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Abstract A joint remote state preparation (JRSP) scheme is put forward to prepare an arbitrary single-qubit state. Specifically,
the GHZ-state of three qubits as a resource successively passes through the correlated amplitude damping (CAD) noisy channel.
Then, an analytical expressions quantifying the average fidelity of JRSP is obtained under the CAD noisy channel. Comparing
with the results of uncorrelated amplitude damping (AD) noise, we find that the correlated effects enable to improve the average
fidelity of JRSP in the CAD noisy channel. Furthermore, by introducing the weak measurement (WM) and quantum measurement
reversal (QMR), and we calculate the average fidelity as a function of the decoherence strength, memory parameter, measurement
strength of WM and measurement strength of QMR for an arbitrary quantum state to be prepared. These results demonstrate that
the combination of WM and QMR can significantly improve the average fidelity in both uncorrelated and correlated AD noise.
Our results may extend the capabilities of WM as a technique in various quantum information processing which are affected by
correlated noise.

1 Introduction

One of the key tasks of quantum information [1-4] is the use of entangled states to transmit information in quantum systems.
The striking characteristic of entanglement [5—7] enables communication methods completely different from classical ones. As the
most well-known example of quantum communication, quantum teleportation (QT) was first proposed by Bennet et al. [8], which
allows one to convey an arbitrary single quantum state from the sender to a distant receiver via consuming one ebit and two cbits.
In order to reduce the classical resources required in QT, the first remote state preparation (RSP) scheme was first put forward by
Pati [9] in 2000, where the sender and the receiver share one ebit of entanglement in advance, and the sender holds all the classical
information of the target state. This RSP is completed probabilistically after the sender’s single-qubit von Neumann measurement
and the receiver’s recovery operation. After Pati’s pioneering work, much attention is focused on RSP in both theoretical [10-15]
and experimental [16—18] aspects. In the RSP scheme, the information transmitted remotely is assigned to only one sender, which
may lead to information disclosure when the sender is dishonest.

In order to address this deficiency, JRSP was proposed by increasing the number of senders [19, 20]. In the process of JRSP, the
teleported information is broken up into several parts, all of the senders must cooperate to aid the receiver to restore the target state.
It means that neither a single sender nor part of the senders can help the receiver to reconstruct the target state, thus the JRSP can
improve the communication security. Due to the remarkable advantage, JRSP has attracted great interest since its first appearance,
and different entangled states, like Bell, GHZ, W, cluster and Brown states, are used as shared resource in JRSP [21-28]. The
JRSP containing some special quantum states, such as four-dimensional GHZ-type state [29], cluster-type [30, 31], W-type [32],
equatorial two-qudit state [33, 34] and more, are investigated. In 2012, Luo et al. [18] proposed the experimental architecture of
JRSP using GHZ state. Nguyen et al. [35] presented the quantum circuit of JRSP by using POVM measurement. Yu et al. [36]
designed the schemes for JRSP of arbitrary two- and three-photon states with linear-optical elements. It is easy to find that all of the
JRSP schemes above are considered in an ideal environment. However, quantum noise is an unavoidable phenomenon in realistic
environment. Noise can decohere a quantum entangled state, in which case the output state received is inconsistent with the prepared
state. In other words, the entanglement is fragile and easily broken via environmental noise. Therefore, it is meaningful to study the
influence of noise on JRSP.
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Each physical process, as we all know, can be viewed as a quantum channel, which maps the initial state of the system to the
final state [8, 37]. For multipartite quantum systems or consecutive uses of the same channel, these channels can be divided into
correlated or uncorrelated channel. The effect of the uncorrelated noise on JRSP has been widely studied by a number of researchers
[38—46]. Nevertheless, the correlated channel is more practical in physical process, especially, in the case of high transmission
rate [47-49]. Unlike the uncorrelated AD channel in which each qubit independently experiences the noise, the qubits may suffer
relaxation simultaneously in the CAD channel [50]. As shown in Ref. [51], the correlation effects help to avoid entanglement sudden
death. However, to the best of our knowledge, few detailed investigations involving the influence of CAD on JRSP are available
at the present. On the other hand, to overcome the impact of decoherence on quantum entanglement, several types of decoherence
suppression methods have been proposed, including dynamical decoupling [52], quantum entanglement purification [53], quantum
error coding [54], and decoherence-free subspace [55].

As an important quantum technology, weak measurement (WM) has attracted extensive attention in the past few years [51, 56-60].
Different from the traditional von Neumann orthogonal projection measurement, WM can not completely collapse the measured
quantum system, and it is more gentle in extracting information from the system. Thus, we can use quantum measurement reversal
(QMR) to restore the initial state with a certain probability. Recently, some researchers have found the ability of WM and QMR
to protect entanglement from AD noise [57, 59, 61-69]. To be specific, it needs repeatedly measurement to gain an unknown state
information with a finite probability. The probability of success decreases with increasing strength of the measurement. Meanwhile,
the action that accompanies the weak measurement is the quantum measurement reversal (QMR), which utilized to erasure the
influence of the first measurement [65]. In 2008, Katz et al. [66] discussed the relationship between the fidelity and the strength of
the measurement in the system of superconducting qubit. Then, Kim et al. [67] utilized the form of operator to describe the process of
weak measurement and recover measurement in 2009. They also researched the feasibility of utilizing weak measurement method in
the system of photonic qubit. Whereafter, in 2011, Kim et al. [68] proposed the weak measurement method can resist the decoherence
phenomenon of single (two)-qubit entangled state in AD channel, and Lee et al. [69] demonstrated it in experimental. However,
no systematic study devoted to the application of WM and QMR with CAD noise on JRSP protocol has been reported yet. This
motivates us to utilize WM and QMR to study the JRSP under CAD noise. More importantly, we also need to know whether WM
and QMR can suppress the influence of CAD noise on JSRP protocol.

