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Abstract The consequences of the baryon-quark phase transition (PT) are probed for the structure of a hybrid neutron star (HNS)
by utilizing the Maxwell construction (MC). A statistical-based mean-field (MF) approach, which complies with the Thomas–Fermi
approximation, is employed for the baryonic equation of state (EOS) of baryonic matter, while the EOS of quark matter is expressed
within the standard NJL model. We find that including density-dependent terms in the phase-space nucleon–nucleon interaction
softens the hybrid EOSs, resulting in mostly better agreement with the experimental constraints, and providing lower values of the
gravitational mass, radius, and tidal deformability for a HNS. On the other hand, stiffening the hybrid EOS by strengthening the
quark vector interactions increases the maximum gravitational mass, while the corresponding radius and tidal deformability are
reduced. Based on the constant-sound-speed (CSS) parameters of the baron-quark PT, we show that the formation of a stable 2M�
HNS is allowed under the MS.

1 Introduction

Nuclear forces indicate the main characteristic of the models employed in studying the properties of finite-nuclei and nuclear matter.
In fact, ultra-dense events including heavy-ion collisions [1–3] and astrophysical compact objects like neutron stars (NSs) and
supernovas explosions [4–9], which have stimulated impressive theoretical efforts, reflect different aspects of nuclear forces. The
realistic nuclear forces obtained from nucleon–nucleon scattering data are used in microscopic models [10–18], while phenomeno-
logical models [19–27] are proposed within the mean-field (MF) approximation by the interactions whose parameters are fixed
to satisfy saturation properties of nuclear matter and the experimental nuclear ground state data. Such phenomenological models
include the relativistic MF approaches relying on meson-exchange interactions, and the non-relativistic MF theories using effective
macroscopic interactions like different types of zero-range Skyrme, finite-range Gogny, and phase-space nuclear forces. Complying
with the Thomas–Fermi (TF) approximation, the phase-space approach of nuclear forces was first introduced by Seyler and Blan-
chard (SB) [28–30] in a simplest possible model without considering density-dependent interaction terms, which give rise to the
so-called rearrangement effects. Bandyopadhyay and Samaddar [20, 31] have proposed a density-dependent extension of the SB
interaction in studying thermal properties of nuclear matter. In addition, Myers and Swiatecki (MS) [19, 32, 33] have formulated
a new version of density-dependent SB interaction by including an inverse-momentum dependence in phase space to predict the
properties of finite nuclei and nuclear matter. By using the MS interaction, different aspects in thermodynamics of nuclear matter
have been successfully investigated in Refs. [27, 34, 35]. Such interaction has also shown its capability in modeling the structure of
neutron stars (NSs) [36, 37] and proto-NSs [38–40] in agreement with the theoretical predictions and observational constraints.

Based on the local and non-local NJL models of deconfined quark matter [41–43], this interaction has been adopted for probing
the baryon-quark phase transition (PT) in a 2M� neutron star, as the existence of a pure phase in the stellar core has been excluded.
The baryon-quark PT scenario in hybrid NSs (HNSs) has gained a lot of attention over the last decades [44–54]. In this work, we
aim to study the outcomes of the basic interaction of Seyler and Blanchard in the baryon-quark PT and HNS structure, as compared
to its density-dependent extension proposed by Myers and Swiatecki. Applying the MC, we analyze such a transition in dense
matter within the SU(3) version of the standard NJL model for the quark degrees of freedom. The MC indicates a limiting case of
the finite-size effects with a sufficiently large value of the baryon-quark surface tension, which leads to a sharp PT. Based on the
MC, the stability of a NS requires the formation of a pure quark matter core (no matter how small), as it can be recognized by the
constant-sound-speed (CSS) parameters for the baron-quark PT [55, 56]. Therefore, for our purpose, it is necessary to clarify the
instability of a NS at the quark onset under the MC. In light of the comments remarked above, this paper is arranged as follows. In
Sect. 2, we describe our statistical formalism for the baryon EOS, using the SB interaction and its density-dependent extension given
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by MS. In addition, we present the standard NJL model for the quark matter EOS with the three sets RKH, HK, and LKW, which are
connected to the baryonic EOSs SB and MS via the MC. Section 3 includes the expression and discussion of our results obtained
for the baryon-quark PT and onset of quark matter in the HNSs structure. Finally, the summary and conclusions are presented in
Sect. 4

