + 1

2

)

nr + � + 1

]2

δ2, (5.13)

where ξ is taken as in Eq. (5.8). This is consistent with those in Ref. [26] for the constant mass case. One can easily see this by
taking α → δ and q � 1 in Eq. (39) of Ref. [26]. We get its eigenfunctions as

χnr ,�(s) � Cnr ,�s

√
M2−E2

2δ (1 − s)
1
2 +

√
1
4 +�(�+1) P

(√
M2−E2

δ
,2

√
1
4 +�(�+1)

)

nr (s). (5.14)

7. Setting V1 � V2 � V3 � 0, we get the inversely quadratic Yukawa potential. If so, we have the energy spectrum equation as

M2 − E2 �
⎡

⎣
−1/2 − �(� + 1) − nr (nr + 1) − (2nr + 1)

√
1
4 + ζ 2 + �(� + 1)

nr + 1
2 +

√
1
4 + ζ 2 + �(� + 1)

⎤

⎦

2

δ2 (5.15)

with ζ presented as in Eq. (5.9). We also get the associated eigenfunctions as

χnr ,�(s) � Cnr ,�s

√
M2−E2

2δ (1 − s)
1
2 +

√
1
4 +ζ 2+�(�+1) P

(√
M2−E2

δ
,2

√
1
4 +ζ 2+�(�+1)

)

nr (s). (5.16)

These results are the same with Eqs. (84) and (85) of Ref. [45].
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8. If we take δ → 0 in the case of V1 � V2 � V4 � 0, the combined potential turns to the Coulomb-like potential, V (r ) � −V3/r ,
and so we have

M2 − E2 �
[

V3(E + M)

(1 + � + n)

]2

. (5.17)

Then, from Eq. (5.17), we obtain

E � M
(1 + n + �)2 − V 2

3

(1 + n + �)2 + V 2
3

, (5.18)

which is consistent with Eq. (51) of Ref. [26] and those results in Ref. [59].
9. For the s-wave case (� � 0), the centrifugal term disappears from Eq. (2.10). As a result, we have the following energy spectrum

equation

M2 − E2
nr ,l � 4δ2

⎡

⎢
⎢
⎢
⎣

β2 + γ 2 −
(

nr + 1
2 +

√
1
4 + γ 2 + η2

)2

2

(
nr + 1

2 +
√

1
4 + γ 2 + η2

)

⎤

⎥
⎥
⎥
⎦

2

. (5.19)

6 Thermodynamic quantities at the nonrelativistic limit

In this section, we will examine the thermodynamic properties of the Eckart plus a class of Yukawa potential at the non-relativistic
limit. Now mapping Enl − M → Enl and Enl + M → 2μ

�2 in Eq. (4.13), we derive the non-relativistic energy spectrum for the
potential model in question

En,l � −2δ2
�

2

μ

[
κ

2(n + ν)
− (n + ν)

2

]2

, (6.1)

where

κ � μ

δ2�2 (α1 + α3), (6.2)

ν �1

2
+

√
1

4
+

μ

δ2�2 (α2 + α3) + l(l + 1). (6.3)

To determine the thermal properties of the system, we first need to derive its partition function. In statistical physics, the partition
function, as a function of temperature, is often considered a distribution function, and once known, other thermal properties such
as internal energy, entropy, free energy and specific heat capacity can be derived from it. These quantities can either be calculated
theoretically or experimentally.

i. Partition function: The partition function can be calculated by summation over all possible energy levels at a given temperature
T and is defined as [60]

Z (β) �
λ∑

n�0

e−βEnl , (6.4)

where β � 1/(kB T ), kB is the Boltzmann constant and λ is the upper bound vibration quantum number. We obtain the parameter
λ as

dEn,l

dn

∣∣∣∣
n�λ

� 0 =⇒ λ � √
κ − ν. (6.5)

We use the Poisson summation formula for a finite summation with the upper bound to evaluate the partition function in Eq. (6.4),
given by [61–63]

N∑

n�0

f (n) � 1

2

[
f (0) − f (N + 1)

]
+

∫ N+1

0
f (x)dx, (6.6)

where N is taken as λ rounded to an integer. With help of this formula, we can write the partition function as