In this paper, we firstly consider the influence of CAD noise on JRSP, and then propose a scheme to improve the average fidelity
with the help of WM and QMR. We find that the average fidelity of JRSP under CAD noise is better than that under AD noise. In
addition, we also show that the combined WM and QMR can greatly improve the average fidelity in both AD and CAD noise. In
particular, for the completely uncorrelated AD and fully correlated amplitude damping (FCAD), the average fidelity may be close
to 1.

The rest of this paper is organized as follows. In Sect. 2, the JRSP via three-qubit entangled GHZ-state as quantum channel under
CAD noise is investigated in detail. Then in Sect. 3, we show that how to use WM and QMR to improve average fidelity of JRSP.
Finally, some conclusions are drawn in Sect. 4.

2 JRSP under CAD

In this section, we investigate JRSP under CAD for an unknown single-qubit state. The scheme involves totally three parties located
in different places: two observers Alice and Bob, and a receiver Charlie. Suppose that two senders Alice and Bob would like to help
the receiver Charlie prepare an arbitrary unknown single-qubit state |£), which can be given by

6 6 .
|£) =cos§|0) + sin Eel¢|1>, 6

where 6 and ¢ are the polar and the phase parameters, respectively, and satisfy 6 € [0, w] and ¢ € [0, 27 ]. Alice and Bob own the
information of amplitude and phase factor, respectively. Assumed that Alice holds a quantum resource generator in her laboratory
and she generates the three-qubit entangled GHZ-state, such that

1

= 000 111 s 2
|G)aBC ﬁﬂ )+ 1111) agc 2)

and sends qubit B and C to Bob and Charlie through channel with CAD noise successively, respectively. Due to the consecutive
uses of the noisy channel, the correlated effect should be considered. Therefore, the entangled state |G) 4 ¢ has suffered CAD noise
during the distribution. The dynamics of an entangled state subject to CAD nose is described by the quantum super-operation &
acting on the initial state [60].

1 1

ecap(P)=(1—p) > URENpUREN +pn) (I A)pU ® A, 3)
i,j=0 k=0
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where [ is a second-order identity matrix, p is the correlated parameter (memory parameter) with 0 < p < 1, and

1
p =19)apc (Gl = 7(1000) + [111)) apc ((000] + (111)). “

Obviously, we can obtain the uncorrelated AD channel by u = 0 and get the FCAD channel when u = 1. E;; = E; ® E; is the
tensor product for Kraus operators of AD noise. The corresponding Kraus operators are

1 0 0 v
Ey = , E1= v , ©)

0 JI—y 0 0

the parameter y is the decoherence strength of the AD channel and 0 < y < 1. Ay has been solved by studying the correlated
Lindblad equation [61], which gives the following formalism

1 00 0 00 0 Jy
01 0 0 00 0 0

Ad=19p 0 1 0 cA1L=100 0 o | ©)
000 JTI—y 000 0

The evolution of the initially shared state in Eq. (2) under the CAD noise can be obtained from Eqs. (3-5), which is expressed as

1
ecap(p) = 711000){000] + (zy + 13/7)(1000)(111] + [111)(000])

+ @y + uy) 111 (111 + @yy (1110)(110] + [101)(101]) @)
+ (my? + 1y)[100)(100]145c

where t = 1 — pwand ¥ = 1 — y. Our scheme includes the following three steps:
Step 1. Alice implements a single qubit von Neumann measurement with the basis MA = {M.Ay, M.A;} on qubit A, where

0 .0 0 .0
MAy = (cos §|0)+s1n 5|1))(cos E(Ol—i-sm 5(1|> ®)
and
.0 0 .0 0
MA| = (sm 5|0> — cos §|1))(s1n 5(0| — cos 5(1|>. )

After the measurement, Alice encodes the result in classical bit m and sends it to Bob and Charlie via the classical channel. The
system state after Alice’s measurement is

-/\/l-/‘tm"?CAD(,0)(~/\/l~'4m)]L
tr(MA;,e(p) (/\/l»"lm)Jr

Pm = trA|: i|, with m € {0, 1}. (10)

Step 2. Bob performs a single qubit von Neumann measurement with the basis MB,, = {MBY,, MBL,} on qubit B according to
Alice’s result m, where MB% = |03)(0,9,| and MB,ln = |0,1,l)(0,11|, and {|0;) : n € {0, 1}} are in the form