2 Formalism

In this section, the EOS of baryonic matter is illustrated using the SB and MS interactions in a statistical MF approach, where the
state of each nucleon is determined by its location and momentum in phase space. Based on a sharp baryon-quark PT in the MC,
the hybrid EOS is obtained employing the quark EOS of the standard NJL model.

2.1 Baryonic model

Based on a statistical approach, we employ the phase-space SB interaction V (SB)
12 [30] to be compared with its density-dependent

extension V (MS)
12 given by MS [19] as follows:

V (SB)
12 = −C

e−r12/a
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[
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12
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b

]
, (1)
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where r12 and p12 are the separation distance and relative momentum of each nucleonic pair in phase space, respectively. The mean

density ρ̄ in the MS interaction, which is defined in terms of the nucleonic densities ρ1 and ρ2 as ρ̄
2
3 = 1

2 (ρ
2
3
1 + ρ

2
3
2 ), implies

the density-dependent extension of the SB interaction, and therefore, leads to the rearrangement effects. Meanwhile, the addition
of the inverse-momentum term in the MS case increases the attraction when the relative momentum p12 becomes smaller so that
the two particles would like to become more correlated. By introducing the overall interaction strength C and the characteristic

kinetic energy Tb = p2
b

2m̄ (pb = �( 3
2ρbπ

2)
1
3 ), with m̄ = 938.903 MeV/c2 being the average nucleonic mass, the parameters of these

Yukawa-type interactions (including the force range a) are fitted to the data of finite nuclei and saturation properties of nuclear matter
[19, 30]. Thus, we adopt C = 435.1 MeV, Tb = 89.274 MeV, a = 0.557 fm in the SB interaction, and C = 173.51209 MeV (η1 C),
Tb = 503.58068 MeV, a = 0.59542 fm, χ = 3.55552 (η1 χ), χ̄ = 0.01161 (η2 χ̄) for the interaction between the like (unlike)
particles in the MS interaction. Considering η1 = 2.57162 and η2 = 1.54471 in MS provides a more comprehensive analysis of the
nucleonic systems with lower isospin symmetry.

For cold baryonic matter, the step function is used in this statistical approach as the phase-space distribution function to calculate
the baryonic energy density by,

eB =
∑
i=n,p
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h3
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]
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Here, ρB = ρp + ρn is the baryonic density, and pF,i = �
( 3

2π2ρi
) 1

3 is the Fermi momentum of the ith nucleon. Using Eq. (3), the
baryonic energy density is obtained by
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where

κi = 8πp5
F,i

5h3 p2
b

. (5)

Based on these interactions, the chemical potential of neutrons (protons) is given by

μi = ∂eB
∂ρi

= m̄c2 + p2
F,i

2m̄
+ μ

(l)
i + μ

(u)
i , (6)
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where
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Using μn(p) in the parabolic law, one can extract the nuclear symmetry energy as

Esym = 1

2

∂2εB

∂δ2

∣∣∣∣
δ=0

= lim
δ→0

μn − μp

4δ
. (9)

with δ = ρn−ρp
ρB

and εB = eB
ρB

, which are the asymmetric parameter and the baryonic energy per baryon, respectively.

