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Abstract Investigations into the nonlinear phenomena in fluid mechanics are of interest. In this paper, we study an extended (2+1)-
dimensional Kadomtsev-Petviashvili equation in fluid mechanics. A bilinear form of that equation is obtained via the Hirota method.
With the aid of that bilinear form, N-soliton solutions are constructed, based on which the Mth-order breather and Hth-order lump
solutions are determined through the complex conjugated transformations and long-wave limit method, respectively, where N , M
and H are the integers. Furthermore, we derive the hybrid solutions composed of the first-order breather and one soliton, first-order
lump and one soliton, and first-order lump and first-order breather. Via the aforementioned solutions, we present the (1) elastic
interactions between the two solitons/breathers/lumps, (2) elastic interaction among the three solitons, (3) one lump/breather, (4)
elastic interaction between the one breather and one soliton, (5) elastic interaction between the one lump and one soliton, and (6)
elastic interaction between the one lump and one breather.

1 Introduction

Fluid mechanics has been concerned with the behaviour of liquids and gases at rest and in motion [1, 2]. It has been reported that
the nonlinear evolution equations (NLEEs) can be used to model some phenomena in fluid mechanics, optics, plasma physics and
other fields [3–6].

The Korteweg-de Vries (KdV) equation has been developed to govern the long, one-dimensional, small-amplitude surface gravity
waves in shallow water [7]. Later, it has been found that the KdV equation arises when the governing equation has the weak quadratic
nonlinearity and weak dispersion [8]. The KdV equation has thus been considered to be a model for describing some other nonlinear
phenomena, such as the internal waves in stratified fluids and ion-acoustic waves in plasmas [9]. The Kadomtsev-Petviashvili (KP)
equation has been derived as a two-dimensional generalization of the KdV equation, with the KPI branch describing the water waves
with weak surface tension and the KPII branch, with strong surface tension [8, 10–12]. The KP equation has also been applied in
plasma physics, solid state physics, thin-plate dynamics and other fields [12].

There have been some other NLEEs such as a variable-coefficient modified KP system describing the electromagnetic waves in
an isotropic charge-free infinite ferromagnetic thin film [13], a coupled mixed derivative nonlinear Schrödinger system describing
the short pulses in the femtosecond or picosecond regime of a birefringent optical fiber [14], and a (3+1)-dimensional modified KdV-
Zakharov-Kuznetsov equation in an electron-positron plasma [15]. Researchers have proposed several methods for studying those
NLEEs, including the Hirota method [16–20], Pfaffian technique [21, 22], Riemann-Hilbert method [23], Darboux transformation
[24–30], Lie symmetry approach [31], Bäcklund transformation [32–34] and similarity reduction [35–37].

Reference [38] has recently introduced an extended (2+1)-dimensional KP equation that reads

(ut + 6uux + uxxx )x − uyy + α1uxy + α2utt + α3uyt � 0, (1)

where u(x, y, t) is a real differentiable function of the spatial variables x, y and temporal variable t, α1, α2 and α3 are the constants,
and the subscripts mean the partial derivatives. Equation (1), in comparison to the KPI equation, has three additional terms of the
second-order derivatives and depicts more dispersion impact effect [38]. When α1 � α2 � α3 � 0, Eq. (1) has been reduced to the
KPI equation for the water waves with weak surface tension [11, 12]. Painlevé analysis, bilinear form, soliton, breather, periodic,
rational, semi-rational and hybrid solutions of Eq. (1) have been derived [38].
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However, for Eq. (1), bilinear form, N-soliton, M-breather, H-lump and hybrid solutions that differ from those in Ref. [38] have
not been reported as yet, where N , M and H are the integers. In Sect. 2, we shall determine a bilinear form of Eq. (1) via the Hirota
method. In Sect. 3, we shall work out the N-soliton solutions of Eq. (1) by virtue of that bilinear form. In Sect. 4, we shall derive
the Mth-order breather solutions of Eq. (1) via the complex conjugated transformations. In Sect. 5, we shall obtain the Hth-order
lump solutions of Eq. (1) by using the long-wave limit method. In Sect. 6, we shall derive some hybrid solutions of Eq. (1) based
on the above results. In Sect. 7, our conclusions will be given.

