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Abstract In this paper, a mathematical model of COVID-19 has been proposed to study the transmission dynamics of infection by
taking into account the role of symptomatic and asymptomatic infected individuals. The model has also considered the effect of non-
pharmaceutical interventions (NPIs) in controlling the spread of virus. The basic reproduction number (R0) has been computed and
the analysis shows that for R0 < 1, the disease-free state becomes globally stable. The conditions of existence and stability for two
other equilibrium states have been obtained. Transcritical bifurcation occurs when basic reproduction number is one (i.e. R0 � 1).
It is found that when asymptomatic cases get increased, infection will persist in the population. However, when symptomatic cases
get increased as compared to asymptomatic ones, the endemic state will become unstable and infection may eradicate from the
population. Increasing NPIs decrease the basic reproduction number and hence, the epidemic can be controlled. As the COVID-19
transmission is subject to environmental fluctuations, the effect of white noise has been considered in the deterministic model. The
stochastic differential equation model has been solved numerically by using the Euler-Maruyama method. The stochastic model
gives large fluctuations around the respective deterministic solutions. The model has been fitted by using the COVID-19 data of
three waves of India. A good match is obtained between the actual data and the predicted trajectories of the model in all three waves
of COVID-19. The findings of this model may assist policymakers and healthcare professionals in implementing the most effective
measures to prevent the transmission of COVID-19 in different settings.

1 Introduction

COVID-19 is a contagious disease that spreads by SARS-COV2 virus among humans via respiratory droplets. After exposure to
the virus, usually symptoms start to reveal within 2–14 days. The most common symptoms are sore throat, fever, chills, fatigue,
breathing problem and loss of smell and taste [1–3]. The first case of COVID-19 was appeared in Wuhan, China in December
2019. After that the COVID-19 cases have increased very rapidly in the world wide resulting in the COVID-19 pandemic [4, 5].
During the early phase of the pandemic, most countries were totally unaware of the rapidity of COVID-19 infection and having poor
understanding about the disease outbreaks and its further treatment [6]. This situation got worsen due to lack of widespread testing,
unavailability of effective treatment and absence of COVID-19 vaccine [2, 7, 8]. Furthermore, it was also the serious concern to track
the prevalence of COVID-19 from those who had no symptoms or mild symptoms [1, 6]. People who had mild or no symptoms come
in the category of asymptomatic infection. The asymptomatic cases have played very significant role in rapid spread of infection
because of being unaware of their infection and spread it to others rapidly [9, 10]. As per literature, around 80% of the COVID-19
infection were spread from asymptomatic infected individuals [11]. To fight from these challenges, the public health mitigation
strategies like social distancing, wearing of masks, contact tracing, quarantine of infected cases and maintaining the environmental,
personal hygienic practices and vaccination were proved to be very effective in reducing the transmission of infection and the number
of cases in societies [1, 6, 9, 12–14]. The COVID-19 pandemic has had the significant impact on many aspects of society including
economy, education system, social behavior etc. [15, 16].

Mathematical modeling has always been used as a very significant tool for answering many concerns of the society emerging in
health, social sciences, agriculture, biological sciences and engineering [17, 18]. In history of mankind, many diseases like dengue,
malaria, HIV AIDS, influenza have taken the form of epidemic but COVID-19 has taken the form of pandemic and adversely affects
the almost all aspects of human life. Many mathematical models have been developed for infectious diseases like dengue, malaria,
HIV AIDS, influenza etc [19–23]. However, several research investigations have been done on COVID-19 epidemic to understand
the transmission and control [24–30].

To keep in mind the biology of disease, researchers have considered various aspects that are influencing the transmission as
vaccination, symptomatic and asymptomatic infection dynamics [10], effects of various public health interventions under constant
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environmental conditions [29]. Anggriani et al. [30] proposed the COVID-19 compartmental model with symptomatic and asymp-
tomatic infected cases as different compartments. They have also considered the effect of waning immunity in the model. Further,
they performed the parameter estimation for the data of West Java. Jayrold et al. [24] also considered SEIR model for COVID-19
with adding asymptomatic infected compartment. They calibrated the model for several countries and concluded that testing and
isolation both are important to eradicate the disease. Serhani and Labbardi [25] proposed the SIR type COVID-19 model considering
asymptomatic infected class as well as quarantine and dead compartments. They found that the home containment played a very
significant role in controlling the disease transmission. Ali et al. [26] have formulated the SEIR type fractional-order mathematical
model for COVID-19 with asymptomatic and symptomatic infected transmission dynamics. They found that COVID-19 epidemic
can be controlled by restricting people from migration and strictly enforcing personal measures simultaneously. Some research
investigations of COVID-19 have been published considering environmental fluctuations. As, environmental fluctuations affect the
growth of epidemic so, it is important to consider stochasticity in the model. Olabode et al. [27] have formulated the SEIR model
for COVID-19 using both the deterministic and stochastic modeling. They have considered the CTMC stochastic model and found
that disease may not persist even for basic reproduction number (R0 > 1) greater than one. Hussain et al. [28] have proposed
the deterministic model along with stochastic differential equation model involving environmental white noise. They analyzed the
deterministic model and compared the results of stochastic and deterministic models for the future prediction of the spread of
COVID-19.