Z (β) � 1

2

[
(eAβ( κ

2ν
− ν

2 )
2 − e

Aβ
(

κ
2(ν+N+1) − ν+N+1

2

)2]
+

∫ N+1

0
e

Aβ
(

κ
2(ν+x) − ν+x

2

)2

dx, (6.7)
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where A � 2δ2
�

2

μ
. Then, we calculate it as

Z (β) � e−Aβκ

2
√

Aβ

[√
Aβ

(
e

Aβ(κ+ν2)
2

4ν2 − e
1
4 Aβ

(
4κ+(ν+N+1− κ

ν+N+1 )
2
))

− √
π

(
Y1(ν) − Y1(ν + N + 1)

)
+

√
πeAβκ

(
Y2(ν) − Y2(ν + N + 1)

)] (6.8)

with the following definitions

Y1(x) �Er f i

(√
Aβ

(
κ + x2

)

2x

)

, (6.9)

Y2(x) �Er f i

(√
Aβ

(
κ − x2

)

2x

)

, (6.10)

where the imaginary error function Er f i is given by [57]

Er f i(z) � −i Er f (i z) �
√

4

π

∫ z

0
eu2

du. (6.11)

Using the partition function (6.8), we derive the other thermodynamic quantities in the following items.
ii. Mean energy: It is defined as the energy included in a thermodynamic system, and it is necessary to prepare or improve the

system in its current internal state. For an isolated system, it is constant. We obtain the mean energy as

U (β) � − ∂

∂β
ln Z (β) � Λ1

Λ2
(6.12)

with

Λ1 � − 2(Aβ)3/2
[

(B1 − κ)eAB1β − (B2 − κ)eAB2β

]
+ 2

√
Aβ

[
f1(ν)eAβ f1(ν)2 − f1(ν + N + 1)eAβ f1(ν+N+1)2

− f2(ν)eAβ
(

f2(ν)2+κ
)

+ f2(ν + N + 1)eAβ
(

f2(ν+N+1)2+κ
)]

+
√

π

[
eAβκ

(
Y2(ν) − Y2(ν + N + 1)

)

− (2Aβκ + 1)

(
Y1(ν) − Y1(ν + N + 1)

)]

Λ2 �2
√

Aβ3/2
(

eAB1β − eAB2β
)

− 2
√

πβ

[
Y1(ν) − Y1(ν + N + 1) + eAβκ

(
Y2(ν + N + 1) − Y2(ν)

)]

(6.13)

where

B1 �
(
κ + ν2

)2

4ν2 , B2 � 1

4

(
4κ +

(
ν + N + 1 − κ

ν + N + 1

)2
)

,

f1(ν) � κ + ν2

2ν
, f2(ν) � κ − ν2

2ν
.

(6.14)

iii. Free energy: This is a thermodynamic potential which provides a forecast of the helpful work obtained from a closed system
with a constant temperature. We calculate the free energy from

F(β) � − 1

β
ln Z (β). (6.15)

iv. Specific heat capacity: In thermodynamics, the specific heat capacity is also named as massic heat capacity that is the heat
capacity of a sample of the substance divided by its mass. We calculate the specific heat quantity with2

C(β) � −kBβ2 ∂U (β)

∂β
� kBβ2 ∂2 ln Z (β)

∂β2 . (6.16)

v. Entropy: It is defined as the measure of the amount of thermal energy per unit temperature of a system that cannot be used to
provide any productive work. Also, we can think of the amount of entropy as a measure of the unpredictability or disorder of the
system. In our case, we derive the entropy as

S(β) � kBβ2 ∂ F(β)

∂β
� kB ln Z (β) − kBβ

∂ ln Z (β)

∂β

� kB ln Z (β) + kBβ
Λ1

Λ2
.

(6.17)

2 It is not explicitly presented here as it has a rather long analytical expression; however, its graphical representation is presented in Sect. 7
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Fig. 2 Energy levels of Enr ,� as a function of δ for given nr � 0, 1, 2 with a � � 0, 1 and b � � 2, 3
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Fig. 3 Energy levels Enr ,� as a function of nr with given values of � for a δ � 0.05 and b δ � 0.15

7 Numerical evaluation

Now, we discuss the numerical results for the bound state solutions and the non-relativistic thermal properties of the Eckart plus a
class of Yukawa potential. First, we examine the energy levels E as a function of the screening parameter δ and quantum number
nr for arbitrary �. For simplicity, we set the free parameters as follows: V1 � 2V2 � V3 � V4 � 4, M � 1, and b � 1/2δ, unless
otherwise stated. We also consider the natural units here (� � c � 1). We show the energy eigenvalues in Fig. 2 as a function of
δ for nr � 0, 1, 2 and � � 0, 1, 2, 3. Here, the δ ranges from 0 to 0.30. It is clear that the energy eigenvalues increase as the δ

increases. The energy levels with the same total value of nr + � have close values to each other. For example, (nr , �) � (0, 1), (1, 0),
(nr , �) � (0, 2), (1, 1), (2, 0).

