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Abstract In geological fault modeling, several fragmented blocks are coupled by springs and the motion between them is not
transmitted instantly, but with a delay. The dynamics of geological media is investigated by considering the time delay between
blocks’ deformations. Our modelization led to a complex-Landau equation, from which we derived solitary waves induced by the
stick–slip process. A solitary wave propagating along the contact surface between two plates becomes stable or unstable as the
time delay varies, thus producing states of solitary wave. The modulational instability of the system is performed, showing that the
instability of the amplitude increases with the time delay and the nonlinear parameters. Also, the bandwidth of instability varies
with the system parameters. It is shown from our results that the time delay decelerates the propagating soliton.

1 Introduction

Mantle convection process is responsible of up and down welling of hot and cold material, respectively, in the Earth’s interior.
Lithospheric plates are affected by convectional currents that induced slow motion in order of cm/yr [1]. On Earth, a plate tectonic
has three main boundaries: mid-oceanic ridges, subduction zones and transform faults. These plates move with respect to each other
due to convection currents within the mantle below the terrestrial crust [2]. The motion along a transform fault is explained by the
stick–slip phenomenon in which two phases are distinguished, stress accumulation (corresponding to the stick) and the stress drop
(corresponding to the fault slip) [3, 4]. Asperities between the plates may increase stress, leading to strain energy accumulation
around the fault surface [5]. Occasionally, when the stress is sufficiently high to break through the asperities, a sudden motion of
the plates occurs, accompanied by energy release, causing an earthquake. This energy propagates in the form of a wave at the speed
of two to three kilometers per second (2–3 km/s). The size of an earthquake strongly depends on the area over which the rupture
occurs and how the fault is ruptured.

During the rupture process, different elastic waves take place in the Earth’s crust and propagate in all directions away from the
rupture and with a faster velocity than the rupture propagates. However, the real speed of the waves depends on the elastic properties
of the rock materials which constitute the Earth’s crust and also on the nature of the waves. Physically, rock materials are not
continuous; they consist of grains, crystals or blocks of different sizes separated from each other by cracks of all possible sizes.
Indeed, the earthquake is the onset of some complex behaviors, due to the presence of relevant physical phenomena occurring at the
same place for a short time. In this respect, many researches have been devoted to explaining the behavior of earthquakes [6–8].

The effect of time delay was previously and implicitly introduced in the friction term [9, 10], and between the neighboring blocks
in a one-dimensional chain of blocks with rate-dependent friction law [11]. Kostić et al. [12] also studied the transition between
different seismic cycles considering the delayed interaction among the blocks with a rate- and state-dependent friction law. All these
works do not study the dynamic of waves in the Burridge and Knopoff model.
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Fig. 1. 1D model of rock block
materials moving in a rough. The
blocks are connected to a moving
loader plate which represents the
other side of the fault through
spring interactions [7]
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The dynamics of solitary waves has been investigated by some authors [8, 13–15] based on the 1D spring-slider model proposed
by Burridge and Knopoff. None of these works took into account the time delay.

In this paper, we analyze the dynamics of modulation waves considering the delayed interaction among the blocks with a
velocity-weakening frictional force and a nonlinear elastic force.

2 Model and equation of motion

The model under study is depicted in Fig. 1; it displays a preexisting fault broken on one side.
It consists of N blocks of rocks materials with mass m, connected to each other by the springs of stiffness kc(materializing the

linear elastic properties of the medium surrounding the fault) with normal length a and a viscous damping (that corresponds to the
viscous character of rocks constituting the fault) with damping coefficient C . Each block is attached by a leaf spring of stiffness kp
to a driver plate.

The blocks rest upon a stationary surface (punt form), which provides a velocity-dependent frictional force that impedes their
motion; the viscous damping force (the restraining of vibratory motion of the oscillations of a mechanical system by the dissipation
of energy is known as damping force) is proportional to the relative block velocity. Initially, the system is at rest, and the elastic
energy accumulated in “horizontal” springs is only due to randomly generated small initial displacements of the blocks from their
initial positions. In this paper, we consider a nonlinear stiffness of the elasticity of the rocks. The nonlinear elastic force in the spring
blocks with stiffness k0 is given by [8, 16–18]

Fe(x) � −k0

(
x +

ε

2b2 x
3
)

(1)