Considering the above literature reviews in mind, the main motivation of this work is to understand the transmission dynamics
of symptomatic and asymptomatic infected individuals in presence of non-pharmaceutical interventions. Since, the combination of
lockdown and personal hygiene measures has been proved very effective for controlling the pandemic. The impact of NPIs has been
considered in susceptible population. This study has also investigated the potential impact of white noise in the proposed model.The
good fit of the model is obtained for all the three waves of COVID-19, India. The obtained results are relevant and applicable to the
current pandemic situation. The results of this study also provide valuable insights into the effectiveness of NPIs in controlling the
spread of COVID-19 in populations.

The rest of the paper is organized as follows: The Sect. 2 deals with the model formulation and computation of basic reproduction
number. In Sect. 3, the deterministic model has been analyzed. Subsequently, the main results have been introduced and proved. In
Sect. 4, the role of asymptomatic infected individuals on disease dynamics has been discussed. In Sect. 5, the stochastic differential
equation model has been introduced. The Sect. 6 deals with numerical simulations for stochastic and deterministic models. The
Sect. 7 has been devoted for parameter estimations of the model parameters by using the COVID-19 data of India. Conclusions have
been given in Sect. 8.

2 Deterministic model

The deterministic COVID-19 model is now presented. Let N(t) be the total host population at time t, which is divided into four
classes of individuals: susceptible S(t), asymptomatic infected Ia(t), symptomatic infected Is(t) and recovered R(t) such that
N(t)=S(t) + Ia(t) + Is(t) + R(t). Assuming all parameters are positive, the following model is formulated:

dS

dt
� ω − β1SIa − β2SIs − αS − μS,

d Ia
dt

� β1SIa − (β3 + k + μ)Ia,

d Is
dt

� β2SIs + β3 Ia − γ Is − μIs − μ1 Is,

dR

dt
� γ Is − μR + αS + k Ia

(1)

with S(0) > 0, Ia(0) > 0, Is (0) > 0, R(0) ≥ 0 and all other parameters are taken positive.
The detailed definition of parameters involved in model (1) are summarized in Table 1. The schematic diagram has been drawn

in Fig. 1.

2.1 Positivity & boundedness of solutions

The set � � {(S, Ia, Is, R) ∈ R4
+ : 0 < (S, Ia, Is, R) ≤ N } is positive and attracts all the solutions of the model (1).

Proof Adding all equations of model (1), it is obtained that:

dN

dt
� ω − μN − μ1 Is (2)
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Table 1 Parameters and their
definitions

Parameters Definitions

ω Recruitment rate of individuals in susceptible population
β1 Rate at which susceptibles are getting asymptomatically infected
β2 Rate at which susceptibles are getting symptomatically infected
β3 Rate at which asymptomatic infected people are getting symptomatically infected
μ Natural death rate for individuals of all population classes
μ1 Disease induced death rate for symptomatic infected individuals
α Rate at which susceptible individuals are joining the recovered class by using the

non-pharmaceutical interventions
γ Rate of recovery for symptomatically infected individuals

k Rate of recovery for asymptomatically infected individuals

Fig. 1 The schematic diagram
without demographic effect for
model (1)

Further, Eq. (2) can be reduced into

dN

dt
≤ ω − μN (3)

Solving the above differential inequality, for t → ∞, the following bound on N(t) is obtained

0 < N (t) ≤ ω

μ
. (4)

�

2.2 Basic reproduction number (R0)

The basic reproduction number R0 is very crucial factor in epidemic models that informs us about disease extinction and persistence.
It is defined as the expected number of secondary infectious cases produced by a primary infected individual in susceptible population.
Using the next generation matrix approach [31], R0 is computed as:

Using the next-generation matrix, it gives

F �
⎛
⎜⎝

β1ω

(α + μ)
0

0
β2ω

(α + μ)

⎞
⎟⎠; V �

(
β3 + k + μ 0

−β3 γ + μ + μ1

)

where, F is the matrix of new infections from various infected compartments and V is the is the transition matrix from one
compartment to another.