In Fig. 3, we show the dependence of energy eigenvalues on the quantum number nr for a given of � � 0, .., 5 with δ � 0.05
and 0.15. For all values of �, the energy eigenvalues increase as the nr gets bigger. Note that the increment in the case of δ � 0.15
is much larger than in the case of δ � 0.05.

We show in Fig. 4 total wave functions ψnr ,�(r, θ ) as a function of r and θ for nr � 0, 1, 2, 3 and � � 0, 1, 2, 3. Here, we vary
the r and θ in the ranges of r ∈ [0, 15] and θ ∈ [0, π ], respectively. We also set the parameter δ as δ � 0.15.

It is clearly seen from these figures that the wave function has (n + 1) and (� + 1) nodes with associated to the axes r and θ ,
separately. The number of nodes is not affect by the position dependence of the potential strength, i.e., V1, V2, V3, V4. However, the
magnitude and wavelength of the associated wave function are affected.

We present in Table 1 the energy eigenvalues of 1s, 2s, 2p, 3p, 3d, 4p, 4d, 4 f for some values of δ. Here, we set the principal
quantum number as n � nr + � + 1. We observe that for a given n, the energy eigenvalues increase with increment in �. This means
that the energy eigenvalues are more bounded at smaller values of �. Also, for a unique quantum state, energy eigenvalues increase
as δ increases.

Second, we analyze the dependence of thermodynamic quantities at non-relativistic limit, including partition function Z (β), mean
energy U (β), free energy F(β), entropy S(β), and specific heat capacity C(β), on the parameter β � 1

kB T . We plot these quantities
in Figs. 5 and 6 for different values of � and δ, respectively.
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Fig. 4 Normalized wave functions as a function of r and θ for values of nr � 0, 1, 2 and l � 0, 1, 2, 3

In Fig. 5, we determine the upper bound vibration quantum number from Eq. (6.5) as N � 6 for � � 0 and N � 5 for � � 1, 2, 3.
As mentioned earlier, N is equal to λ rounded to an integer. Moreover, in Fig. 6, we obtain the N from Eq. (6.5) as N � 13, 7, 5, 5
for δ � 0.05, 0.10, 0.15, 0.20, respectively.

It can be seen from these figures that the partition function Z (β) increases exponentially as the β, i.e., the inverse temperature,
increases for each value of � and δ. The Z (β) becomes larger for either smaller � or larger δ. The mean energy U (β) decreases almost
linearly while free energy F(β) increases as the β increases. The free energy F(β) increases rapidly for an interval of β ∈ [0, 1.0] and
then becomes a nearly constant value with increment of β. The entropy S(β) stays almost unchanged for an interval of β ∈ [0, 0.5]
and then continues to decrease rapidly with increment in β. The functions of U (β), F(β) and S(β) become usually larger for either
larger � or smaller δ. The specific heat capacity C(β) increases until a maximum value and then decreases as the β increases. Its
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Table 1 Bound-state energy eigenvalues of 1s, 2s, 2p, 3p, 3d, 4p, 4d and 4f

δ 1s 2s 2p 3p 3d 4p 4d 4f

0.05 −0.99649604 −0.99099814 −0.98794323 −0.97940763 −0.97382843 −0.96814486 −0.96204162 −0.95403227

0.10 −0.98722148 −0.96718290 −0.95527801 −0.92347287 −0.90142687 −0.88075546 −0.85604396 −0.82343121

0.15 −0.97386879 −0.93295875 −0.90640172 −0.83931973 −0.78898097 −0.74667285 −0.68788398 −0.60890610

0.20 −0.95804186 −0.89278636 −0.84524937 −0.73363358 −0.64058725 −0.57365805 −0.45761787 −0.29378707

Fig. 5 Thermodynamic quantities
as a function of β for various
l with δ � 0.15

peaks move to the increment direction of β with increasing � values or decreasing δ values. The C(β) have larger values up to its
peak for either smaller � or larger δ, and after its peak, this case is vice versa.