To obtain the total baryonic energy density e = eB + eL , the leptonic energy density contribution eL can be considered by

eL = 2

h3

∑
j=e−,μ−

∫ pF, j

0
d3 p

√
(pc)2 + (m jc2)2, (10)

Therefore, one can describe the structure of baryonic matter in terms of a Fermi sea of nucleons and relativistic lepton under the
following β-equilibrium conditions:

yp =ye− + yμ− , (11)

μe− =μn − μp, (12)

μe− =μμ− . (13)

In the charge neutrality relation (11), yk = ρk
ρB

implies the particle fractions. According to the Fermi energy level, the chemical

potential of electrons e− (muons μ−) can also be determined by

μ
j=e−,μ− =

√
(pF, j c)2 + (m jc2)2, (14)

where pF, j = (
3h3ρ j

8π
)

1
3 . Finally, by adding the leptonic pressure PL to the baryonic pressure PB , the total pressure of baryonic

matter in β-equilibrium can be computed from

P = PB + PL =
∑
k

(μkρk ) − e. (15)

2.2 Standard NJL model for the quark phase

In this work, we focus on the three-flavor version of the standard NJL model for analysis of the EOS of quark matter. The QCD
Lagrangian is written as follows:

LN J L = q̄
(
iγμ∂μ − m0)q + GS

8∑
a=0

[
(q̄λaq)2 + (q̄γ5λaq)2] − K

{
det

[
q̄(1 + γ5)q

]

+det
[
q̄(1 − γ5)q

]} − GV

8∑
a=0

[(
q̄γμλaq

)2
]
. (16)

Here, q denotes the quark fields containing the terms from the three flavors (N f = 3) and three colors (Nc = 3). In addition, the
Lagrangian includes the current quark mass matrix m0 as

m0 = diag
(
m0

d ,m
0
u,m

0
s

)
. (17)

The Gell-Mann matrices of flavor SU(3) λa (a = 1, 2, ..., 8) are accompanied by λ0 = √
2/3 times the 3×3 unit matrix. This study

employs the RKH, HK, and LKW interaction parameters for the EOS of deconfined quark matter, which are given in Table 1.
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Table 1 Three sets of parameters
in the standard (local) NJL model
of quark matter

NJL interaction K�5 Gs�
2 � ms mu,d

(MeV) (MeV) (MeV)

RKH [57] 12.36 1.835 602.3 140.7 5.5

HK [58] 9.29 1.835 631.4 135.7 5.5

LKW [59] 8.9 1.82 750 87 3.6

Since the vector coupling ratio ηV = GV /GS cannot be predicted with certainty [60], one can consider it a free parameter. Based
on the MF approximation [61], one can introduce the zero-temperature grand canonical thermodynamic potential as

�Q = −
∑

i=u,d,s

3

π2

∫ �

0
dpp2

[
E (Mi )
p +

(
μ̃i − E (Mi )

p
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)]

+
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2GS〈q̄i qi 〉2 − 4K 〈q̄uqu〉〈q̄dqd〉〈q̄sqs〉 −
∑
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(μ̃i − μi )
2

8GV
, (18)

where E (Mi )
p =

√
p2 + M2

i . The dynamic quark mass Mi and effective chemical potential μ̃i read

Mi =mi − 4GS〈q̄i qi 〉 + 2K 〈q̄ j q j 〉〈q̄kqk〉, (19)

μ̃i =μi − 4GV 〈q†
i qi 〉. (20)

The cutoff parameter � in the MF grand thermodynamic potential �Q provides a regularization scheme due to the non-
renormalizability of the standard NJL model. In Eq. (19), (i, j, k) demonstrate any permutation of (u, d, s) quarks with 〈q̄i qi 〉
being the ith quark condensate. In addition, 〈q†

i qi 〉 in Eq. (20) is the ith quark number density ρi = (piF )3

π2 (where piF stands for the

association of the Fermi momentum). According to Eqs. (19) and (20), 〈q̄i qi 〉 and 〈q†
i qi 〉 are determined by minimizing �Q with

respect to Mi and μ̃i , respectively (μ̃i � �):
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The Beta-equilibrium conditions proposed for a neutral mixture of quarks and leptons can be read as

2yu+ − (
ye− + yμ−

) − (yd− + ys−) = 0, (23)

μu+ = μB − 2μe−

3
, (24)

μd− = μs− = μB + μe−

3
, (25)

μe− = μu− , (26)

in which y(i=u,d,s) = ρi
3ρB

, and μB = 2μd− + μu+

3
denote the ith quark fraction, and baryonic chemical potential, respectively.

