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Abstract Recently, the new modified gravity was introduced in which Einstein’s general relativity is developed by adding ener-
gy–momentum squared term TμνTμν by coupling constant α. As result, the relevant field equations are different from usual field
equations in Einstein’s general relativity only in the presence of matter sources. Analytical consideration proved that for the non-
interaction case, the energy–momentum squared term is not strong and only can describe the non-singular big-bang theory. In this
study, this theory is applied to the homogenous and isotropic space–time in the presence of the cosmological constant �. In this
context, we face with three plausible models of dark energy. In the first model, dark energy is presented by cosmological constant,
only, and thus, extra terms arise from squared term effects on matter evolution. This case gives no new model of dark energy. As
shown in Roshan and Shojai (Phys Rev D 94:044002, 2016), considering the cosmological constant as part of the matter field is
not equal to the first scenario in which the cosmological constant plays a geometrical role. Therefore, for the second case, the
cosmological constant is investigated as the part of the matter action, and we can assume that dark energy includes two parts, the
cosmological constant and the energy–momentum squared term. Modeling this scenario illustrates this theory gives no valuable
dark energy for α �� 0. It reveals the second scenario wherein cosmological constant behaves such as part of matter field gives
accelerated expansion Universe only in the absence of energy–momentum squared term. In the last plausible scenario, we may
assume dark energy constructed with both parts, geometrical part includes cosmological constant and matter effects arise from the
energy–momentum squared term. We have shown that only the last model satisfies observations and presents the quintessence dark
energy in which cosmological constant problems are solved. Moreover, it is shown that this model coincides with �CDM theory
with some small errors in studying theoretical CMB temperature and linear matter power spectrum.

1 Introduction

Since Einstein developed general relativity in (1915), various attempts with different motivations have been carried out to generalize
it [1]. Some of these motivations come from observations and inconsistencies between general relativity and observational data,
which include the evolution of the Universe in very early time [2–4], late-time accelerated expansion [5–8], and singularity problem
[9–11]. On the other hand, some inconsistencies between general relativity and quantum mechanics encourage people to modify
general relativity by adding terms including Ricci scalar and its derivatives [12]. Moreover, from the string theory viewpoint as a
robust modern theory in modern physics, Einstein’s gravity is only an effective low-energy theory that will receive higher-order
corrections that become important as the energy scale increases [13].

Einstein himself introduced one of the original modified theories by adding a term including the cosmological constant [14]. It
is confirmed general relativity field equations include the cosmological constant well fixed with observations [15, 16]. However,
this model suffers from two coincidence and fine-tuning problems [17–19]. Eddington proposed another interesting alternative to
general relativity in 1924 [20]. Following him, the Brans–Dicke theory [21] and the Einstein–Cartan theory [22] are two other
alternative theories. However, after discovering dark energy and dark matter as two mysterious components, extending general
relativity motivates many people to explore different plausible candidates for these new components.

The main modified gravity theories are focused on generalizing the gravitational Lagrangian through space–time curvature R
including f (R) gravity [23–26] f (R, T ). See [27–32] to review other alternative theories in general relativity and their applications.
However, like other candidates, one could present the modified theories by generalizing the form of the matter Lagrangian in a
nonlinear way such as adding energy–momentum squared term TμνTμν [33]. These theories are more radical than other forms
of fluid stress, like bulk viscosity or scalar fields. Considering this specific theory shows how the emergent Universe allows an
expanding thermal history without the big-bang singularity for the spatially flat Universe [33]. Also, its black hole solution in the
presence of the electromagnetic field and some aspects of the evolution of the Universe are investigated, respectively, in [33, 34].
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Here, we attempt to reconsider the evolution of the cosmos through this modified gravity theory. In the following of this study,
in Sec. II, we have derived the field equation of R − 2� + αTμνTμν gravity in the metric formalism. We also have shown how the
interpretation of the cosmological constant gives different field equations. Consequently, in Sects. 3–5, the evolution of the Universe
for three different interpretations of the dark energy field is considered. The conclusion comes in Sect. 6.