At the disease-free state (Is � Ia � 0), the next generation matrix FV−1 is computed as:

FV−1 �

⎛
⎜⎜⎝

β1ω

(α + μ)(β3 + k + μ)
0

β2β3ω

(α + μ)(β3 + k + μ)(γ + μ + μ1)

β2ω

(α + μ)(γ + μ + μ1)

⎞
⎟⎟⎠

Thus, the basic reproduction number is obtained by the spectral radius of FV−1, that is obtained as

R0 � max

{
β1ω

(α + μ)(β3 + k + μ)
,

β2ω

(α + μ)(γ + μ + μ1)

}
. (5)
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Let us define,

R10 � β1ω

(α + μ)(β3 + k + μ)
(6)

and

R01 � β2ω

(α + μ)(γ + μ + μ1)
(6)

Therefore,

R0 � max{R10, R01} (6)

3 Deterministic model analysis

For the model (1), three equilibrium states exist.

3.1 Disease-free state (E0 � (Ŝ, Îa, Îs, R̂))

The disease-free state always exists. It is given as

Ŝ(t) � ω

(α + μ)
, Îa(t) � 0, Îs(t) � 0, R̂(t) � ωα

μ(α + μ)
.

Theorem 1 The disease-free state is locally asymptotically stable provided R0 < 1.

Proof At the equilibrium point E0, the Jacobian matrix J (E0) for the model (1) is obtained as:

J (E0) �

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−α − μ − β1ω

(α + μ)
− β2ω

(α + μ)
0

0 − (β3 + k + μ) +
β1ω

(α + μ)
0 0

0 β3
β2ω

(α + μ)
− (γ + μ + μ1) 0

α k γ − μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

For the matrix J (E0), the two of the eigenvalues are having negative real parts given as −α − μ and −μ. However, the other two

eigenvalues are −β3 − k − μ +
β1ω

(α + μ)
and −γ − μ − μ1 +

β2ω

(α + μ)
. It is interesting to see that the last two eigenvalues can be

written as (β3 + k + μ)(−1 + R10) and (γ + μ + μ1)(−1 + R01). They are having negative real parts for R10 < 1 and R01 < 1.
Therefore, for R0 < 1, the disease-free state is locally asymptotically stable. �

Theorem 2 [32] The disease-free equilibrium is globally asymptotically stable if all eigenvalue of A1 are real negative and A2 is
a Metzler matrix.

Proof Let us write the model (1) in the following form:

ẋ1 �A1(x1, 0)(x1 − x∗
1 ) (7)

ẋ2 �A2(x).x2 (8)

where, x1 � (S, R) are non-transmitting compartments and x2 � (Ia, Is) are transmitting compartments. Also, x∗
1 is disease-free

point.
The subsystem (7) is given as

dS

dt
� ω − β1SIa − β2SIs − αS − μS

dR

dt
� γ Is − μR + αS + k Ia

(9)

The matrix A1 for the subsystem (7) is computed as,

A1 �
(−α − μ 0

α − μ

)
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Since A1 is the lower triangular matrix so the eigenvalues are −α − μ and -μ. As, all eigenvalues are negative, the subsystem is
globally asymptotically stable at the disease-free state. Hence, assumptions H1 and H2 in [32] are satisfied. Again, the subsystem
(8) is given as

d Ia
dt

� β1SIa − (β3 + k + μ)Ia

d Is
dt

� β2SIs + β3 Ia − γ Is − μIs − μ1 Is

(10)

The matrix A2 for the above system is given as

A1 �
(

β1
ω

(α+μ) − β3 − k − μ 0
β3 β2

ω
(α+μ) − γ − μ − μ1

)

Since all the off-diagonal entries of A2(x) are non-negative, A2(x) is a Metzler matrix and irreducible for x. Hence, satis-

fying the assumption H3 in [32]. The eigenvalues of Metzler matrix are negative for
β1ω

(α + μ)(β3 + k + μ)
(� R10) < 1 and

β2ω

(α + μ)(γ + μ + μ1)
(� R01) < 1. Therefore, the Metzler matrix A2 is stable for R10 < 1 and R01 < 1. Hence, it satisfies

the assumption H5 in [32]. Thus, the disease-free state E0 is globally asymptotically stable for R0 < 1. �

3.2 Asymptomatic infection free state (E1 � (S∗, 0, I ∗
s , R∗))

Asymptomatic infection free state exists for

R01 > 1. (11)

The expressions for non-zero state variables at equilibrium point E1 are obtained as follows:

S∗ �γ + μ + μ1

β2
, (12)

I ∗
a �0, (13)

I ∗
s � (R01 − 1)(α + μ)

β2
, (14)

R∗ � (R01 − 1)(α + μ)γ

β2μ
+

α(γ + μ + μ1)

β2μ
. (15)

3.2.1 Stability analysis of asymptomatic infection free state E1

Theorem 3 The asymptomatic infection free state is locally asymptotically stable provided R01 > R10.