The equation of motion is given by the following expression:

m
d2xn
dt2 � −kp(xn − V0t) − kc(xn+1 − 2xn + xn−1) − C(ẋn+1 − 2ẋn + ẋn−1)

+
kpε

2b2 x
3
n +

kcε

2b2

[
(xn+1 − xn)

3 − (xn − xn−1)
3] − F0φ(ẋn/Vc)

(2)

in which F0 represents the static frictional force in the dry fault (F0 is the force which enables the block to resist the motion
induced by the tectonic plates in dry conditions),xn (n � 1, ...., N ) measures the displacement of the block, and Vc stands for the
characteristic velocity of the friction.

The late 1970s saw an increased interest in stick–slip instabilities present in laboratory rock experiments as a means of under-
standing earthquake ruptures. Many authors [19, 20] used these experiments to formulate constitutive laws capable of describing the
frictional stress when rocks were sheared against each other or over a surface. Fault behavior strongly depends on these constitutive
models. Therefore, we use the velocity-weakening frictional force given by [21].

φ(x) � sign(x)

1 + |x | . (3)

In our current investigation, we focus on the weak displacements of the block (i.e. ẋn << Vc). The function φ(ẋn/Vc) is developed
in linear approximation in terms of the Taylor series according to [22] as follows:

φ(ẋ/Vc) � 1 − ẋ/Vc. (4)

In the continuation of this work, we introduce time delay between the coupled blocks. The effect of the middle set of blocks (with
different viscosity properties in comparison to others) is replicated by the delayed interaction between the two blocks [12]. Using
the above approximation and introducing the time delay τ0, the equation of motion can now be rewritten as

ẍn � −k1(xn+1(t − τ0) − 2xn(t) + xn−1(t − τ0)) − η(ẋn+1(t − τ0) − 2ẋn(t) + ẋn−1(t − τ0))

− k2(xn − V0t) + βx3
n + γ

[
(xn+1(t − τ0) − xn(t))

3 − (xn(t) − xn−1(t − τ0))
3] + αẋn − F0

m
(5)
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with

β � kpε

2mb2 , γ � kcε

2mb2 , k1 � kc
m

k2 �kp
m

, η � C

m
, α � F0

mVc
. (6)

The solution xn can be divided into two parts: an oscillating part un and a non-oscillating part x (0)
n

xn � un + x (0)
n with x (0)

n � an + bnt (7)

The oscillating part is given by:

ün � −k1(un+1(t − τ0) − 2un(t) + un−1(t − τ0)) − η(u̇n+1(t − τ0) − 2u̇n(t) + u̇n−1(t − τ0))

−k2un + αu̇n + γ
[
(un+1(t − τ0) − un(t))

3 − (un(t) − un−1(t − τ0))
3] + βu3

n

(8)

Equation (8) represents a delay differential equation (DDE). It is almost impossible to solve this equation analytically; however,
near exact solutions can be obtained using perturbation methods. In order to determine the order of the different terms, we introduce
the variable

un � ερn, (9)

where ε << 1. In a regime of weakening frictional force between tectonic plates α is considered to be perturbed at the order ε2. In
the case of a weakly dissipative medium, we consider the perturbation of the damping coefficient to be

(
η ← η0 + ε2η

)
. Equation (8)

becomes

ρ̈n � −k1(ρn+1(t − τ0) − 2ρn(t) + ρn−1(t − τ0)) − (
η0 + ε2η

)
(ρ̇n+1(t − τ0) − 2ρ̇n(t) + ρ̇n−1(t − τ0))

−k2ρn + ε2αρ̇n + ε2γ
[
(ρn+1(t − τ0) − ρn(t))

3 − (ρn(t) − ρn−1(t − τ0))
3] + ε2βρ3

n

(10)

We are looking for a soliton made up of carrier waves modulated by an envelope signal, which are called envelope solitons. This
type of soliton appears naturally for most weakly dispersive and nonlinear systems, which are described by a wave equation in the
small amplitude limit [23]. Since the interactions between adjacent blocks are assumed weak, it is adequate to use multiple scale
expansions in the semi-discrete approximation. Thus, the aim of the following section is to find analytically an envelope soliton of
Eq. (10).

We will start by describing the multiple scale method in the semi-discrete approximation and then apply it to our model to obtain
a complex Ginzburg–Landau (CGL) equation.