By using the different potentials to represent the internal vibrations of diatomic molecules, some authors have successfully
predicted the thermal properties for real substances [60, 62–65]. Accordingly, we also examine the thermal properties for a few
diatomic molecules LiH, HCl, CuLi and NiC through our potential model. We take the spectroscopic parameters from Refs. [54, 66]
for these molecules as given in Table 2. Here, we use the conversion factors as follows: �c � 1973.296 eVÅ and 1 amu � 931.494028
MeV/c2.

We show the energy spectra for the diatomic molecules LiH, HCl, CuLi and NiC as a function of angular momentum l in Fig. 7a.
We observe from this figure that energy spectra of the system increases monotonically with increment in l. In Fig. 7b–f, we present
the β-dependence of the partition function, mean energy, free energy, entropy, and specific heat capacity for the considered diatomic
molecules. It is clear that the beta dependencies here are similar to the behavior observed in Figs. 5 and 6 for the general case with
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Fig. 6 Thermodynamic quantities
as a function of β for various δ

and l � 1

Table 2 Spectroscopic constants
of the some diatomic molecules

Molecules δ(Å
−1

) μ(amu)

LiH 1.1280 0.8801221

HCl 1.8677 0.9801045

CuLi 1.00818 6.259494

NiC 2.25297 9.974265

arbitrary parameters. For example, the partition function Z (β) increases exponentially, while the mean energy and entropy decrease
as the β increases for each molecule. We obtain the maximum principal quantum number N from Eq. (6.5) as N � 15, 25, 76, 42
for HCl, LiH, CuLi and NiC, respectively. The partition function Z (β) increases exponentially faster in diatomic molecules with
larger N as well as larger reduced mass μ. The mean and free energies of CuLi is smaller than the others. The decline in entropy
S(β) with the increment in β is fastest in CuLi and slowest in HCl among selected diatomic molecules. The specific heat capacity
C(β) first peaks and then decreases as the β increases for all considered molecules. For large N , the height of the peak becomes
larger. The width of the peak is the smallest for CuLi and the largest for HCl.

Our results are in good agreement with those obtained in Fig. 2 of Ref. [65], where they have predicted the thermal properties for
diatomic molecules CrH, CuLi and NiC by using Hulthén-type plus Yukawa potential. However, they have used the same N value
for all molecules without using Eq. (6.5).
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Fig. 7 Energy spectra and
thermodynamic quantities as a
function of β for various diatomic
molecules

8 Conclusions

In this work, we have first derived any �-state bound solutions of the KG equation for a novel combined potential: the Eckart plus a
class of Yukawa potential. In this regard, we have used the parametric NU method and applied the improved approximation scheme
to deal with the centrifugal term. We have derived analytical expressions of energy eigenvalues and normalized wave functions for
any quantum states nr and �.

It is obvious that the bound-state solutions of the Eckart plus a class of Yukawa potential are more stable compared to the separated
cases. The energy eigenvalues are sensitive with regard to the quantum numbers nr and � as well as the parameter δ. Our results
show that energy eigenvalues are more bounded at either smaller quantum number � or smaller parameter δ. The wave function
has (nr + 1) and (� + 1) nodes. The number of radial nodes is not affected by the position dependence of the strength of combined
potential.

We have presented some particular cases, the central and quadratic Yukawa potentials, Eckart potential, Hulthén potential,
Kratzer–Fues potential, and Coulomb-like potential, constructed by adjusting the potential parameters. We have derived the energy
spectrum equations for these particular cases and showed that they are in agreement with the reports from the previous studies.

Furthermore, we have derived the analytical expressions of non-relativistic energy spectrum and the thermodynamic quantities,
including partition function Z (β), mean energy U (β), free energy F(β), entropy S(β), and specific heat capacity C(β), for the
Eckart plus a class of Yukawa potential at the non-relativistic limit. Then, we have presented the dependence of these quantities on
the parameter β for various � and δ. As detailed in the previous section, the thermodynamic quantities are strongly influenced by the
parameters β (inverse temperature) and δ. We have predicted the thermal properties for a few diatomic molecules LiH, HCl, CuLi
and NiC through our potential model.
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The method used in this study is systematic one, and in many cases, it is one of the most reliable techniques in the research
fields. The potential model, which consists of the linear combination of the Eckart and a class of Yukawa potential, could be one
of the significant exponential potentials and deserves special attention in many branches of physics, particularly atomic, molecular,
nuclear and particle physics.

Data Availability All data generated or analyzed during this study are included in the article.
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