0" 0
[O) _v. |0) (1
104) 1)
with
1 (1 ¢ 1 e~ ]
VO_E(l —€7i¢> and V]—ﬁ(_eiid’]). (12)
Then, he informs Charlie his measurement result n. The system state after Bob’s measurement result is
MB" p (MBI
o :trB[ P m)T ] with m,n € {0, 1}. (13)
w(MB, o (MB,))

Step 3. According to Alice’s and Bob’s measurement results, Charlie can construct the state |£) by performing the recovery operator
Ry, where RY = [0)(0] + [1)(1], Ry = 10){0] — [1)(1], R} = [0)(1] — |1)(0] and R{ = [0)(1| + [1){0].
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After the above three steps, Charlie finally obtains the output state p” (out) = R’ p” (R")", which can be given by
0 .0 _ .50
,og(out) = pé(out) = <0052 3 +y sin? 5)|0)(0| +y sin? §|1)(1|

+ (7 + y/7) sin 0 cos Q(e_i¢|0)(1| +€?11)(0)),
2 2 (14)

0 _ 1 _ -29 2€ - 29
oy (out) = p, (out) = | sin 2—{—ycos > [1)(1] + ¥ cos 2|0)(0|

.0 0 _. )
+ (A7 + 1y/7) sin 7 cos (7 0) (1] + €™ 1)(0)).

In the JRSP scheme, the credibility of quantum teleportation through CAD noise is usually quantified by the fidelity which measures
the overlap between the initial |£) and the finally teleported state p;, (out),

F) = (&lppy (out)|E), with m,n € {0, 1}. (15)
Considering the fact that the output state may come up with certain probability, we invoke the average fidelity
1
Fav="Y_ quiFp, (16)
m,n=0

where {g,,,} is the probability that the state p;;, occurs. Through calculation, g,,, equals to % for any m, n € {0, 1} in this section.
Note that this average fidelity depends on the target state, so we call it the state dependent average fidelity.
From Egs. (1), (14), (15) and (16), it follows that the fidelity is explicitly expressed

1
Fav=3 [1 FIT + w7 (Tcos?0 + sinzé)]. (17)
In general, the average fidelity is determined by the target state |£) and the corresponding noise channel. Therefore, it is natural to

average over all of the target state to obtain a state independent effect of the corresponding noise channel, the formula of the average
fidelity is as following

o 1 b4 2
(F) = H/ sin@d@/ d - Fay, (18)
0 0

this average fidelity is over all of the qubit states, thus we call it the state independent average fidelity.
By substituting Egs. (17) and (18), we can obtain the formula of the average fidelity

— 1
(F) =14+ 507 -7) - 3. (19)

The behaviors of average fidelity as a function of the parameter y and p are shown in Fig. 1.
As one might expect, in the uncorrelated circumstance (i.e., u = 0), the average fidelity ranges from 1 to 1/2 when the decoherence
strength y increases from O to 1. Specifically, in the case of ;© = 1, the second use has full correlation of the first use, the average

Fig. 1 The relationship among the
average fidelity, the parameters y
and u
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fidelity (F) is (3 + ¥ + 2/¥)/6, which attains its maximum 1 at y = 0 and minimum 1/2 at y = 1. The partial derivative of (F)
with respect to the correlated parameter p is

W _ L - vp =o. 20)
o 3

That is to say that the average fidelity (F) is increasing with the correlated parameter u regardless of the noise parameter y. The
average fidelity of our JRSP scheme is increased by 114/7 (1 — +/¥)/3 in CAD noise channel. This result means that the correlated
effect enables to enhance the average fidelity of JRSP which is subject to AD noise.

3 Protecting JRSP by WM and QWR

In Sect. 2, we have studied the influence of CAD noise on JRSP. We find that even though the correlated effect could potentially
improve the fidelity, the unfavorable effects of uncorrelated AD noise still remain. In this section, we turn to introduce the technique
of WM and QMR to remove the adverse effects in both uncorrelated AD and CAD noises. As mentioned earlier, the state |G) 4pc
shared by Alice, Bob and Charlie is subject to a prior WM (carried by Alice) before the qubits suffer the CAD noise; after that a
post-QMR is performed by Alice and Bob, respectively. This of operations can be expressed as

PQMR = MQMR[ECAD(MWMPM&M)]MEMR, 2D

where Mwwm and MgMmR are non-unitary quantum operations, which are described as follows

1 0 1 0
Mwwm = ®
0J/T—p 0J/T—p
4 (22)
J1—¢g0 J1—¢q0
Mowr = ®

0 1 0 1
A

Here p, g are the measurement strengths of WM and QMR, respectively, and 0 < p, g < 1. For 0 < p < 1, it represents the WM
does not completely collapse the state to |00), while 0 < g < 1 indicates that the measured state is still recoverable. Note that both
WM and QMR are local operators, and thus it does not require Alice and Bob in the same place. It is also interesting to find that the
QMR could be rewritten as

JI—=qg 0 1 1 0
R X X, (23)

0 1 l—qg \oyT—¢q

where X = |0)(1]| 4 |1)(0] is bit-flip operation. Equation. (23) means that the QMR is constructed by three local operations: a
bit-flip operation, a WM and a second bit-flip operation. The implementation of WM has been achieved in both photonic qubits
[1, 2] and superconducting qubits [3]. For instance, as shown in Refs. [1, 2], the WM is implemented with a Brewster angle glass
plate (BAGP) for the photon polarization qubit. The BAGP reflects vertical polarization with a certain probability and completely
transmits horizontal polarization, which exactly functions as the WM.