Moreover, in Eqs. (24), (25), and (26), μB is taken as the baryonic chemical potential, used as an input to solve the coupled equations
self-consistently. Eventually, the pressure P and energy density e for quark matter in beta-equilibrium are obtained as

P = PQ + PL , (27)

e =
∑
k

ρkμk − P, (28)

in which, we assume the quark pressure PQ = �0
Q − �Q , utilizing �0

Q to guarantee the condition PQ = 0 in the vacuum.
The MC is widely used for studying the baryon-quark PT. As a result of the MC, which is a limiting case corresponding to a large

enough surface tension, and a WS cell that is large compared to the electromagnetic Debye screening length, the pure baryonic and
quark phases are considered to be independently charge-neutral. Therefore, a sharp PT between baryonic and quark matter occurs,
leading to the disappearance of the mixed phase region in the structure of a HNS. Thus, the PT conditions can be read as

μ(BP)
n =μ(QP)

u + 2 μ
(QP)
d = 3 μ(MC)

B
, (29)

P(BP) =P(QP) = P(MC), (30)
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and for the energy density of the mixed phase e(MC) , we have

e(MC) = 3 ρB μ(MC)
B

− P(MC). (31)

3 Results and discussions

According to the overall direction of this investigation, we utilize the baryonic interactions SB and MS, combined with the three
quark interactions RKH, HK, and LKW to analyze the PT from nuclear matter to quark matter. The baryon-quark PT is examined
for the three values of the vector coupling strength ηV = GV /GS = 0, 0.15, 0.3 by the MC.

It is noteworthy to present a genuine picture of our baryonic EOSs by comparing the pressure of symmetric nuclear matter (SNM)
and pure nuclear matter (PNM) with the measurements acquired from the analysis of heavy-ion flow data [62] (see Fig. 1).

As shown in this figure, the baryonic interaction MS gives a softer EOS than SB, resulting in a better agreement with the flow
data measurements of heavy-ion collisions. Hence, the EOS of PNM in SB (MS) is stiffer (softer) than the one in SNM due to the
stiffness (softness) effects of the nuclear symmetry energy, which is also shown in this figure.

To examine the causality condition in our quark EOSs, the ratio of the sound velocity to the light speed vs/c =
√

(
dP

de
) must be

less than one. We depict in Fig. 2 this ratio as a function of the pressure for each quark matter EOS. It is seen that our NJL-type
EOSs fulfill both the causality and hydrodynamic stability requirements. At higher pressures, the value of vs/c is less sensitive to
the changes of P. Among these quark models, this ratio in LKW has the most moderate dependence on the variations of pressure.
Meanwhile, the minimum value of this ratio is obtained at ηV = 0 for each quark model.

Within the MC, the occurrence of the baryon-quark PT arises from the intersection of the baryonic and quark EOSs in the
pressure-baryonic chemical potential (P − μB ) plane, according to Fig. 3.

As can be seen, all cases of the present hybrid EOSs lead to the emergence of the PT. Strengthening the quark vector interactions
shifts the intersections to higher pressures and baryonic chemical potentials, while SB with a stiff nuclear symmetry energy meets
the lower ones.

Since the baryonic chemical potential is a key quantity in studying dense stellar matter, we display it in Fig. 4 at various baryonic
densities.