Throughout this paper, we adopt the Planck units, i.e., c � � � G � 1 while reducing Planck mass M2
P � (8π)−1.

2 Energy–momentum squared gravity

In the presence of a cosmological constant, the action of energy–momentum squared gravity is given by [33]

S � 1

2κ

∫ √−g
[
R − 2� − αTμνT

μν
]
d4x +

∫ √−gLm d4x (1)

in which κ � 8π , α is the arbitrary constant of the model with mass dimension [M]−6, g is the determinant of the metric gμν ,
Lm presents matter Lagrangian, � denotes cosmological constant, and TμνTμν is a self-contracting term of the energy–momentum
tensor. Due to adding energy–momentum squared term to action, in an early Universe with high energy density, action (1) is different
from the standard general relativity, while by going to lower energies, this deviation has to disappear. The action (1) can be rewritten
as follows

S �
∫ √−g

[
R − 2�

2κ
+ Lm,e

]
d4x, Lm,e � Lm − αTμνTμν

2κ
(2)

Variation of action (1) with respect to metric gives a modified gravity field

Rμν − 1

2
gμνR + �gμν � κT e

μν (3)

where we have defined effective energy–momentum tensor

T e
μν � Tμν +

2α

κ

(
�μν + T σ

μ Tνσ − 1

4
TαβT

αβgμν

)
(4)

for

�μν � −Lm

(
Tμν − 1

2
Tgμν

)
− 1

2
T Tμν − 2T αβ ∂2Lm

∂gμν∂gαβ
(5)

Obviously, for α � 0, the field Eq. (3) recasts to the usual Einstein field equations in the presence of cosmological constant �.
Moreover, Eq. (4) presents further degrees of freedom in energy–momentum squared gravity that can be formally dealt with under
the standard of perfect fluids. One could assume here that Lm is free of derivatives of the metric components. By considering the
perfect fluid, we have

Tμν � (ρ + p)uμuν + pgμν, (6)

Consequently, the energy–momentum squared term is

TμνT
μν � ρ2 + 3p2 (7)

where ρ, p, and uμ denote the energy density, the pressure, and the co-moving four-velocity satisfying the condition uμuν � −1,
respectively. Following [33, 35], by setting Lagrangian Lm � p, the last term on the right-hand side of Eq. (5) cancels. As discussed
in [33], the interpretation of the cosmological constant gives two general scenarios. In the first case, � is considered the geometrical
parameter and is written on the left-hand side of the Einstein equations. In this case, the field equation is given by

Gμν + �gμν � κ
(
(ρ + p)uμuν + pgμν

) − α

(
1

2

(
ρ2 + 3p2)gμν + (ρ + p)(ρ + 3p)uμuν

)
(8)

where Gμν � Rμν − 1
2 gμνR is the Einstein tensor. The right-hand side of Eq. (8) illustrates that we no longer deal with a standard

perfect fluid. It indicates the whole budget of energy–momentum squared terms does not come from standard matter fields only and
comes from the non-Einsteinian part of the gravitational interaction [35]. On the other hand, the cosmological constant can be a part
of the matter action. In this case, the total energy–momentum tensor is given by

T t
μν � Tμν + T�

μν (9)

Consequently, the field Eq. (3) can be written as [33]

Rμν − 1

2
gμνR + �gμν � κT e

μν + �μν (10)
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in which

�μν � 2α

(
�̃μν + T̃ αβ δTαβ

δgμν
+ T αβ δT̃αβ

δgμν
+ T̃μσ T

σ
ν + T σ

μ T̃σν

+ T̃μσ T̃ν�g
�σ − 1

4
gμν

(
T̃αβ T̃

αβ + 2T̃αβ T̃
αβ

)
(11)

where over tilde presents a parameter related to the cosmological constant. As shown in [33], �μν does not vanish in general
interpretation and thus in this case field equations are more complicated than the case in which � is interpreted as the geometrical
parameter. The field Eqs. (8) and (10) give two general dark energy models. Equation (8) obtains pure cosmological constant dark
energy with some deviations in the evolution of matter field, while field Eq. (10) yields dark energy as matter field includes two
parts, cosmological constant and terms arise from energy–momentum squared part. However, one can assume the third scenario in
which dark energy comes from a mix of two previous scenarios in which dark energy includes a geometrical part, cosmological
constant, and the energy–momentum squared term as matter part. This scenario presents dark energy as a geo-matter field. Hence,
the last scenario is same field equation given in (8), while the energy–momentum squared term is investigated as matter part of dark
energy, not matter field. These scenarios are summarized as

Gμν + �gμν︸ ︷︷ ︸
D.E.