From Egs. (4) and (21), the final state of entangled state can be written as

1 2 =2
= —[¢~]000)(000] + V|111)(111 W[100)(100
PoMR = 171000)(000] + VITTT) (111} + g~ W[100){100] 24)

+gX(]000)(111] + [111)(000]) + Y (|110)(110] 4 |101)(101)],

where V = p°(@y® + uy), W = P°(@y* + uy). X = p@y + uv/y). Y = Payy. N = (1 + W) + V + 277 is the
normalization factor.
Through the standard procedure of JRSP, the state held by Charlie is one of the following four states:

2 0 0 0
pd(out) = pl(out) :U—Hézcosz >+ (G*W + qY)sin® E]|0><0| + (V +qY) sin? Sl
1
7 x sin & cos & (e~ i
+qXSln§COSE(€ [0)(1] + €'?]1)(0])
-0 1 2 2. 20 o - 20 _ 2 0
o1 (out) =p1(0ut)=o— 2{g* sin E—l—(q W 4+ gY)cos ) [1)(1] +2(V 4+ qY)cos §|0)(0|
2

+c}XSin§cosg(e_i¢|O)(1| +ef¢|1><0|)} (25)
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Fig. 2 Average fidelity Fgf "asa L Sr— T T T T
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where o1 = (2@2 — N)cos6@ + N, op = (N — 252) cosf + N.
From Egs. (1), (15), (16) and (25), the state-dependent average fidelity can be obtained as

. 1
Fop = 55 2@ 4V +GY) + @ W+ 24X —° = V)sin® 0]. (26)

Similarly, we can get the state independent average fidelity

) Q2+ WG + 2X +3Y)g +2V
3[(14+ W)g? +2Yg+V]

27)

Now, let us make a detailed analysis of the average fidelity (13 ). Firstly, in order to achieve the maximal value of ( I:: ), we need to
F

choose the optimal QMR strength g. It can be obtained by calculating the following conditions: d (F )/dq = 0 and 92(F) / (8q)2 < 0.
Specifically, the following equation holds on here,

8(13“)/8q = %[ZE(W +2)+2X +3Y] - %[q(w +D)+Y]=0, (28)

where 03 = 52 (24 W) +g(2X +3Y) 4+ 2V). Then, from the condition 3>(F)/(3q)* < 0, the result turns out to be

VW — Joz
2X(W+D+Y(W —1)

g=1+ 29)
where o4 = V(VW2 +4X2(W + 1) — Y2(W — 1) — 4XY). Therefore, the maximally teleported average fidelity can be expressed
as

Fort 1 4+2W+0'5/\/0'4

W e 1+W+O'()/4/0'4’

(30)

where 05 = 4X>(W + 1) +3Y2(W — 1) +4XY QW + 1) = 2VW (W +2), 06 = Y2(W — 1) + 2XY — VW)(W + 1). Obviously,
the teleported average fidelity is equal to 1 when y = 0.

Figure 2 shows the result of an average fidelity as a function of decoherence under CAD noise with the assistance of WM and
QMR. It is straightforward to note that the average fidelity rapidly decreases with the increase in y if neither WM nor QWR is
executed.

Each line of this figure can be seen as follows.

(=D (4yAx =32y +4A5 =32 Ax 8y Ay +y Ay +44y? =367 +18y* —10y° + 16)

2, 2D (A28 2y =) (A —y2+yP) 3 2 2
3 <(V D™+ P42y —y42)° 122 —y42 (7/ +2y v+ 2)

F(p=0)=

3D

where Ay = \/(y 12 (5y2—4y +4).
500 +/5 Ags — 16000 y + 12300 2 — 7380 3 + 1890 y* — 8105 +300+/5y Az — 1355 y2 Aps + 216573 Ay + m + 10000
21150 %2 — 24000y — 15390 y3 + 5670 y* — 243015 + 900 /5y Axy — 540/5 92 Ay + 324 /53 Ay + 15000

F(p=04)=
(32)
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where Ay = \/()/ — 1)2(9y2 — 12y +20).

500 /5 Asz — 12000y + 2700 % — 740 3 + 504 — 105 + 10055y Ass — 15v/5 92 Az + 8/5 13 Ags + L2442 1 10000

F(p=08) =
b 4350 y2 — 18000y — 1470 3 + 150 y* — 305 + 300 /5y Azz — 60 /5 y2 Azz + 124/5y3 Axz + 15000

(33)

where Ay; = \/(y — 12 (y2 -4y +20).

F(p:O,q:O):l—%. (34)
However, the average fidelity, when the WM and QMR are introduced, could be enhanced. Particularly, we find the larger the
measurement strength of WM is, the larger the average fidelity would be. A more clearer description of the role of p is shown in
Fig. 3,
where the plot of Fot " is shown as a function of measurement strength p of WM for different memory parameters u with y = 0.5.
Each line of this figure can be expressed as:

(0) (0) 0) 0)

B B B B
Fu=0)= 35 F(u=04)= 5 F(u=08)= —: Fu=1=—% (35)
BS] 332 B33 334

where B;Ii{) (i=1,2,3,4;k=0,1) can be seen in “Appendix”.