As shown in this figure, the baryonic chemical potential μB rises with the baryon density ρB in the pure baryonic and quark
phases, while exhibiting a plateau in the mixed phase. The baryonic chemical potential of the mixed phase grows considerably, as
ηV increases. Meanwhile, the mixed phase related to the SB interaction is formed at higher baryonic chemical potentials.

The nature of the MC requires that the electron chemical potential drops sharply at the baryonic chemical potential of the mixed
phase, as seen in Fig. 5. This figure demonstrates that the electron chemical potential in the baryonic interaction SB, reaches
considerably larger values. The results indicate that the discrepancy between the electron chemical potential of each phase in the
mixed phase region becomes large with rising ηV . Furthermore, the quark vector interaction accelerates the deleptonization in the
pure quark phase due to decreasing the electron chemical potential.

A striking aspect of the EOS for NS matter is pressure P. Thus, we depict in Fig. 6 the pressure versus the baryon density at
the various hybrid EOSs. As can be seen, P increases with ρB , while being constant in the mixed phase. One indeed realizes that
the stiffness of the hybrid EOS relies remarkably on the type of the baryonic EOS and the effects of the quark vector interaction,
since SB and larger ηV make the hybrid EOS significantly stiffer. In addition, the baryonic EOS has a notable consequence on the
width of the mixed-phase rather than the quark EOS. As a consequence, stiffening the quark EOS because of increasing ηV delays
the appearance of the mixture phase, while it occurs sooner (lower baryonic densities) for the stiffer baryonic EOS SB. To reach

Fig. 1 Pressure of SNM (left
panel) and PNM (right panel) vs.
baryonic density. Our findings are
compared with those obtained
from the flow data analysis of
heavy-ion collisions [62]. The
inner panel shows the nuclear
symmetry energy vs. the baryonic
density for the SB and MS
interactions
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Fig. 2 Ratio of the sound speed to the light speed as a function of pressure in deconfined quark matter obeying the interactions RKH (left panel), HK (middle
panel), and LKW (right panel) at ηV = 0, 0.15, 0.30

Fig. 3 Pressure as a function of baryonic chemical potential for the baryonic interactions SB and MS, accompanied by the quark interactions RKH (left
panel), HK (middle panel), and LKW (right panel) at ηV = 0, 0.15, 0.30. The crossing points of the baryonic and quark EOSs represent the baryon-quark
PT under the MC

a deeper insight into the hybrid EOS, the pressure as a function of the baryonic and electron chemical potentials is depicted in 3D
space (see Figs. 7 and 8 for SB and MS, respectively). It can be more clearly seen in these figures that the width of the mixed-phase
region is not significantly changed with the quark vector coupling constant. For a given ηV , the baryonic EOS type has a stronger
influence on the mixed-phase properties than the quark EOS.

Utilizing the EOS of NS matter in a wide baryonic density range, one can calculate the mass of NSs in terms of their radius and
center of energy density with the help of the Tolman–Oppenheimer–Volkoff (TOV) equations [63, 64]:

dP(r)

dr
= − Gm(r)e(r)

r2

[1 + P(r)
e(r)c2 ][1 + 4πr3P(r)

m(r)c2 ]
1 − 2Gm(r)

rc2

, (32)

123



Eur. Phys. J. Plus         (2023) 138:406 Page 7 of 14   406 

Fig. 4 Baryonic chemical potential as a function of baryonic density in HNS matter obeying the quark interactions RKH (left panel), HK (middle panel),
and LKW (right panel) at ηV = 0, 0.04, 0.08, joint to the baryonic interactions SB and MS via the MC. The mixed-phase regions are denoted by the pairs of
the solid dots