3 Multiple scale expansion in the semi-discrete approximation and oscillatory solutions

3.1 Multiple scale expansion in the semi-discrete approximation

The semi-discrete approximation is a perturbation technique in which the carrier waves are kept discrete while the amplitude is
treated in the continuum limit [24]. Applying this method allows one to study the modulation of a plane wave caused by nonlinear
effects.

We proceed by making a change of variables according to the new space and time scales Xi � εi x and Ti � εi t, respectively.
Thus, the solution un(x, t) is found as a perturbation series of functions. We consider here that

un(x, t) �
∞∑
j�1

ε jρ j (X0, X1, X2, ....., T0, T1, T2), (11)

and the derivative operators ∂
∂t and ∂

∂x are expanded as

∂

∂x
� ∂

∂X0
+ ε

∂

∂X1
+ ε2 ∂

∂X2
+ 0

(
ε3) (12)

∂

∂t
� ∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
+ 0

(
ε3) (13)

3.2 Oscillatory solutions

In this subsection, our interest is focused on the propagation of modulated waves in the system. To do this, we use the semi-discrete
approximation [25] to obtain wavelength envelope solitons. This approach allows us to treat properly the carrier wave with its discrete
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Fig. 2 a Angular frequency. b Three-dimensional representation of the angular frequency. c The evolution of the group velocity. d Three-dimensional
representation of the group velocity in terms of wave number q, as function of the time delay parameter. Parameters chosen are k1 � k2 � 1.0, η0 �
0.6, a � 1.0

character and to describe the envelope in the continuum approximation. Modulated wave solutions of Eq. (10) are considered of the
form

ρn � �n(x, t)e
iθn + �∗

n (x, t)e−iθn (14)

where θn � qan−ωt is the phase of the soliton. The parameters q, a and ω are the wave number, the distance of neighboring blocks
and the optical frequency of the linear approximation of blocks vibrations. The amplitude �n will be considered slowly changing
in space and time. Applying now the continuum limit approximation on these amplitudes will yield �n becoming �(x, t). �n±1 is
obtained at a2 by Taylor expansion

�n±1 � � ± a
∂�

∂x
+
a2

2

∂�

∂x2 + 0
(
a3) (15)

Introduction of ρn and its derivatives into Eq. 10 yields a series of equations distinguished by the power of ε.
At the order ε0, one obtains the dispersion relation of linear waves of the system made up of Eq. (17) (see Fig. 2):

ω2 + 2iηω + 2(k1 − iηω) cos(qa)eiωτ0 − 2k1 − k2 � 0 (16)

Let us consider ωτ0 << 1. In this approximation, one obtains the angular frequency.

ω � ωr + iωi , ωr � ω0

√
1 − γ 2

1

4ω2
0

, ωi � −γ1

2
, (17)

where

γ1 � 2
(
k1τ0 cos(qa) + 2η0 sin2(qa/2)

)

1 + 2η0τ0 cos(qa)
, ω2

0 � k2 + 4k1 sin2(qa/2)

1 + 2η0τ0 cos(qa)
. (18)
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Fig. 3 Dissipation coefficients evolution in terms of the wave number q in a 2 D for different values of time delay τ0 and b 3D representations. Parameter
chosen are k1 � k2 � 1.0, η0 � 0.6, η � 0.01, α � 0.5, γ � 0.1, β � 0.1, a � 1.0

ω0 is the angular frequency of vibrations of block in the absence of damping, and the parameter γ1 is the dissipative term due to
damping and time delay.

At the order ε1, we obtain the group velocity (see Fig. 3) as.

Vg � Vg,r + iVg,i , Vg,r � γrμr + γiμi

μ2
r + μ2

i

, Vg,i � γiμr − γrμi

μ2
r + μ2

i

, (19)

where

μr � 2η0
(
1 − e−ωi τ0 cos(qa) cos(ωrτ0)

)
,

μi � ωr − 2η0e
−ωi τ0 cos(qa) sin(ωrτ0),

(20)

γr � 2aη0(ωr cos(ωrτ0) − ωi sin(ωrτ0))e
−ωi τ0 ,

γi � 2ak1 sin(qa) + 2aη0(ωi cos(ωrτ0) + ωr sin(ωrτ0))e
−ωi τ0 .