2 Bilinear form of Eq. (1)

Under the coefficient constraint [38]

4α2 � −α2
3, (2)

we take the dependent variable transformation

u � 2(ln f )xx + u0, (3)

and then determine the following bilinear form of Eq. (1):(
Dx Dt + 6u0D

2
x + D4

x − D2
y + α1Dx Dy − α2

3

4
D2
t + α3DyDt

)
f · f � 0, (4)

where u0 is a real constant, f is a differentiable function of x, y and t, and Dx , Dy and Dt are the bilinear operators defined by [39]

Dβ1
x Dβ2

y Dβ3
t f · g �

(
∂

∂x
− ∂

∂x ′

)β1
(

∂

∂y
− ∂

∂y′

)β2
(

∂

∂t
− ∂

∂t ′

)β3

f (x, y, t)g
(
x ′, y′, t ′

) |x ′�x,y′�y,t ′�t ,

with g
(
x ′, y′, t ′

)
as a differentiable function of the formal variables x ′, y′ and t ′, while β1, β2 and β3 as the non-negative integers.

3 N-soliton solutions of Eq. (1)

To construct some N-soliton solutions of Eq. (1), we begin by expanding f as

f � 1 + ε f1 + ε2 f2 + ε3 f3 + · · · + εN fN , (5)

where ε is a formal expansion parameter, while fo’s (o � 1, 2, . . . , N ) are the real differentiable functions of x, y and t.
Substituting Expression (5) into Bilinear Form (4) and balancing the coefficients of the same powers of ε, we can derive the

N-soliton solutions of Eq. (1) as

u � 2(ln f )xx + u0, (6a)

f �
∑

μ�0,1

exp

⎡
⎣ N∑

ı�1

μıξı +
(N )∑

1≤ı<j

μıμj Aı,j

⎤
⎦, (6b)

under Coefficient Constraint (2), where

ξı � kı

[
x + pı y +

2(1 + α3 pı + qı )

α2
3

t

]
+ ηı ,

eAı,j �
2 + 2α3

(
pı + pj

)
+ α2

3

[
α1

(
pı + pj

)
+ 4k2

ı − 6kı kj + 4k2
j + 12u0

]
− 2qıqj

2 + 2α3
(
pı + pj

)
+ α2

3

[
α1

(
pı + pj

)
+ 4k2

ı + 6kı kj + 4k2
j + 12u0

]
− 2qıqj

,

qı �
√

1 + 2α3 pı + α2
3

(
k2
ı + 6u0 + α1 pı

)
,

ı, j � 1, 2, . . . , N , kı ’s, pı ’s and ηı ’s are the complex constants,
∑

μ�0,1 denotes the summation over all possible combinations of

μı � 0, 1, and
∑(N )

1≤ı<j implies the summation over all possible combinations of N elements with the condition 1 ≤ ı < j .
Taking N � 2 and 3 in N-Soliton Solutions (6), we are able to obtain the two and three soliton solutions of Eq. (1), respectively.

Figures 1 and 2 show the interaction between the two solitons and interaction among the three solitons, respectively. We can see
that the interactions in Figs. 1 and 2 are elastic.
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Fig. 1 Interaction between the two solitons via Solutions (6) with N � 2, α1 � α3 � u0 � 1, k1 � 6
5 , k2 � p2 � 1, p1 � −1 and η1 � η2 � 0

Fig. 2 Interaction among the three solitons via Solutions (6) with N � 3, α1 � α3 � u0 � 1, k1 � p3 � 1, k2 � − 3
2 , k3 � p1 � −1, p2 � 1

10 and
η1 � η2 � η3 � 0

4 The Mth-order breather solutions of Eq. (1)

To obtain the Mth-order breather solutions of Eq. (1) via N-Soliton Solutions (6), we let N � 2M and take the following complex
conjugated transformations:

kr � k∗
M+r � kr,R + ikr,I , pr � p∗

M+r � pr,R + i pr,I , ηr � η∗
M+r � ηr,R + iηr,I , (7)

where kr,R’s, kr,I ’s, pr,R’s, pr,I ’s, ηr,R’s and ηr,I ’s are the real constants, M is a positive integer, r � 1, 2, . . . , M , i � √−1, the
superscript “∗” stands for the complex conjugation, and the subscripts “R” and “I” mean the real and imaginary parts, respectively.