Fig. 5 Electron chemical potential as a function of baryonic density in HNS matter obeying from the quark interactions RKH (left panel), HK (middle panel),
and LKW (right panel) at ηV = 0, 0.04, 0.08, joint to the baryonic interactions SB and MS via the MC. The mixed-phase regions are denoted by the pairs of
the solid dots

dm(r)

dr
=4πr2e(r), (33)

where m, e, and P represent the enclosed mass, energy density, and pressure at the radius r, respectively (G being the gravitational
constant). The calculations begin from a central energy density ec and continue to reach the energy density of iron on the surface
signified by the stellar radiusR. For the HNS crust, the inner-crust EOS of Negele and Vautherin [65], which relies on the Hartree–Fock
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Fig. 6 Pressure as a function of
baryonic density in HNS matter
obeying the quark interactions
RKH (left panel), HK (middle
panel), and LKW (right panel) at
ηV = 0, 0.04, 0.08, joint to the
baryonic interactions SB and MS
via the MC. The mixed-phase
regions are denoted by the pairs of
the solid dots

approach, is attached to the outer-crust EOS based on the properties of heavy nuclei by Baym et al. [66]. The gravitational mass
(in units of the solar mass M�) versus the stellar radius is depicted in Fig. 9. As can be seen, the gravitational mass attains a
maximum value, which is indicated by a circle point. Due to the instability against radial oscillations, a stellar configuration with
a radius smaller than the one of the maximum mass is ruled out. The more repulsive nature of the baryonic EOS SB could lead
to the formation of a HNS with larger values of the gravitational mass, and radius. In addition, the quark vector interaction has a
considerable influence on the maximum mass of NSs, so that the maximum mass increases with ηV , and smaller radii are allowed.
Consequently, the maximum mass of a HNS is estimated to be around 2M�, complying with the observational range from the
mass measurement of heavy pulsars. The stability of a HNS under the MC demands a connected mixed-phase branch for the HNS
structure, meaning that the existence of a pure quark core (where the central pressure lies just above the transition pressure P(tr))
is inevitable even if its contribution to the total gravitational mass is negligible. Based on the CSS parameters of PT, the stability
condition is given independently of the sound speed in the pure quark phase [55, 56] as

	e(tr) < 	e(tr)
cr , (34)

where

	e(tr) =e(tr)
Q − e(tr)

B
, (35)

	e(tr)
cr =1

2
e(tr)
B

+ 3

2
P(tr). (36)

Thus, the mixed-phase energy density range 	e(tr) must be smaller than the critical value 	e(tr)
cr to fulfill the stability condition

within the MC. The maximum mass properties, associated with the CSS parameters e(tr) and 	e(tr)
cr , are listed in Table 2 for each

hybrid EOS.
As realized from this table, the formation of a stable HNS within the MC is not allowed for the hybrid EOS SB-LKW at any

ηV , and the one given by MS-LKW in the absence of the quark vector interaction (their corresponding data are denoted in bold).
Therefore, based on our phase-space-based baryonic models, only the quark interaction LKW can destabilize the star under the MC.
Meanwhile, the present results cannot confirm the scenario that the light object of GW190814 [68] is a massive HNS.

The tidal deformability of NSs is an important parameter in the gravitational-wave (GW) astronomy of the pre-merger phase of a
binary compact object coalescence, while playing a significant role in giving data about the EOS of dense matter. For the first time,
the tidal effects have been measured after the LIGO-Virgo collaboration detected the GW170817 signal. The dimensionless tidal
deformability (polarizability) �T , by which the linear response of the quadrupole deformation of a compact star to the external tidal
field of its companion is measured, can be determined by the tidal Love number k2 and the star compactness CS = M/R [72, 73]
(G = c = 1) as

�T = 2

3
k2C

−5
S

, (37)

with

k2 = 8C5
S

5
(1 − 2CS )

2[2 + 2CS

(
hR − 1

) − hR

]
× {

2CS

[
6 − 3hR + 3CS

(
5hR − 8

)]
+ 4C3

S

[
13 − 11hR + CS

(
3hR − 2

) + 2C2
S

(
1 + hR

)]
+3(1 − 2CS )