(21)

By going into the reference frame moving with the group velocity Vg in which waves seem to be stationary, we collect the terms
of ε2 and we set

y � X1 − VgT1, τ � εT1. (22)

By exploiting the transformation (Eq. 22), we obtain the complex Ginzburg–Landau (Eq. 23) that describes the evolution of a
packet wave.

i
∂�

∂τ
+ P

∂2�

∂y2 + Q|�|2� + i R� � 0, (23)

with

P � Pr + i Pi , (24)

Q � Qr + i Qi , (25)

R � Rr + i Ri , (26)

Pr � brai − arbi
a2
r + a2

i

, (27)

Pi � aibi + arbr
a2
r + a2

i

, (28)

Qr � drai − diar
a2
r + a2

i

, (29)
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Fig. 4 Dissipation coefficients evolution in terms of the wave number q in a 2 D for different values of damping η0 and b 3D representations. Parameters
are the same as in Fig. 3, but τ0 � 0.1

Qi � drar + diai
a2
r + a2

i

, (30)

Rr � crar + ci ai
a2
r + a2

i

, (31)

Ri � ciar − crai
a2
r + a2

i

, (32)

ar � ωi − 2η0 cos(qa) cos(ωrτ0)e
−ωi τ0 , (33)

ai � −ωr − 2η0 cos(qa) sin(ωrτ0)e
−ωi τ0 , (34)

br � V 2
g,r − V 2

g,i − 2η0a sin(qa)
(
Vg,r sin(ωrτ0) + Vg,i cos(ωrτ0)

)
e−ωi τ0

+a2[η0(ωr cos(ωrτ0) − ωi sin(ωrτ0)) − k1 cos(ωrτ0)] cos(qa)e−ωi τ0 ,
(35)

bi � 2Vg,r Vg,i + 2aη0 sin(qa)
(
Vg,r cos(ωrτ0) − Vg,i sin(ωrτ0)

)
e−ωi τ0

+a2[η0ωi (ωr sin(ωrτ0) + ωi cos(ωrτ0)) − k1 sin(ωrτ0)] cos(qa)e−ωi τ0 ,
(36)

cr � 2η
(
ωr cos(qa) cos(ωrτ0)e

−ωi τ0 − ωi
(
1 − cos(qa) sin(ωrτ0)e

−ωi τ0
))

+ αωr , (37)

ci � 2η
(
ωi cos(qa) sin(ωrτ0)e

−ωi τ0 + ωr
(
1 − cos(qa) cos(ωrτ0)e

−ωi τ0
))

+ αωi , (38)

dr � 3β + 12γ sin(qa) sin(ωrτ0)e
−ωi τ0 , (39)

di � 12γ
(
cos(ωrτ0)e

−ωi τ0 − cos(qa) cos(2ωrτ0)e
−2ωi τ0

)
sin(qa), (40)

The variations of the dispersion relation and the group velocity with respect to the wave vector q are represented in Fig. 2. In
Fig. 2, we remark that the angular frequency (Fig. 2a, b) and group velocity (Fig. 2c, d) increase with increasing time delay τ0. This
clearly shows that when the time delay increases, the seismic wave propagates more quickly in the rock medium. We also note that
for nonzero time delay the group velocity (Fig. 2c) is positive. The seismic wave propagates to the y positive direction. In order to
show the effect of the time delay parameter, damping coefficient and damping perturbed parameter on the dissipation coefficients,
we display the dissipation coefficient versus the wave number on these parameters in Figs. 3, 4, 5.

In Fig. 3, we note that the real dissipative coefficient is negative when time delay varies. We also note that the real dissipative
coefficient is positive for negative values of perturbation damping coefficient η and negative for positive values of η (Fig. 5).