Proof At the equilibrium point E1, the Jacobian matrix J (E1) for the model (1) is obtained as:

J (E1) �

⎛
⎜⎜⎝

−α − μ − β2 I ∗
s − β1S∗ − β2S∗ 0

0 β1S∗ − β3 − k − μ 0 0
β2 I ∗

s β3 β2S∗ − γ − μ − μ1 0
α k γ − μ

⎞
⎟⎟⎠

For the matrix J (E1), one of the eigenvalues is −μ. The eigenvalue − L(R01 − R10)

β2ω
is having negative real parts for R01 > R10 where

L � (γ +μ+μ1)(α+μ)(β3+k+μ). However, the other two eigenvalues are−−β2ω ± 2(γ + μ + μ1)
√

(γ + μ + μ1)(α + μ)(R01 − 1)

2(γ + μ + μ1)
.

It is easy to see that all eigenvalues are having negative real parts for R01 > 1 and R01 > R10. Therefore, E1 state is locally
asymptotically stable for R01 > R10. �

3.3 Endemic state (E2=(S̄, Īa, Īs, R̄))

Endemic state exists for

R10 > 1 and R10 > R01. (16)

The expressions for non-zero state variables at equilibrium point E2 are obtained as follows:

S̄ �β3 + μ + k

β1
,
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Fig. 2 Regions of stability for all
equilibrium states in R10 − R01
plane

Īa � (α + μ)(β3 + k + μ)(R10 − R01)(R10 − 1)

β3R10 + (k + μ)(R10 − R01)
,

Īs � (R10 − 1)β3ω

(β3R10 + (k + μ)(R10 − R01))(γ + μ + μ1)(β3 + k + μ)
,

R̄ �αM + μ(R10 − 1 + R10α
μ

)(γ + μ + μ1)(β3 + k + μ)k (α+μ)
ω

(R10 − R01) + β1β3γ )

β1μ(γ + μ + μ1)(β3R10 + (k + μ)(R10 − R01)) (α+μ)
μ

.

where, M �[β1β3(μ + μ1) + μ(γ + μ + μ1)(β3 + k + μ)
(α + μ)

ω
(R10 − R01)]

3.3.1 Local stability

The endemic state is locally asymptotically stable provided R10 > R01.

Proof At the equilibrium point E2, the Jacobian matrix J (E2) for the model (1) is obtained as:

J (E2) �

⎛
⎜⎜⎝

−α − μ − β1 Īa − β2 Īs − β1 S̄ − β2 S̄ 0
β1 Īa β1 S̄ − β3 − k − μ 0 0
β2 Īs β3 β2 S̄ − γ − μ − μ1 0
α k γ − μ

⎞
⎟⎟⎠

For the matrix J (E2), one of the eigenvalues is -μ. The rest of the eigenvalues are given by following characteristic polynomial:
λ3 + Aλ2 + Bλ + C � 0 where,

A �−β2(β3 + μ + k)2 + β1(β1ω + (β3 + μ + k)(μ + μ1 + γ ))

β1(β3 + μ + k)

B �−β2
2β3μ(β3 + μ + k)2 + β1β2(β3 + μ + k)2(μ(β3 + μ + k) + β2ω) + G

β1(β3 + μ + k)(−β2(μ + k) + β1(μ + μ1 + γ ))

C � ((α + μ)(β3 + μ + k) − β1ω)(β2(β3 + μ + k) − β1(μ + μ1 + γ ))

β1

G � β3
1ω(μ+μ1+γ )(β3+2μ+μ1+k+γ )+α(β3+μ+k)2(−β2

2β3+β1β2(β3+μ+k)−β2
1 (μ+μ1+γ ))−β2

1 (β2
3 (β2ω+μ(μ+μ1+γ ))+(μ+

k)(μ3 +μ2(μ1 +k+γ )+β2ω(2μ1 +k+2γ )+μ(3β2ω+k(μ1 +γ )))+β3(2μ3 +2μ2(μ1 +k+γ )+β2ω(μ1 +2k+γ )+μ(3β2ω+2k(μ1 +γ ))))
It is clear from the expressions A, B and C that A > 0 for R10 > R01. Also, the expressions AB − C and C are positive for

R10 > 1 and R10 > R01. Hence, the endemic state is locally asymptotically stable for equation (16) to be satisfied. �

The Fig. 2 has been drawn to show the stability region of various equilibrium states in R10 − R01 plane.