The participation of WM and QMR enables us to improve the average fidelity on the basis of correlate noise. The maximally
achievable fidelity always approaches 1 without regard to y when u = 0, 1. However, for the intermediate cases 0 < pu < 1,
the maximal value of F.7 " is less than 1. The explanation of this phenomenon could be understood as follows. From Eq.(3), we
note that in both uncorrelated AD and FCAD channels, only one dissipative channel is formulated in the decoherence process, i.e.,
[11) — (]10), |01)) — |00) for uncorrelated AD noise and |11) — |00) for FCAD noise. The above features ensure the operation of
QMR could recover the initial information before the decoherence. However, for the general CAD channel (0 < ¢ < 1), the QMR
can not exactly distinguish such two dissipative channels, and hence the fidelity cannot achieve 1. To illustrate this phenomenon
more clearly, we plot Fig. 4 to show the dependency between the maximal achievable fidelity and the correlated parameter . It is
obvious that the fidelity is no longer a monotonic function of x with the given y and p > 0.

Each expression is

(0) (©0) 0) (0)

B B B B
F(p=0)=——(: F(p=05)=——1: F(p=08) = ——5: F(p =099 = ——(. (36)
B41 B42 B43 B44

where Bf‘lj,) can be seen in “Appendix”.

Moreover, when no weak measurement operation is implemented from Fig. 4a, it can be concluded that (i) the average fidelity
of fully correlated channel (1 = 1) is always greater than general correlated channel (0 < p < 1), and (i) the average fidelity
of general correlated channel (0 < p < 1) is always greater than that of uncorrelated channel (u = 0). However, as long as the
measurement strengths of WM, p, is larger than 0, the phenomenon (ii) is not valid. It can be seen from any graph in Fig. 4b—d
that when the decoherence strength y is close to 1, the average fidelity decreases sharply with the small increase in the correlated
parameter . In combination with Fig. 4b—d, we find that the measurement strength p of WM has an impact on this downward trend,
that is, the larger the measurement strength P of WM, the larger the base amount of the average fidelity to be reduced.

Figure 5 shows the average fidelity as a monotonically increasing function of the memory parameter u with y = 0.5, whether
WM and QMR are involved or not. Further, we find that for any given memory parameter j, the greater the measurement strength
p of WM is, the greater the average fidelity would be. That is, on the basis of memory enhancing the average fidelity on AD noise,
the participation of WM and QWR can further improve the average fidelity of JRSP.

Each expression can be seen as:

©) 3O 3O 3O
_ _ 51 . — _ 52 . — _ 53 . — _ 54
F(p=0)= ; F(p=03) = ; F(p=05) = ; F(p=08) = ; (37
M o M @
BSI 352 BS3 BS4

where BSU;) (j=1,2,3,4,k =0, 1) can be seen in “Appendix”.
Obviously, the total probability of success can be obtained by adding each probability that corresponding to ,0; (out) (i, j =0,1)

(38%)

Ptotal =

2‘: VA WH2Y —2g —2Wq —2Yqg + W +¢> + 1
pij = .

N
i,j=0

where p;; comes from the standard procedure of JRSP. After replacing V, W, Y, N with p, g, i, v, the total probability of success
can be simplified to 1. Therefore, our scheme is perfect although it suffers noise channel.
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4 Conclusion

In summary, by using three-qubit entangled GHZ-state as the quantum channel, we study the influence of correlated AD noise on
the scheme of JRSP for arbitrary single-qubit state. Letting the qubits of a sender and the receiver pass through the channel with
AD noise, we get results for the JRSP scheme as following: (A) The analytical formulas of the output state in the JRSP scheme
under correlated AD nosy channel is presented. Based on these formulae of the output state, the state dependent and independent
average fidelities of the target and output states are calculated. Consequently, the expression of the partial derivative of the state
independent average fidelity with respect to the correlated parameter p is obtained. The partial derivative is positive for any value
of the decoherence parameter y, which means that the correlated parameter can increase the fidelity in JRSP in correlated AD noise
environment. (B) The state independent average fidelity as a function of the decoherence parameter and the correlated parameter is
plotted, and its increment caused by the correlated parameter is given.

Subsequently, utilizing WM and QMR to the uncorrelated and correlated AD noisy channel, we obtain the formulae of the output
state in JRSP scheme under AD and CAD noise environments, and calculate the state dependent and independent average fidelities
of the target and output states. By making relevant graphics of the state independent average fidelity in JRSP scheme under AD and
CAD noise environments, we find that the combined action of WM and QMR can almost completely suppress the AD and CAD
decoherence if the careful optimization of the strengths of WM and QMR is carried out. That is, the combination of WM and QMR
in both AD and CAD channels can greatly improve the efficiency of JRSP. Our result may be applied to enhance the communication
efficiency of experimental realization of JRSP scheme under AD and CAD noise environments.
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Appendix

This section, we demonstrate the concrete expressions for each line in Figs. 3, 4 and 5.