2[2 − hR + 2CS

(
hR − 1

)]
ln(1 − 2CS )

}−1
,
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Fig. 7 Pressure as a function of
baryonic and electron chemical
potentials in HNS matter obeying
the quark interactions of RKH (a),
HK (b), and LKW (c) at ηV = 0,
0.15, 0.30, joint to the baryonic
interaction SB via the MC
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Fig. 8 Pressure as a function of
baryonic and electron chemical
potentials in HNS matter obeying
the quark interactions of RKH (a),
HK (b), and LKW (c) at ηV = 0,
0.15, 0.30, joint to the baryonic
interaction MS via the MC
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Fig. 9 Mass-radius diagrams of
HNS matter obeying the quark
interactions RKH (left panel), HK
(middle panel), and LKW (right
panel) at ηV = 0, 0.04, 0.08, joint
to the baryonic interactions SB
and MS via the MC. The dots and
pluses display the mixed-phase
(MP), and maximum mass

(M(max)
G /M�) configurations,

respectively. The arrow is used to
distinguish the structures
comprising the pure baryonic
(BP), mixed (MP), and pure quark
(QP) phases in the center of the
star. The horizontal bands indicate
the observational mass constraint
from PSR J0740+6620 [67], and
the gravitational mass inferred for
the light component of GW190814
[68]. We also show the area of the
mass-radius limits deduced from
the NICER measurements of PSR
J0030+0451 [69, 70]. The region
on the top-left of each panel is
excluded by causality [71]

Fig. 10 Tidal deformability of
HNSs as a function of
gravitational mass (in units of the
solar mass M�) in the quark
interactions RKH (left panel), HK
(middle panel), and LKW (right
panel) at ηV = 0, 0.15, 0.30, joint
to the baryonic interactions SB
and MS via the MC. The dots and
pluses display the mixed-phase
(MP), and maximum mass

(M(max)
G /M�) configurations,

respectively. The arrow is used to
distinguish the structures
comprising the pure baryonic
(BP), mixed (MP), and pure quark
(QP) phases in the center of the
star. The vertical bar shows the
tidal deformability range of a
1.4M� NS, obtained by the
analysis of the GW170817 signal
[75]

Here, hR is equal to the function h (r) at the stellar radius R, calculated simultaneously by solving the following nonlinear first-order
differential equation, and the TOV Eqs. (32) and (33) for the boundary condition h (0) = 2 [74]:

r
dh (r)

dr
+ h (r)2 + F1(r)h (r) + r2F2(r) = 0, (38)

where

F1(r) = 1 − 4πr2[e(r) − P(r)]
1 − 2m(r)

r

, (39)

and

F2(r) =
4π

[
5e(r) + 9P(r) + e(r)+P(r)

dp/de − 6
4πr2

]
1 − 2m(r)

r

− 4

r4

[
m(r) + 4πr3P(r)

1 − 2m(r)
r

]2

. (40)

In Fig. 10, we depict the dimensionless tidal deformability �T in HNSs as a function of the gravitational mass (in units of the solar
mass M�).
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Table 2 Characteristics of the maximum mass configuration of a HNS obtained from the baryonic interactions SB and MS, as the quark interactions RKH,
HK, and LKW at ηV = 0, 0.15, 0.30 are joint via the MC

	e(tr) 	e(tr)cr ec Mmax R �T
(MeV fm−3) (MeV fm−3) (MeV fm−3) (M�) (km)