4 Impact of asymptomatic infection on disease dynamics: transcritical bifurcation

In this section, the effect of asymptomatic parameter on the qualitative dynamics of the model has been discussed. For this, bifurcation
diagram for the parameter β3 with respect to the infection level Īs has been plotted by keeping rest of the parameters fixed. The values
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Fig. 3 Bifurcation diagram with
respect to the parameter β3. The
rest values of the parameters are
β1 � 0.03, β2 � 0.011, k �
0.2, γ � 0.3, μ � 0.00004, μ1 �
0.001, α � 0.5, ω � 100

Fig. 4 The Time-series plot for
β3 < β∗

3 , β3 � β∗
3 and β3 > β∗

3
as shown by red, blue and pink
lines respectively

Table 2 Transition probabilities
of the SDE model

Transitions Probabilities

(�C)1 � [1 0 0 0]T P1 � ω�t
(�C)2 � [−1 1 0 0]T P2 � β1SIa�t
(�C)3 � [−1 0 1 0]T P3 � β2SIs�t
(�C)4 � [−1 0 0 1]T P4 � αS�t
(�C)5 � [−1 0 0 0]T P5 � μS�t
(�C)6 � [0 − 1 1 0]T P6 � β3 Ia�t
(�C)7 � [0 − 1 0 1]T P7 � k�t
(�C)8 � [0 − 1 0 0]T P8 � μIa�t
(�C)9 � [0 0 − 1 1]T P9 � γ Is�t
(�C)10 � [0 0 − 1 0]T P10 � μIs�t
(�C)11 � [1 0 − 1 0]T P11 � μ1 Is�t
(�C)12 � [0 0 0 − 1]T P12 � μR�t

of fixed parameters are provided in the caption of Fig. 3. It is found that as β3 varies from 0 to 0.6, the basic reproduction number R10

remains greater than R01 i.e. R10 > R01. Accordingly, endemic state E2 gets stable. At about β3=0.63 (say β∗
3 ), R10 � R01, at β∗

3
endemic and asymptomatic free states get merge and only asymptomatic free state exists and gets stable. The Fig. 4 has been drawn
to show the change in stability at different values of parameter β3 with respect to the variable Ia(t). For β3=0.5 (< β∗

3 ), endemic
state gets stable that is shown by the red line in Fig. 4. Further, for β3 � β∗

3 , the states E1 and E2 get merge and asymptomatic
infection free state E1 exists and gets stable as shown by blue line in Fig. 4. For β3=0.7 (> β∗

3 ), asymptomatic infection free state
exists and gets stable as shown in Fig. 4 by pink line.

123



  285 Page 8 of 17 Eur. Phys. J. Plus         (2023) 138:285 

Fig. 5 Time series solutions of susceptible and asymptomatic infected populations starting from the initial condition (22201, 20, 30, 23176500) converges
to the disease-free state (22282, 0, 0, 23177000) for deterministic system (shown by red color) in (a) and (b) respectively. However, the stochastic system
shows the convergence around the disease-free state with large fluctuations as shown in blue color

Fig. 6 Time series solutions of symptomatic infected and recovered populations starting from the initial condition (22201, 20, 30, 23176500) converges
to the disease-free state (22282, 0, 0, 23177000) for deterministic system (shown by red color) in (a) and (b) respectively. However, the stochastic system
shows the convergence around the disease-free state with large fluctuations as shown in blue color

5 Stochastic differential equation model

The model (1) for COVID-19 is deterministic as all parameters are fixed. However, in real life scenario environmental noise affects
the spread of disease. To consider the effect of environmental noise on the system (1), it is assumed that the stochastic perturbations
are of white noise type and they are proportional to the variable. The stochastic differential equation models can be obtained by
using the modeling techniques given in [33–36]. Let Xi (i=1,2,3,4) denotes the random variables for SIa Is R model respectively. To
develop the stochastic differential equation model, the expectation E∗[�C] and variance E∗[�C�CT ] depend on the associated
transition probabilities of the model (1) given in Table 2. The expectation and variance are computed as

E∗[�C] �
n∑

i�1

Pi (�C)i ,

E∗[�C] �

⎛
⎜⎜⎝

ω − β1SIa − β2SIs − αS − μS
β1SIa − (β3 + k + μ)Ia

β2SIs + β3 Ia − γ Is − μIs − μ1 Is
γ Is − μR + αS + k Ia

⎞
⎟⎟⎠�t (17)

E∗[�C�CT ] �
n∑

i�1

Pi [(�C)i ][(�C)i ]
T
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Fig. 7 Histograms for susceptible (a) and asymptomatic infected population (b) at disease-free state show the distribution of respective populations, with
each bin representing a range of population sizes with frequency on y-axis

Fig. 8 Histograms show the distribution of individuals across the populations of symptomatic infected (a) and recovered population (b) with each bin
representing a range of population sizes at disease-free state

E∗[�C�CT ] �

⎛
⎜⎜⎝

v11 − β1SIa − β2SIs − αS
−β1SIa v22 − β3 Ia − k Ia
−β2SIs − β3 Ia v33 − γ Is
−αS − k Ia − γ Is v44

⎞
⎟⎟⎠�t (18)

v11 � ω+β1SIa +β2SIs +αS+μS, v22 � β1SIa +(β3 +k+μ)Ia , v33 � β2SIs +β3 Ia +(γ +μ+μ1)Is and v44 � γ Is +μR+αS+k Ia .
The Itô SDE model for the system (1) has the following form:

dX (t) � f (X1, X2, X3, X4)dt + G(X (t)dW

with initial conditions X (0) � [X1(0), X2(0), X3(0), X4(0)]T (19)

and G is 4 × 12 matrix satisfying GGT � V and W (t) is a vector of 12 independent Wiener process,

W (t) � (W1(t),W2(t),W3(t),W4(t),W5(t),W6(t),W7(t),W8(t),W9(t),W10(t),W11(t),W12(t))T .