Fig. 3 Average fidelity F,r, "asa 1 T

function of measurement strength
p of WM for different memory
parameters p with y = 0.5
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Fig. 4 The relation of y, w and F2P" when p = 0in (a), p = 0.5in (b), p = 0.8 in (¢), p = 0.99 in (d)
. . opt
Fig. 5 Average fidelity F,, asa 1 T T T T —
function of memory parameter p == -
for different measurement strength === -
pof WM withy =0.5 e —

B 1

opt
av

F,

Explicit expressions for Bél;)

In Fig. 3, the expressions for each Bg;) can be seen as follows.
BY =2(p— 1)> (101 A3; — 60 p A3 — 176 p + 248 p> — 48 p> +20 p* +42 p® A3 — 20 p° A3
+p* Az + 468) (39)

@ Springer
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2
Bo-0(F+4 -5 -3)
p —T1p2+7p—17

BY =|3(p -1+

Rp-(5-5+5)@r+24s-p 1)
(p-”—7p2—|-7p—17)2

BY =2(p—1)? (4835 V7 Az — 982464 v/2 p — 1889664 p + 6816 /14 A3y + 1389696 /2

+ (PP =7p*+7p—17)

+ 818496 /2 p? — 216384 /2 p3 + 65856 /2 p* + 1927296 p> — 925904 p> + 386316 p*
— 82320 p° + 13720 p® — 2514+/7 p* A3y + 980 /7 p* A3y — 4977 p* A,

+ 336014 p* A3y — 67214 p3 A3y + 2636 V7 p Azy — 566414 p Az + 2093756);
21632 — 11242 p — 171 p + 56 /2 p2 + 147 p2 — 21 p + 285

By =|21(p—1)

2 2
60 (p—1)? (- — T2+ 27) (98 p 4+ 2/7T Aza — 49 p* — 49
+ (20 1 2°)< ) . (123120f—137712«/§p
(216@—nzﬁp—171p+56ﬁp2+147p2—21p3+285)
—194238 p + 133728 /2 p> — 61152/2 p* + 21168 /2 p* — 2352/2 p° + 186503 p? — 87332 p°

+35063 p* — 6174 p> + 441 p° + 174537)

where A3, = /1056[2 —4324/2 p — 962 p + 336 /2 p? + 941 p2 — 280 p3 + 70 p* + 1591.
BY =2(p—1)° (14784«6\/@ — 1231488 /2 p — 7982928 p
+1354752v/2 4 26124 p \/ A3z + 1026432 /2 p? — 321408 /2 p> 4 93312 /2 p* + 22935 \/A33
—29826 p? \/A33 + 16740 p> /A3 — 4293 p* \/A33 + 7283592 p — 3736368 p* + 1520532 p*
—349920 p° + 58320 p° + 8640 /2 p? / A3z — 1728 V2 p* \/A33 — 14016 V2 p \/A33 + 7008372)
1200 (p — 1)3 (%{; + VA Sp %)
464 /2 — 2882 p — 719 p + 144 /2 p2 4+ 63 p2 — 9 p3 + 105

By =|27(p 1)

2 2
540 (p — D2 (2 — 22 4+ B) (54 p + 2 J/Az3 — 27 p* — 27)
+ ( ) 5 | (9744072 - 13379242
(464ﬁ—2sgﬁp—79p+144ﬁp2+63p2—9p3+105)
—551118 p + 134208 v/2 p? — 67392 /2 p> + 23328 v/2 p* — 25922 p° + 452623 p* — 177732 p°

146863 p* — 1134 p° + 81 p° +4416l7)

where A33 = 768 /2 — 416 /2 p — 3066 p + 288 /2 p? + 2273 p% — 720 p> + 180 p* + 3973.
B =6 p (A34)> — 750 p Asy — 13280 p + 250 A34 + 14 (A34)” + 16496 p* — 13056 p° + 7648 p*
— 3168 p° 4976 p® — 192 p” + 24 p® 4+ 955 p? Ass — 748 p> Azg — 7 p? (A34)> + 413 p* Azy
+4p° (A30)° — 158 p° Asq — p* (A34)° +45 p® Asq — 8 p Asq + p® Aza + 6600
B =48 (p2 — 2 p +3)° Ass?
where Azq = (p2 —2p+ 5)

Explicit expressions for BAE];)

In Fig. 4, the expressions for each Bf;) can be seen as follows. In the upper left figure,