4 Modulational instability

Several nonlinear systems like spring block exhibit an instability that leads to a self-induced modulation of an input plane wave
with the subsequent generation of localized pulses [26]. In this section, we are looking for conditions under which a plane wave
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Fig. 5 Dissipation coefficients as the functions of the wave number q in a 2 D for different values of perturbed damping coefficient η and b 3D representations.
Parameters are the same as in Fig. 3, but τ0 � 0.1

propagating in the spring-block model of the earthquake is stable or unstable to a small perturbation. The instability of the plane
wave will generate amplitude-modulated waves. Hence, we are searching for a plane wave in the form (Eq. 41)

�(y, τ ) � �0 exp[i(vy − �τ)]e−Rτ , (41)

where �0 is the complex amplitude, v the wave number and � the wave frequency. Substituting Eq. (41) into Eq. (23), we obtained
the nonlinear dispersion relation of the plane wave given by Eq. (42)

� � Prν
2 − Qr |�0|2e−2Rr τ ,

Piν
2 − Qi |�0|2e−2Rr τ � 0,

(42)

Equation (42) shows that the angular frequency depends on the wave number, the dissipation coefficient and the wave amplitude.
To examine the linear stability of the nonlinear plane wave, we look for a solution in the form [24]

�(y, τ ) � (�0 + B(y,)) exp[i(νy − �τ) + φ(y, τ )]e−Rτ , (43)

where B(y, τ ) is the amplitude perturbation and φ(y, τ ) the phase perturbation.
Inserting Eq. (42) into Eq. (23), and neglecting the nonlinear terms, a separation of the real part from the imaginary leads to the

following two coupled linear differential equations:

Pr
∂2B

∂y2 − 2Piν
∂B

∂y
+ 2Qr |�0|2e−2Rr τ B −

(
∂φ

∂τ
+ Pi

∂2φ

∂y2 + 2Prν
∂φ

∂y

)
�0 � 0,

∂B

∂τ
+ Pi

∂2B

∂y2 + 2Prν
∂B

∂y
+ 2Qi |�0|2e−2Rr τ B +

(
Pr

∂2φ

∂y2 − 2Piν
∂φ

∂y

)
�0 � 0,

(44)

and the solution of Eq. (44) can be taken as

B � B0 exp[i(Ky + �τ)] + c.c., (45)

φ � φ0 exp[i(Ky + �τ)] + c.c., (46)

where B0 and φ0 are the real constant; K and � are the wave number and the angular frequency, respectively, of the perturbation.
Insertion of Eqs. (45) and (46) into Eq. (44) results in a linear homogeneous system for B0 and φ0:

⎧
⎪⎨
⎪⎩

(
−Pr K

2 − i2Pi Kν + 2Qr |�0|2e−2Rr τ
)
B0 +

(
i� + Pi K

2 − i2Pr Kν
)
�0φ0 � 0,

(
−i� − Pi K

2 + i2Pr Kν + 2Qi |�0|2e−2Rr τ
)
B0 +

(−Pr K
2 − i2Pi Kν

)
�0φ0 � 0.

(47)

System (47) has non-trivial solutions if the angular frequency obeys the relation

�2 − (κr + iκi )� + ρr + iρr � 0 (48)

123
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with

κi � 4Pr Kν,

κr � 2
(
Pi K

2 − Qi |�0|2e−2Rr τ
)
,

(49)

ρr � 2P2
i K

2ν2 − P2
r K

4 − 2Pr Qr |�0|2e−2Rr τ ,

ρi � 4Pi Qr Kν|�0|2e−2Rr τ − 4Pr Pi K
3ν,

(50)

The discriminant of Eq. (48) is given by

� � �r + i�i (51)

with

�r � 4
(
P2
r − P2

i

)
K 4 + 8

(
P2
r − P2

i

)
K 2ν2 − 4Q2

i |�0|4e−4Rr τ + 8(Pr Qr + Pi Qi )K
2|�0|2e−2Rr τ ,

�i � 32Pr Pi K
3ν − 16(Pr Qi + Pi Qr )Kν|�0|2e−2Rr τ , (52)

The solution of Eq. (48) depends on the sign of the imaginary part of the discriminant.
If �i > 0 the solution of Eq. (48) is given by

�1 � (κr − h1 + i(κi − h2))/2, (53)

�2 � (κr + h1 + i(κi + h2))/2, (54)

where

h1 �
√(

�r +
√

�2
r + �2

i

)
/2, (55)

h2 �
√(

−�r +
√

�2
r + �2

i

)
/2. (56)

If �i < 0 the solution of Eq. (55) is given by

�1 � (κr + h1 + i(κi − h2))/2, (57)

�2 � (κr − h1 + i(κi + h2))/2. (58)