Then, the Mth-order breather solutions of Eq. (1) under Coefficient Constraint (2) can be expressed as

u � 2(ln f )xx + u0, (8a)

f �
∑

μ�0,1

exp

⎡
⎣ 2M∑

ı�1

μıξı +
(2M)∑

1≤ı<j

μıμj Aı,j

⎤
⎦, (8b)

where

ξr � ξ∗
M+r � ξr,R + iξr,I ,

ξr,R � kr,Rx +
(
kr,R pr,R−kr,I pr,I

)
y +

2

α2
3

{
kr,R + α3

(
kr,R pr,R−kr,I pr,I

)
+kr,Rhrcos

[
1

2
arg(sr )

]
−kr,I hr sin

[
1

2
arg(sr )

]}
t + ηr,R,

ξr,I � kr,I x +
(
kr,R pr,I + kr,I pr,R

)
y +

2

α2
3

{
kr,I + α3

(
kr,R pr,I + kr,I pr,R

)
+ kr,Rhr sin

[
1

2
arg(sr )

]
+ kr,I hrcos

[
1

2
arg(sr )

]}
t + ηr,I ,

hr �
{[

1 + 2α3 pr,R + α2
3

(
k2
r,R − k2

r,I + 6u0 + α1 pr,R
)]2

+ α2
3

[
2α3kr,Rkr,I + (2 + α1α3)pr,I

]2

} 1
4

,

sr � 1 + 2α3
(
pr,R + i pr,I

)
+ α2

3

[(
kr,R + ikr,I

)2 + 6u0 + α1
(
pr,R + i pr,I

)]
,
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Fig. 3 One breather via Solutions (8) with M � 1, α1 � 1
2 , α3 � u0 � 1, k1 � k∗

2 � 2
5 + 1

5 i , p1 � p∗
2 � − 1

25 + 2i and η1 � η∗
2 � 0

Fig. 4 Interaction between the two breathers via Solutions (8) with M � 2, α1 � 1
2 , α3 � u0 � 1, k1 � k∗

3 � 2
5 + 1

5 i , k2 � k∗
4 � 1

2 − 1
2 i ,

p1 � p∗
3 � − 1

25 + 2i , p2 � p∗
4 � −1 + 2i and η1 � η∗

3 � η2 � η∗
4 � 0

Aı,j ’s are defined in N-Soliton Solutions (6), while eAr,M+r > 1 is required to ensure that these solutions are nonsingular.
When M � 1 and 2 in Solutions (8), we can determine the first- and second-order breather solutions of Eq. (1), respectively.

Figures 3 and 4 display the one breather and elastic interaction between the two breathers, respectively. It can be observed that the
amplitudes and shapes of the two breathers change nonlinearly in the interaction region, and then recover after the interaction.

5 The Hth-order lump solutions of Eq. (1)

To determine the Hth-order lump solutions of Eq. (1) via N-Soliton Solutions (6), we set N � 2H and take the “long wave” limit
as kı → 0 under the following conditions:

ηı � iπ,
kı
kj

� O(1), pı � O(1), (9)

where H is a positive integer. Then the expression of f in N-Soliton Solutions (6) can be written as

f �
∑

μ�0,1

2H∏
ı�1

(−1)μı (1 + μı kıγı )
(2H )∏
ı<j

(
1 + μıμj kı kj Bı,j

)
+ O(k2H+1), (10)

where

γı � x + pı y +
2(1 + α3 pı + wı )

α2
3

t,

Bı,j � − 12α2
3

2 + 2α3
(
pı + pj

)
+ α2

3

[
12u0 + α1

(
pı + pj

)] − 2wıwj

,

wı �
√

1 + 6u0α
2
3 + α3(2 + α1α3)pı .