BZO) =2u+2y +Qy =2(uy —y+ 1) =2uy —2u/1 =y —y(u+y —uy)
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©0) RO p(02) ©03) 04 p05)
B B B B B B
a5~ —an + —ap ~ W=D - D+ 5 - 5 + —qp — 4 47)
P i B412 (10)2 & P B 2 5(10)
3(y(p+y —uy)+ Dy — 1B 6y(n—D(y —1)°B
Bj) = S A —3(y— Dy —y+ D+  — (48)
(87) 5
where
Bi?o) =162y — 12y — 8u — 8u’y> + 4y Afg) +24py —4 Afg) +8uy/1 —y —36uy?
— 8y +20uy> +16y% — 129° + 8uy> /1 — vy + 8u%y /1 —y — 8u%y2/1—y +38 (49)
2
By =2(A4)) (50)
B =(2uny -2y —2u+ 2uyT—y +2)(4f))) 1)
By =2y(u+vy — My)(Aﬁﬁ)) (52)
2
B =y(u+y —un)(a) (53)
B =3y — Dy — DY) (54)
10 62
By” Z(M2V2 — 1y oy — AR =2yt 2wy R - 7/3) (55)
11
By =302y =3y —2u — Pyt 4 5y +2uy/1—y — 6uy? — 203y + uy® +2upt
+3y2 =y =yt 2wV —y 421y 1 —y =22y 1=y +2 (56)
A =(uy =y + D(30u%y? = 8y — 8 — 14>y® — 123 + 4y® + 20y + 8T =y — 260y
—16p%y +15uy° + 813y — 81—y +8u> +9y% =53 +8uy? /1 —y + 12u%y /1 -y
—8u3y /1=y — 1602y /1T— y + 81321 — y — duy/1—y +4) (57)
Af‘ll) =4u’y? =3y —2u —2u>y3 +y Afg) +6py — ,/Afg) +2u/1—y —9uy?
— 2y +5uyd +4y? =33 ot 1 —y + 2y 1 —y — 2T =y +2 (58)
In the upper right figure,
o B )
By =5 —4y —4u+duy +4uT—y +yu+y —uy) + —2—
B, (52")
42
(N N ()
2y = Duy —y + D +3yu— Dy —1 42 42 42 2412 59
1 my =y +D+3yw =Dy =D+ —45 + —q5 + st —anp T (59
B B (11 B
42 42 (342 ) 42
2 2 2 (10) 2
W 12(y = 1) (% -t E e+ 1><B42 ) 6y (u — D)(y — 1)*BLY
By =3(y =Dy -y +1D - 3 + an (60)
(Bgl)) By,
where
B :4(32;&/2 — 80y — 64 — 16p%y> + dyy/ A +100uy — 4/ A + 64T —y —72uy” — 161y
136073 +367% — 20 + 16uy*/T — y + 16u2yy/1— y — 1642y>/1 — y + 64) 61)
BYY :8(8u2y2 — 20y — 160 — 4u>y> + ¥/ AD +25uy — A + 1601 — y — 18uy? — 4py
2
+9uy® +9y2 — 53 4 auy? T —y + 4Py 1 — y —aply2/T—y + 16) (62)
B =4(8uy — 8y — 8u+8uy/T—y +38)(4})) (63)
B =16y (u+y —uy)(A%0) (64)
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04 0 0
By =y(u+y - M)/)<8M2V2 —20y — 160 — 4u2y> + y A +25uy —/AD + 160y/T— y — 18uy2

—4u%y +9uy” + 9y = 597 +duy -y + 4’y T —y — 4> T—y + 16)2 65)
B =24y (= 1y — (A 66)
By =(M2y2 — 1Py +uy = AG =20y +2uy’ + 97 - )/3> 67)

By, =161 + 20y — 7p®y? + 202y + 2y — 24py — 16p/1— y + 15uy2 + 4ply — 5uy°
—2uyt = 8y2 3y  +yt —Aauy T —y —auPy T —y +4u>y2/1—y — 16 (68)

A =(uy —y + 1)(133;};/2 — 96y — 1281 — 532y — 4813y + 1643 y° + 2081y + 1281y/1 — y — 13612
—128u%y + 57y + 320y — 128> /1 — y + 128u® + 52p% — 20y° + 32uy? /1 —y

+6412y /1 —y =321y /1 —y —64u%y2 /1 —y + 3203921 —y = 32uy /1 —y + 64) (69)
0) [ 1)
5 23 vy Agp 25 Ay 9uy?
A312)=u2)/2—7y—2u—p“2y + =gt gy— : +2/w1—y—%
wry | uy? 9P S5yt wyAVT—y Wy JT—y iy JT—y
-+ - + - +2 (70)
2 8 8 8 2 2 2
In the bottom left figure,
o B
By :Bﬁl) —10y — Qy —2)(uy —y + 1) = 10 + 10uy + 10uy/T —y + y(u+y — uy)
43
(00) (01) 02) (03) (04)
2B B B B
+—E 43y u-Dy -+ -5+ —o 43 B +60 (71)
(11?2 gD " gD an\2 | gD
(B43 ) 43 43 By; 43

2 2 2 (10) 2
5(y — 1 (% — S+t 1) <B43 ) N 6y (u — (y — *By3”
7 an
(B%l)) By
B =25 (20,3;/2 — 275y — 2500 — 1043 + 4D + 286y — 4D + 250,/ T— 7 = 57uy?