From Eq. 53, 54, 57 and 58, the angular frequency can be written as � � �0 + iσ , where �0 being its real part and σ its imaginary
part, also known as the growth rate of the instability. Thus, the perturbation wave in Eq. (44) and Eq. (45) can be rewritten as

B(y, τ ) � B0e
−στ ei(ky+�0τ) + c.c., φ(y, τ ) � φ0e

−στ ei(ky+�0τ) + c.c., (59)

The behavior of the wave propagating in the media is related to the sign of σ . For σ < 0, the perturbation amplitude of the
wave grows exponentially with time. In this case, the perturbation amplitude will no longer disappear; it will affect continuously
the amplitude of earthquake nonlinear waves. The system becomes unstable, leading to earthquake pattern formation through the
system and related energy.

For σ > 0, the small perturbation in the amplitude of the earthquake waves will vanish after short time propagation. The amplitude
of the waves will remain constant, showing the stability character of the system.

The modulational instability criterion related to the CGL equation is given by [25, 27]

Pr Qr + Pi Qi > 0. (60)

Equation (60) is a generalization of the Lange and Newell’s [28] modulational instability criterion for physical systems governed
the CGL equation.

Figures 6, 7, 8 give the effects of the time delay τ0(Fig. 6), the damping coefficient η0 (Fig. 7) and the nonlinear elastic parameter
γ (Fig. 8) on the product Pr Qr + Pi Qi . The system is stable if this product is negative and unstable if it is positive.

The local growth rate of the modulational instability or the gain is then given by

G(K ) � min(|Im(�)|) � |κi − h2|. (61)

The growth rate of the instability is plotted in Figs. 9, 10 and 11. We observe that changes in the time delay (Fig. 9), the nonlinear
cubic elastic coefficient (Fig. 10), the damping coefficient (Fig. 11a), the distance of neighboring blocks (Fig. 11b) and the spring
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Fig. 6 Schematic representation of the product Pr Qr + Pi Qi a 2D in terms of the wave number, for different values of the time delay and b 3D as a function
of the wave number and the time delay. Parameters chosen are the same as in Fig. 3

Fig. 7 Schematic representation of the product Pr Qr + Pi Qi a 2D in terms of the wave number, for different values of the damping coefficient and b 3D
as a function of the wave number and the damping coefficient. Parameters chosen are the same as in Fig. 4

Fig. 8 Schematic representation of the product Pr Qr + Pi Qi a 2D in terms of the wave number, for different values of the nonlinear elastic parameter and
b 3D as a function of the wave number and the nonlinear elastic parameter. Parameters chosen are the same as in Fig. 4

123



  273 Page 10 of 15 Eur. Phys. J. Plus         (2023) 138:273 

Fig. 9 a Gain spectrum in 2D representation versus the wave number of the perturbation wave for different values of time delay, b Three-dimensional
representation of the gain as a function of wave number and the nonlinear cubic elastic coefficient β. Parameters chosen are k1 � k2 � 1.0, η0 � 0.6, η �
0.2, α � 0.5, β � 10.0, γ � −0.3, a � 0.8, |�0| � 1.0, τ � 10−4

Fig. 10 a Gain spectrum in 2D representation versus the wave number of the perturbation wave for different values of β, b Three-dimensional representation
of the gain as a function of wave number and the nonlinear cubic elastic coefficient β. Parameters chosen are the same as in Fig. 9 but τ0 � 0.2.

stiffness (Fig. 11c, d) affect the modulation gain in the system. We also observed that the maximum value of G(K ) decreases with
an increase the parameters τ0 (Fig. 9), a, k1, k2 (Fig. 11b–d), and G(K ) increases with an increase β(Fig. 10) and η0(Fig. 11a).

The presence of time delay decreases the amplitude of the perturbation growth rate. This means that the introduction time delay in
the spring-block model of earthquake can play the same role as the viscosity of a fault which plays a crucial role in the transmission
of a movement along the fault [12]. The cubic elastic coefficient β, the damping coefficient η0, the spring’s stiffness k1, k2 and
the distance of neighboring blocks a affect considerably the bandwidth of modulation instability (MI). From the viewpoint of
seismology, these findings indicate a key role in the interaction among different parts of a compound fault in the generation of
seismogenic motion. This feature could have significant implications. In an earthquake analogy, the stability of the seismic fault can
be controlled through the rock properties which vary from one zone to another.