Following that, omitting the constant factor
∏2 H

ı�1 kı in Expression (10) results in the Hth-order lump solutions of Eq. (1) as

u � 2(ln f )xx + u0, (11a)
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Fig. 5 One lump via Solutions (11) with H � 1, α1 � α3 � u0 � 1 and p1 � p∗
2 � − 1

5 + 8
5 i

Fig. 6 Interaction between the two lumps via Solutions (11) with H � 2, α1 � 1
5 , α3 � 4

5 , u0 � 1
10 , p1 � p∗

3 � −1 + 3
5 i and p2 � p∗

4 � 2
5 − 4

5 i

f �
2H∏
ı�1

γı +
1

2

(2H )∑
ı,j

Bı,j

2H∏
���ı,j

γ� + · · · +
1

H ! 2H

(2H )∑
ı,j,...,κ,ρ

H︷ ︸︸ ︷
Bı,j B�,ν · · · Bκ,ρ

2H∏
� ��ı,j,...,κ,ρ

γ� + · · · , (11b)

under Coefficient Constraint (2) and the complex conjugated transformation

pl � p∗
H+l � pl,R + i pl,I , (12)

where pl,R’s and pl,I ’s are the real constants, l � 1, 2, . . . , H and Bı,j > 0.
Choosing H � 1 and 2 in Solutions (11) yields the first- and second-order lump solutions of Eq. (1), respectively. Figure 5 shows

the one lump. Figure 6 demonstrates the interaction between the two lumps with different shapes, velocities and amplitudes. The
two lumps interact with each other around t � 0, and then move apart. Amplitudes, velocities and shapes of the two lumps remain
unchanged after the interaction, indicating that the interaction is elastic.

6 Hybrid solutions of Eq. (1)

6.1 Hybrid solutions composed of the first-order breather and one soliton of Eq. (1)

To find out the hybrid solutions featuring the interactions between the one breather and one soliton of Eq. (1), we set N � 3 and
take the following transformations for N-Soliton Solutions (6):

k1 � k∗
2 � k1,R + ik1,I , k3 � k3,R, p1 � p∗

2 � p1,R + i p1,I ,

p3 � p3,R, η1 � η∗
2 � η1,R + iη1,I , η3 � η3,R .

(13)

Then, hybrid solutions composed of the first-order breather and one soliton of Eq. (1) are obtained as

u � 2(ln f )xx + u0, (14a)

f � 1 + eξ1 + eξ2 + eξ3 + eξ1+ξ2+A1,2 + eξ1+ξ3+A1,3 + eξ2+ξ3+A2,3 + eξ1+ξ2+ξ3+A1,2+A1,3+A2,3 , (14b)

under Coefficient Constraint (2).
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Fig. 7 Interaction between the one breather and one soliton via Solutions (14) with α1 � 3
5 , α3 � u0 � 1, k1 � k∗

2 � 1
2 − 1

2 i , k3 � 1, p1 � p∗
2 � −1 + 2i ,

p3 � −1 and η1 � η∗
2 � η3 � 0

Fig. 8 Interaction between the one lump and one soliton via Solutions (16) with α1 � 2, α3 � 2
5 , u0 � 1

5 , k3 � 2
5 , p1 � p∗

2 � 1
2 + 4

5 i , p3 � −1 and
η3 � 0

Figure 7 displays the interaction between the one breather and one soliton based on Hybrid Solutions (14). We observe that the
amplitudes and shapes of the soliton and breather change nonlinearly in the interaction region and then recover after the interaction,
thus the interaction is elastic.

6.2 Hybrid solutions composed of the first-order lump and one soliton of Eq. (1)

Setting N � 3 and considering the following conditions on N-Soliton Solutions (6):

k1 → 0, k2 → 0, k3 � k3,R, p1 � p∗
2 � p2,R + i p2,I ,

p3 � p3,R, η1 � η2 � iπ, η3 � η3,R,
(15)

give rise to the hybrid solutions composed of the first-order lump and one soliton of Eq. (1) under Coefficient Constraint (2), i.e.,

u � 2(ln f )xx + u0, (16a)

f � γ1γ2 + B1,2 +
[(
C1,3 + γ1

)(
C2,3 + γ2

)
+ B1,2

]
eξ3 , (16b)

where

C1,3 � − 12α2
3k3

2 + 2α3(p1 + p3) + α2
3

[
4k2

3 + 12u0 + α1(p1 + p3)
] − 2w1q3

,

C2,3 � − 12α2
3k3

2 + 2α3(p2 + p3) + α2
3

[
4k2

3 + 12u0 + α1(p2 + p3)
] − 2w2q3

.