RKH

SB

ηV = 0.0 294.02 426.19 807.21 2.11 13.89 49.20

ηV = 0.15 482.78 560.26 1088.64 2.26 13.53 24.27

ηV = 0.30 599.03 681.53 1286.29 2.34 13.24 15.38

MS

ηV = 0.0 811.79 818.80 1661.37 1.98 11.42 22.50

ηV = 0.15 907.23 1029.66 1891.67 2.06 11.15 13.24

ηV = 0.30 985.24 1281.77 2119.80 2.10 10.88 8.56

HK

SB

ηV = 0.0 177.02 316.15 634.96 1.89 14.10 113.96

ηV = 0.15 209.22 461.17 778.50 2.16 13.76 38.78

ηV = 0.30 384.73 602.60 1022.51 2.29 13.42 20.34

MS

ηV = 0.0 565.45 776.35 1395.71 1.96 11.48 22.50

ηV = 0.15 766.44 976.68 1717.93 2.04 11.21 13.24

ηV = 0.30 873.74 1203.49 1962.74 2.09 10.96 8.56

LKW

SB

η
V

= 0.0 592.50 489.60 555.14–1147.64 2.19 13.72 34.23

η
V

= 0.15 643.46 556.10 602.95–1246.41 2.26 13.54 24.71

η
V

= 0.30 677.02 626.02 650.77–1327.79 2.31 13.37 18.62

MS

η
V

= 0.0 914.21 842.84 865.49–1779.70 1.99 11.39 20.95

ηV = 0.15 952.44 973.63 1902.02 2.04 11.22 14.96

ηV = 0.30 990.27 1120.30 2029.86 2.08 11.05 11.11

For each case, we present the CSS parameters introduced as the mixed-phase energy density range 	e(tr) and its critical value 	e(tr)cr , along with the central
energy density ec , gravitational mass Mmax (in units of the solar mass), stellar radius R, and tidal deformability �T
The data in bold correspond to an unstable HNS under the MC

As indicated in this figure, �T decreases drastically with rising the gravitational mass, while its larger values correspond to the
SB interaction. It can be seen that stiffening the quark EOS with increasing ηV reduces the tidal deformability of the maximum
gravitational mass. In addition, stiffening the quark EOS with increasing the vector coupling ratio reduces the tidal deformability
of the maximum gravitational mass, as more significantly indicated in SB than in MS (see also Table 2). According to the %90
confidence-level estimate 70 ≤ �T ≤ 580 for a 1.4M� NS [75], which is congruent with the data obtained in MS, our results show
that its core is not dense enough to form a HNS.

4 Summary and conclusion

We have used the MC in this study to investigate the baryon-quark PT in the HNS structure. Based on a phase-space approach
complying with the Thomas–Fermi approximation, the EOS of baryonic matter has been obtained using the SB interaction, and
its density-dependent extension called the MS interaction. Utilizing the standard (local) NJL interactions RKH, HK, and LKW, we
have computed the EOS of quark matter. The softer nature of the baryonic EOS MS due to being less repulsive than the one SB,
makes it more consistent with heavy-ion flow data. We have shown that the sound speed (in units of the light speed) in the pure
quark phase varies more weakly with the pressure, especially for the LKW model, as the pressure increases. The repulsive vector
coupling ratio ηV has a strong influence on the stiffness of the quark EOS, and the properties of the baryon-quark mixed phase. With
an increase in ηV , the pressure and baryonic chemical potential of the PT are shifted to higher values, as the transition density for
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the onset of the mixed phase is delayed, and the width of the mixed phase is enlarged. According to the CSS parameters extracted
from the present hybrid EOSs, a stable 2M� HNS can be predicted under the MC. By adopting the MC, a HNS can be destabilized
if the quark interaction LKW is used, whereas the LKW and HK interactions always lead to a stable HNS. We found that the hybrid
EOSs using the SB interaction provide larger values of the gravitational mass, radius, and tidal deformability for a HNS than those
employing the MS interaction. It should be noted that the MS interaction demonstrates better compatibility with the estimated range
for the tidal deformability of a 1.4M� NS than the SB one. Our finding for the maximum gravitational masses cannot account for
the scenario that the light component of GW190814 is a massive HNS. In the future, we aim at extending the present approach for
the baryonic and quark EOSs to investigate different aspects of the baryon-quark PT in HNSs.
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