The gain spectrum is equal to zero at the critical value Kcri of the wave number. This critical value corresponds to the transition
point from instability to stability domain. The system is unstable when 0 < K < Kcri and becomes stable when K > Kcri.

The critical value Kcri decreases with increasing the parameters η0, a and k1 (see Fig. 11). It increases with increasing the
nonlinear coefficient β (see Fig. 10) and the spring stiffness k2. The critical value Kcri remained unchanged when the time delay
increases (see Fig. 9). Increasing the critical value of the wave number increases the instability bandwidth [0, Kcri] (domain in
which the imaginary part of the angular frequency is negative). All this shows that the stability of the system strongly depends on
the parameters of the system. To appreciate this influence, we draw in the following the parameters diagram of stability. Figure 12
shows the parameters diagram in which the imaginary part of the angular frequency can be negative or positive. This diagram shows
that the earthquake wave is unstable for the parameter selected in the red domain and stable in the green domain of the diagram.
In the all above, the instability modulational in the spring-block model of earthquake strongly depends on interaction between the
blocks, the viscous damping and the nonlinear character of the spring.
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Fig. 11 Gain spectrum in 2D representation versus the wave number of the perturbation wave for different values of a η0, b a, c k1 and d k2. Parameters
chosen are the same as in Fig. 10

5 Nonlinear solution of the equation of motion

The form of the dissipative envelope soliton solution of Eq. (23) will be given by [29]:

�(y, τ ) � A0e−i Ri τ eθ

[
1 + eθ+θ∗]1+iδ , (62)

where θ � (�r + i�i )y − (λr + iλi )τ .
Substituting of (Eq. 62) into (Eq. 23), we obtain

�2
r � 3Rr�

2Qi − (
1 + δ2

)
�Pi

, |A0|2 � 4�2
r

�
, �i � δ�r , λr � 0,

λi � �2
r

[
2δPi − (

1 − δ2)Pr
]
, � � Pr Qr + Pi Qi(

2 − δ2
)|P|2 .

(63)

δ �λ̄ ± (
2 +λ̄2)1/2

,

λ̄ � Pr Qr + Pi Qi

2(Pr Qi − Pi Qr )
.

(64)

The dark form of soliton solution of Eq. (30) will be given by [26]:

�(y, τ ) � A0e
−i Ri τ ei(Ky−�τ) 1 − e2�y

[
1 + e2�y

]1+iδ , (65)

and substituting (Eq. 65) into the amplitude equation (Eq. 23), one obtains

K � δ�, � � K 2Pr − Qr |A0|2, �2 � −Rr�
(
Qi + δ2

�Pi
)
,

|A0|2 � (
Rr + K 2Pi

)
/Qi ,

(66)
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Fig.12 Stability/instability diagram in the parameters planes a(τ0, K ) , b(τ0, β), c(τ0, η) d (τ0, η0) e(τ0, k1) , f (τ0, k2) and g (τ0, a) with k1 � k1 �
1.0, η0 � 0.5, α � 0.5, a � 0.8, β � 10, , γ � 0.2, τ � 10−4, K � π/2 and q � π/4. System is stable in the green domain and unstable in the red
domain of the diagram

δ �λ̄ +
(
2 +λ̄2)1/2

,

λ̄ � Pr Qr + Pi Qi

2(Pr Qi − Pi Qr )
.

(67)

The solution of (Eq. 8) is given by using (Eqs.62 and 65), and then inserting the expression

un(x, t) � ε�(x, t) exp[i(qan − ωt)] (68)

The bright solution and the energy transported by the waves are depicted in Figs. 13 and 14.
These figures show the localized soliton wave having the form of the symmetric envelope soliton. Also, Figs.13 and 14 show

that the wave propagation along the fault is affected by time delay. It is obvious from the figures that the time delay decelerates the
propagating soliton. The time delay tends to increase the wave amplitude at t �� 0.0.