Considering the above facts, the stochastic model is formulated as

dS �(ω − β1SIa − β2SIs − αS − μS)dt +
√

ωdW1 − √
β1SIadW2 − √

β2SIsdW3

− √
αSdW4 − √

μSdW5

d Ia �(β1SIa − (β3 + k + μ)Ia)dt +
√

β1SIadW2 − √
β3 IadW3 − √

k IadW4
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Fig. 9 Time series solutions of susceptible and asymptomatic infected populations starting from the initial condition (8995, 30, 715, 16,63,5889) converges
to the asymptomatic infection free state (9018.4, 0, 617, 16,63,7000) for deterministic system (shown by red color) in (a) and (b) respectively. However, the
stochastic system shows the convergence around the asymptomatic infection free state with large fluctuations as shown in blue color

Fig. 10 Time series solutions of symptomatic infected and recovered populations starting from the initial condition (8995, 30, 715, 16,63,5889) converges
to the asymptomatic infection free state (9018.4, 0, 617, 16,63,7000) for deterministic system (shown by red color) in (a) and (b) respectively. However, the
stochastic system shows the convergence around the asymptomatic infection free state with large fluctuations as shown in blue color

Fig. 11 Histograms show the distribution of individuals across the susceptible (a) and asymptomatic infected populations (b) with each bin representing a
range of respective population sizes at the asymptomatic infection free state
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Fig. 12 The histograms show the distribution of individuals across the (a) symptomatic infected and (b) recovered populations, with each bin representing
a range of respective population sizes at the asymptomatic infection free state. The x-axis represents the population size, while the y-axis represents the
frequency of individuals in each bin

Fig. 13 Time series solutions of susceptible and asymptomatic infected populations starting from the initial condition (4631, 7821, 730, 15307500) converges
to the endemic state (4643.728, 7914.77, 741.88, 15307611.167) for deterministic system (shown by red color) in (a) and (b) respectively. However, the
stochastic system shows the convergence around the endemic state with large fluctuations as shown in blue color

− √
μIadW5

d Is �(β2SIs + β3 Ia − γ Is − μIs − μ1 Is)dt +
√

β3 IadW3 +
√

β2SIs IadW4

− √
γ IsdW5 − √

μIsdW6 − √
μ1 IsdW7

dR �(γ Is − μR + αS + k Ia)dt +
√

αSdW1 +
√
k IadW2 +

√
γ IsdW3 − √

μRdW4 (20)

Drift � f (X1, X2, X3, X4, t) � E∗[�C]

�t
�

⎛
⎜⎜⎝

ω − β1SIa − β2SIs − αS − μS
β1SIa − (β3 + k + μ)Ia

β2SIs + β3 Ia − γ Is − μIs − μ1 Is
γ Is − μR + αS + k Ia

⎞
⎟⎟⎠

Variance �V (X1, X2, X3, X4, t) � E∗[�C�CT ]

�t
�

⎛
⎜⎜⎝

v11 − β1SIa − β2SIs − αS
−β1SIa v22 − β3 Ia − k Ia
−β2SIs − β3 Ia v33 − γ Is
−αS − k Ia − γ Is v44

⎞
⎟⎟⎠

v11 � ω+β1SIa +β2SIs +αS+μS, v22 � β1SIa +(β3 +k+μ)Ia , v33 � β2SIs +β3 Ia +(γ +μ+μ1)Is and v44 � γ Is +μR+αS+k Ia .
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Fig. 14 Time series solutions of symptomatic infected and recovered populations starting from the initial condition (4631, 7821, 730, 15307500) converges
to the endemic state (4643.728, 7914.77, 741.88, 15307611.167) for deterministic system (shown by red color) in (a) and (b) respectively. However, the
stochastic system shows the convergence around the endemic state with large fluctuations as shown in blue color

Fig. 15 Histograms show the distribution of individuals across the (a) susceptible and (b) asymptomatic infected populations, with each bin representing a
range of respective population sizes at endemic state. The x-axis represents the population size, while the y-axis represents the frequency of individuals in
each bin

6 Stochastic and deterministic simulations results

The Euler-Maruyama method is one of the numerical methods that can be used to solve the SDEs numerically. The SDEs (20) is
solved numerically by using the Euler-Maruyama method as given in equation (21).