Figure 8 demonstrates the elastic interaction between the one lump and one soliton based on Hybrid Solutions (16). They interact
with each other when t � 0, resulting in the nonlinear changes in their amplitudes. Amplitudes and shapes of the lump and soliton
keep unchanged after the interaction.
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Fig. 9 Interaction between the one lump and one breather via Solutions (18) with α1 � 1
2 , α3 � −1, u0 � 2

5 , k3 � k∗
4 � 1

5 + 1
5 i , p1 � p∗

2 � 7
5 + 4

5 i ,
p3 � p∗

4 � i and η3 � η∗
4 � 0

6.3 Hybrid solutions composed of the first-order lump and first-order breather of Eq. (1)

When N-Soliton Solutions (6) with N � 4 satisfy the following conditions:

k1 → 0, k2 → 0, k3 � k∗
4 � k3,R + ik3,I , p1 � p∗

2 � p1,R + i p1,I ,

p3 � p∗
4 � p3,R + i p3,I , η1 � η2 � iπ, η3 � η∗

4 � η3,R + iη3,I ,
(17)

we obtain the hybrid solutions composed of the first-order lump and first-order breather of Eq. (1) as

u � 2(ln f )xx + u0, (18a)

f � γ1γ2 + B1,2 +
[(
C1,3 + γ1

)(
C2,3 + γ2

)
+ B1,2

]
eξ3

+
[(
C1,4 + γ1

)(
C2,4 + γ2

)
+ B1,2

]
eξ4

+
[(
C1,3 + C1,4 + γ1

)(
C2,3 + C2,4 + γ2

)
+ B1,2

]
eξ3+ξ4+A3,4 , (18b)

under Coefficient Constraint (2), where

C1,4 � − 12α2
3k4

2 + 2α3(p1 + p4) + α2
3

[
4k2

4 + 12u0 + α1(p1 + p4)
] − 2w1q4

,

C2,4 � − 12α2
3k4

2 + 2α3(p2 + p4) + α2
3

[
4k2

4 + 12u0 + α1(p2 + p4)
] − 2w2q4

.

Figure 9 exhibits the elastic interaction between the one lump and one breather based on Hybrid Solutions (18). We can see that as
t progresses, they approach, interact with each other around t � 0 and then separate.

7 Conclusions

Investigations on the nonlinear phenomena in fluid mechanics have been active. In this paper, we have studied an extended (2+1)-
dimensional KP equation in fluid mechanics, i.e., Eq. (1). Bilinear Form (4) and N-Soliton Solutions (6) have been constructed via
the Hirota method. Based on N-Soliton Solutions (6), we have derived the Mth-order breather solutions as Solutions (8) via Complex
Conjugated Transformations (7). We have also obtained the Hth-order lump solutions as Solutions (11) by virtue of the long-wave
limit method. In addition, we have determined Hybrid Solutions (14) composed of the first-order breather and one soliton, Hybrid
Solutions (16) composed of the first-order lump and one soliton, and Hybrid Solutions (18) composed of the first-order lump and
first-order breather.

Based on N-Soliton Solutions (6) with N � 2 and 3, Figs. 1 and 2 have shown the elastic interaction between the two solitons and
interaction among the three solitons, respectively. Via Solutions (8) with M � 1 and 2, one breather and elastic interaction between
the two breathers have been exhibited in Figs. 3 and 4, respectively. Based on Solutions (11) with H � 1 and 2, Figs. 5 and 6 have
displayed the one lump and elastic interaction between the two lumps, respectively. Elastic interaction between the one breather
and one soliton has been described via Solutions (14), as shown in Fig. 7. Figure 8 has exhibited the elastic interaction between the
one lump and one soliton via Solutions (16). Elastic interaction between the one lump and one breather via Solutions (18) has been
demonstrated in Fig. 9.
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