The evolution of the dark soliton solution is depicted in Figs. 15 and 16. Figure 15 shows that time delay tends to decrease the
wave amplitude for fixed time. In Fig. 16, we notice that the magnitude of waves decreases with time delay. This indicates that time
delay introduced in our model can contribute to stabilize the fault system. We also observed the increase in the magnitude of the
wave in time without time delay introduction.
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Fig. 13 Evolution of the bright
soliton with the variation of the
time for different values of time
delay. The parameters used are
k1 � k1 � 1.0, η0 � 0.5, α �
0.5, a � 0.8, β � 0.5, ε �
0.05, γ � 0.2 and q � 2.5

Fig. 14 Amplitude soliton
|un(t, x)|2 evolution with the
variation of the time for different
values of time delay. a τ0 � 0.3
and b τ0 � 0.6.The parameters
used are k1 � k1 � 1.0, η0 �
0.5, α � 0.5, a � 0.8, β �
0.5, ε � 0.05, γ � 0.2 and
q � 2.5

6 Conclusion

The modulational instability of the system was analyzed, and we observed that the magnitude of the modulated waves and the
energy generated by the earthquake strongly depend on the time delay, viscous damping coefficient and the nonlinear cubic elastic
parameter. We also showed that the time delay decelerates the propagating soliton. In addition, the amplitude of the wave can be
influenced by the interaction between the different parts of the fault. Our results showed that the system converges to the stationary
state with increasing time delay, indicating its stability. This suggests that the interaction between blocks may cause an oscillation’s
death. This oscillation’s death corresponds to the aseismic fault [20]. It also appears from our analyses that the introduction of the
time delay may induce transition from an unstable state to a stable one. It is possible that under certain conditions in the earth’s crust
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Fig. 15 Evolution of the dark
soliton with the variation of the
time for different values of time
delay. The parameters used are
k1 � k1 � 1.0, η0 � 0.05, η �
0.001, α � 5.0, a � 0.4, β �
0.5, ε � 0.05, γ � 0.2 and
q � 2.5

Fig. 16 Temporal evolution of the
dark soliton for different values of
time delay. The parameters used
are k1 � k1 � 1.0, η0 �
0.05, η � 0.001, α � 5.0, a �
0.4, β � 0.5, ε � 0.05, γ � 0.2
and q � 2.5

or in certain areas, motion along the fault could be suppressed or reduced to aseismic creep. This could have profound implications
for earthquake dynamics.

This behavior is most often observed in the lower crust “Plastosphere” where rocks are deformed by flow and also in the fault
segments that incorporate the clayey rocks. In these zones, slip is controlled by plastic or viscous yielding [30, 31]. The delay
therefore provides under certain condition the effects of viscosity (internal friction) on the propagation of waves in the earth’s crust.
From the viewpoint of seismology, these findings indicate a key role of the interaction among different parts of a compound fault
in generation of seismogenic motion. The instability bandwidth and the amplitude of the gain spectrum strongly depend on the
parameters of the system.

Data availability There are no data associated with the manuscript.

References

1. A. Bhattacharya, A.M. Rubin, Frictional response to velocity steps and 1-D fault nucleation under a state evolution law with stressing-rate dependence.
J. Geophys. Res. Solid Earth 119, 2272 (2014)

2. G.B. Tanekou, C.F. Fogang, F.B. Pelap, R. Kengne, T.F. Fozin, R.N. Nbendjo, Complex dynamics in the two spring-block modelfor earthquakes with
fractional viscous damping. Eur. Phys. J. Plus 135, 545 (2020)

3. V. De Rubeis, R. Hallgass, V. Loreto, G. Paladin, L. Pietronero, P. Tosi, Self-affine asperity model for earthquakes. Phys. Rev. Lett. 76, 2599 (1996)
4. L. Y. Kagho, M. W. Dongmo, F. B. Pelap, Dynamics of an earthquake under magma thrust strength. J. Earthq. (2015)
5. H. Kanamori, G.S. Stewart, Seismological aspects of Guatemala earthquake of February 4, 1976. J. Geophys. Res. 83, 3427 (1978)
6. R. Montagne, G.L. Vasconcelos, Complex dynamics in a one-block model for earthquakes. Phys. A 342(1–2), 178–185 (2004)
7. B. Erickson, B. Birnir, D. Lavallee, A model for aperiodicity in earthquakes. Nonlinear Process Geophys. 15, 1–12 (2008)
8. T.N. Nkomom, J.B. Okaly, A. Mvogo, Dynamics of modulated waves and localized energy in a Burridge and Knopoff model of earthquake with

velocity-dependant and hydrodynamics friction forces. Phys. A 583, 126283 (2021)
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