Xn+1 � Xn + f (Xn, t)�t + (V (X1, X2, X3, X4))1/2dW (21)

The estimated parameters of second wave of COVID-19 (as given in Table 4) have been used to solve the SDEs numerically. For
β1=0.00000348275 and taking rest of the parameters values from Table 4, basic reproduction numbers R10 and R01 are computed
as 0.857744 and 0.0145215 respectively. Therefore, R0 � 0.857744(< 1). Clearly, disease-free state exists and globally stable by
Theorem 1. Using the data given in Table 4, the stochastic differential equations (20) have been solved numerically using the Euler-
Maruyama method and solutions have been plotted along with the solutions of deterministic system (1). In Fig. 5a, the stochastic
disease dynamics for the 300 paths of S(t) are obtained along with the deterministic solution. One can see that stochastic solutions
for S(t) are having large oscillations and they are converging towards the equilibrium value. Again, in Fig. 5b, one can see that time
series for Ia(t) is showing oscillations at the beginning and finally these oscillations get die out with probability one. In Fig. 6a,
the time-series of symptomatic infected Is(t) is showing strong oscillatory behavior at beginning but after sometime it converges to
zero. The Fig. 6b for recovered population R(t) is also showing strongly oscillatory behavior near equilibrium value. The histograms
have also been plotted in Figs. 7and 8 to confirm these results. It can be seen from histograms that the distribution of the S(t), Ia(t),
Is(t) and R(t) are around the equilibrium values of respective variables.
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Fig. 16 Histograms show the distribution of individuals across the (a) symptomatic infected and (b) recovered populations, with each bin representing a
range of respective population sizes at endemic state

Fig. 17 The time series plot
showing the daily COVID-19
cases (blue dots) in India from
March 3, 2020 to February 2,
2021 and the least square fit (solid
red curve) of the mathematical
model (1)

Further, for β1=0.00000448275 and β2� 0.000097028 and taking rest of the parameter values from Table 4, R10 � 1.1040 > 1 and
R01 � 2.4707 > 1. Clearly, the asymptomatic infection free state E1 exists by using (11) and is also getting stable by Theorem 3.
The deterministic and corresponding stochastic solutions have been plotted in Figs. 9 and 10. It can be seen that the stochastic
solutions of S(t) for 300 sample paths are showing strong oscillatory behavior around equilibrium value. However, the stochastic
solution for asymptomatic infected individuals Ia(t) are showing oscillatory behavior at beginning and oscillations converges to
zero after sometimes. The stochastic solutions for symptomatic infected Is(t) and recovered population R(t) are exhibiting strong
oscillatory behavior near equilibrium value. The histograms have also been plotted in Figs. 11 and 12 to confirm the distribution of
state variables around equilibrium values.

By changing β1 � 0.00001948275 and keeping rest of the parameters same as given in Table 4, the R10 � 4.7982 and
R01 � 0.0145215. Here, R10 is greater than 1 and also R10 > R01. Now, using (16), the endemic state E2 exists and stable. The
time-series for the stochastic dynamics of the system near endemic state along with the deterministic solutions have been plotted in
Figs. 13 and 14. It is clear from Figs. 13 and 14 that due to stochasticity, the system exhibits huge oscillations around equilibrium
values of model (1). The histograms in Figs. 15 and 16 have also been plotted to show the distribution of system variables.

The important observation from these simulations results is that the presence of stochasticity in the model (1) does not change
the dynamics of any equilibrium states. However, stochasticity brings large oscillations around the solution of the system (1).
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Table 3 Estimated values of the
parameters for the first wave of
COVID-19

Parameters Values

ω 2113.89440469 (Estimated)
β1 0.000000538913 (Estimated)
β2 0.000000332697 (Estimated)
β3 0.058779112026 (Estimated)
μ 0.0000391 [37]
μ1 0.000091158170 (Estimated)
α 0.001069337094 (Estimated)
γ 0.046208822366 (Estimated)

k 0.008132469470 (Estimated)

Fig. 18 The time series plot
showing the daily COVID-19
cases (blue dots) in India from
February 3, 2021 to December 14,
2021 and the least square fit (solid
red curve) of the mathematical
model (1)

Table 4 Estimated values of the
parameters for the second wave of
COVID-19

Parameters Values

ω 907.077 (Estimated)
β1 0.000092948275 (Estimated)
β2 0.00000005702868 (Estimated)
β3 0.0817725 (Estimated)
μ 0.0000391 [37]
μ1 0.415274 (Estimated)
α 0.04067759 (Estimated)
γ 0.4598205 (Estimated)

k 0.008661017 (Estimated)

7 Parameter estimations

In this section, the parameter estimation has been performed for the model (1). The COVID-19 data of India for three waves has
been used to estimate the parameters of the model. The data has been taken from the World Health Organization (WHO) site [38].
Since during all the three waves of COVID-19, the consequences were different. Therefore, parameter estimation has been done
for all the three waves separately. The parameters β1, β2, β3, α, μ1 and γ , k and ω have been estimated by using the ’fminsearch’
function from the MATLAB Optimization Toolbox that uses the nonlinear least-squares curve fitting technique. The natural death
rate of human population has been taken from [37].
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Fig. 19 The time series plot
showing the daily COVID-19
cases (blue dots) in India from
December 15, 2021 to January 27,
2023 and the least square fit (solid
red curve) of the mathematical
model (1)