2
—10p%y +21uy> +36y% — 1192 + 10uy>V/1 —y + 102y /1 —y — 10?92 /1 — y + 250) (73)

BYY =3(y - D(uy —y +1) — (72)

BY" =25(50y — 50y — S0 + 50uy/T— 7 +50) (A39) o
B =250y (u+y — MV)(A%)) s)

B =ty - W)(zouz’/z 275y — 2501 — 1012 + 13/ AQ + 2860 — AL +2501/T— y — 571>
=107y +21py> +36y° = 11y> +10puy> /T =y +101°y /T =y = 106>y Ty + 250>2 (76)
B =375y (= Dy — D(A() -
By =(M2y2 — 123 +uy = JAD — 20y 4 2uy 9% — y3) o8

BIAY =250 + 275y — 1922 + 812y + p2y* — 285y — 250u/T — y + S4uy® + 102y — 17y’

= 2uy* =352 4+ 977 4yt = 10up 2Ty =101y /T =y 10621 =y =250 (79)

AQ =(uy — y + 1)(11262% — 3000y — 50001 — 32612° — 30013y % + 10013 + 6100y
+500044/1 — y — 14502 — 32006y + 351uy> + 20043y — 50002,/1 — y + 500014% + 625y
—125y3 + 2002 /T — y + 7002y /T — y — 20013y /T — y — 40022 /T — y

+200° Y21 —y — 500y /1 —y + 2500) (80)
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10201y2  201y? N ny*JT—y N wyyT—y  phy*J/T—y
1000000 1000000 5000 5000 5000

+2 (92)
- . (k)
Explicit expressions for Bj i

In Fig. 5, the expressions for each Bglj.) can be seen as follows.
BY =2304+/2 1 — 472 ;1 — 482 11 Asy + 202 As; + 832V/2 pu® — 22402 11
— 83242t — 64215 + 374 u® Asy + 130 13 Asy + 1736 u® + 4376 1°
+ 1328 u* + 96 1° — 3202 1% As; — 962 1 Asy + 41642 i Asy + 936 (93)
A 21
3(u+5) (2u—2A4s +p? +1)° 3(16M—16)(%—%+%+§)
2 _ 2_ 5,2

(20ﬁu—1zu+4ﬁM2—5u2+17) 20V2pu —12p+4V2p% =52 +17

+3) (680 V2 — 408 — 3442 — 296 V2 13 — 402 ut + 774 1 + 440 1P + 57wt + 289) (94)

where As; = \/(;ur 1) (32f2M 2l =242 — 823 A6 p2 + 1243 + 13).
BY) =100907385600 v/2 ju — 32975491192 ju — 188364722 11 /(1w + 1) Asy + 84523138 /(1 + 1) A5y
+ 18869939200 v/2 ;1% — 100154432000 /2 11> — 18869939200 /2 1* — 752953600 v/2 1i°
+ 196853678 12 /(1 + 1) Asy + 28663138 11> /(i + 1) Asy + 69808280024 11>
+ 173779616024 11> + 29359447208 11* + 1129430400 1> — 147392000 /2 1> /(11 + 1) Asy
— 20744640 V2 1i® /(u + 1) Asy + 168136640 /2 11 /(i + 1) Asy + 42765828000 (95)

9 JuFrDAs N 49 u? N 49 1
400 400 800~ 800/ g%

BY) = <147 1+ 3 (548800 1o — 548800) (

2
+3 (2401 p + 22001) (98 =2+ 1) Asy +49 1% + 49)

+147) (556867760 V2 11— 409279200 pu — 413372240 /2 12 — 134467760 V2 1>
—9027760 /2 u* + 747956382 1% + 201605600 11° + 12987009 11* + 240343009) (96)
BUY =17960 v/2 ju — 13200 ¢ + 1960 +/2 > — 2303 12® 4 15503 97)

where Asy) = (303200 V2 11— 234999 11 — 264000 +/2 2 — 39200 v/2 113 4 450901 42 + 58800 113 + 128500).

4447014038798929 1 1731999573283827 11 A
(0) 12 uAs3 5
- 2530 As3 — 256 /2
53 34359738368 | 1099511627776 T 53 V2u
42546806858567 112 A 13712264631662189 112
- K253 L 450 43 Ass + s
1099511627776 137438953472
954132002979149 1> 203154529470867 1 S 5
384 115 — 320 /2 11® Asz + 55968 98
34359738368 137438053472 T oot K V2T A5+ %)
A 2 1
o 364 —64) (B -4+ 5 %) 3417 u—245+ 12 +1)
Bsy =3+ o + 2
B (10)
53 (853 )
166993454639279 11 60243921354669 12 408726400289561 113
3 — 1442 209 u* + 14641 99
+3) ( 8589934592 Wt 8589934592 1099511627776 M T ©9)
BOY =136 V2 — 112 0+ 8V2 1% — 9% + 121 (100)

549755813888 8796093022208
B3O _ 1961207684361405 1~ 538579401443961 11 Asy

S 67108864 + 8589934592

where As; = \/(,H 1 (w 302 5 4 BMATTON0T8 | gg 3 +212>.

+ 87562 Asy
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165512947439037 2 Ass  40123449911847 13 Asq  39193419728658571 112

17179869184 549755813888 2147483648
125668827204021 3 98298304814965 u*  37729274270505 p°
ad ad M 14673000 (101)
33554432 2147483648 274877906944
A 2 1
0 3400 = 400) (5 = 468 + 455+ 20) 3+ 101) (2 — 2 Asy + 2 + 1)?
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54 (354 )
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2
where sy =+ 1) (S 200 V30 4 SUSLOBL 300,01 9125)
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