Table 5 Estimated values of the
parameters for the third wave of
COVID-19

Parameters Values

ω 57806 (Estimated)
β1 0.0000002522 (Estimated)
β2 0.00000045744 (Estimated)
β3 0.00007876884 (Estimated)
μ 0.0000391 [37]
μ1 0.014075 (Estimated)
α 0.02772 (Estimated)
γ 0.14143 (Estimated)

k 0.0009094 (Estimated)

The confirmed cases of the first wave of COVID-19 starting from March 3, 2020, to February 2, 2021 have been considered for
the model fitting. In Fig. 17, the COVID-19 cases of first wave have been shown by the blue dots and the fitted curve for model
(1) has been shown by solid red line. The good match between the data and the predicted solution of the model is obtained. The
estimated values of the model parameters for the first wave of COVID-19 are given in Table 3.

The Fig. 18 shows the fitted solution of the model along with confirmed cases of second wave of COVID-19 started from February
3, 2021 to December 14, 2021. The estimated parameters of the model (1) for the second wave of COVID-19 are given in Table 4.
The fitted solution of model (1) and the confirmed second wave of COVID-19 cases have been shown by solid red line and blue dots
respectively in Fig. 18. The good match is obtained between the data and the predicted solution of the model.

Further, to estimate the parameters of the model (1) for the third wave of COVID-19, the confirmed cases of third wave of
COVID-19 started from December 15, 2021 to January 27, 2023 have been considered for the model fitting. The Fig. 19 shows
the fitted solution of model (1) and the confirmed third wave of COVID-19 cases by solid red line and blue dots respectively. The
estimated parameters of the third wave of COVID-19 are given in Table 5. The good match is obtained between the data and the
predicted solution of the model.

It can be concluded from all the estimated values of parameters for the three waves of COVID-19, the transmission rate for
asymptomatic infected population is higher than the symptomatic infected population in first and second wave of COVID-19.
However, the transmission rate β3 that is responsible for converting the infection from asymptomatic to symptomatic is higher in
all three waves of COVID-19. Thus, most of the time, asymptomatic infection has been converted into the symptomatic infection.
Disease-induced death rate was very high in second wave as compared to the first and third COVID-19 wave. That estimate is inline
with the fact.
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8 Conclusions

In this paper, the non-linear model of COVID-19 has been formulated to study the transmission dynamics of infection in deterministic
and stochastic framework. For the deterministic model, three equilibrium states exist. The disease-free state always exists and is
found to be globally stable for R0 < 1. The asymptomatic infection free state exists for R01 > 1 and is found to be locally stable for
R01 > R10. However, for R10 > 1 and R10 > R01, the endemic state exists and is found to be locally stable. At R10 � R01(� 1), the
stability of the asymptomatic infection free state and the endemic state changes, hence transcritical bifurcation occurs at this point.
It can be seen from the expressions of R10 and R01 that R10 is associated with the parameters of asymptomatic infection and R01 is
dependent on the parameters of symptomatic infection. It can be concluded that whenever the asymptomatic infection cases increase,
COVID-19 infection will persist in the population as the endemic state is stable for R10 > R01. However, when symptomatic cases
will dominate, COVID-19 infection can be eradicated by increasing the non-pharmaceutical interventions (NPIs). It is also important
to note that increasing the rate of NPIs can control COVID-19 infection to some extent.

The environmental noise has been added to the deterministic model to make it more realistic. The stochastic differential equation
model has been formulated and solved numerically using the Euler-Maruyama method. Stochastic and the corresponding determin-
istic solutions have been plotted by using the estimated parameters of second wave of COVID-19. It is found that deterministic
and the corresponding stochastic solution converge to their respective states. However, the stochastic solutions are showing large
fluctuations around the deterministic solutions due to environmental noise.

Parameter estimations have been done by using the COVID-19 data of three waves of India provided by the official sources.
It is found from the estimated values of parameters that the value of parameter β3 is quite high as compared to the symptomatic
infection transmission parameter β2 in all three COVID-19 waves. This indicates that most of the symptomatic infections were
transformed from the asymptomatic ones which are found true in reality. The parameter estimates from the three waves of COVID-
19 are consistent with the actual outcomes. As in second wave, the transmision and disease-induced death rates were quite high as
compared to the first and third waves of COVID-19 in India [39, 40].

Data Availability Statement The data used in this manuscript is obtained from the official sources [37, 38]. The access to COVID-19 data given in [37,
38] is free for all.
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