� κTμν + αψ
(
TμνT

μν
)

︸ ︷︷ ︸
Matter

(12)

Gμν � κTμν︸ ︷︷ ︸
Matter

+ αϒ
(
TμνT

μν
) − �gμν︸ ︷︷ ︸

D.E.

(13)

Gμν + �gμν︸ ︷︷ ︸
D.E.

� κTμν︸ ︷︷ ︸
Matter

+ αψ
(
TμνT

μν
)

︸ ︷︷ ︸
D.E.

(14)

where ψ and ϒ are extra terms in field Eqs. (8) and (10). Equations (12)–(14) present these three plausible scenarios for dark energy.
In Eq. (12), extra terms from the energy–momentum squared term are investigated as matter fields, while the cosmological constant
stays on the left-hand side as the geometrical term. Field Eq. (13) presents the second scenario in which the cosmological constant is
located on the right-hand side as part of the matter field. In this scenario, we assume dark energy arises from the cosmological constant
and energy–momentum squared term which satisfies Eq. (10). The last scenario illustrates dark energy as the geometrical-matter
mixed field, and cosmological constant plays the geometrical role of dark energy, while terms from energy–momentum squared part
are matter sector of dark energy. In Sects. 3–5, these scenarios are studied.

3 Geometrical viewpoint

In this section, we review the model in which cosmological constant is considered as the geometrical property of gravity field and
so extra terms in Eq. (8) are part of the matter component. Furthermore, in order to study the evolution of the cosmos, we suppose
the Universe is homogenous and isotropic space–time and described through the metric of the Friedmann–Robertson–Walker

ds2 � −dt2 + a2
(

dr2

1 − kr2 + r2dθ2 + r2 sin2 θ dφ2
)

(15)

where k � 1, 0, and −1 is corresponding to the closed, flat, and open Universe, respectively, and the a � a(t) is the scale factor.
Although Wang et al. [36] have proposed cosmological model independent to spatial curvature in which evolution of Universe can
extract from other values of k, following the recent observations and cosmological constant model, the Universe is flat spatially, and
so we set k � 0 [37]. Using metric (15) in field Eq. (8) gives the following modified Friedmann equations

3H2 � κρ + � − α

2

(
ρ2 + 3p2 + 8ρp

)
(16)

3
ä

a
� −κ

2
(ρ + 3p) + � + α

(
ρ2 + 3p2 + 2ρp

)
(17)

where H � ȧ/a is Hubble parameter. From conservation law, the continuity equation becomes

κ(ρ̇ + 3H(ρ + p)) − α
(
ρρ̇ + 3p ṗ + 4ρ̇ p + 4ρ ṗ + 3H

(
ρ2 + 3p2 + 4ρp

)) � 0 (18)

For simplicity, we assume that the matter field behaves such as barotropic fluid in which p � ωρ. Rewriting Eq. (18) gives,

ρ̇ + 3H(1 + ω)ρ − α̃
[
ζρρ̇ + 3ξHρ2] � 0 (19)

where α̃ � α/κ and we define

ζ ≡ 1 + 8ω + 3ω2 (20)

123
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Fig. 1 The evolution of the
effective equation of state of the
model (red curved), compared
with 3CDM theory (blue curved)
versus redshift for the same initial
conditions

ξ ≡ 1 + 4ω + 3ω2 (21)

These two defined parameters are reduced to 1 in the absence of radiation component, while matter supposed as dust field.
However, we keep ω in these parameters to find general form of energy density of matter. The differential Eq. (19) has no exact
solution. Assuming |α|� 1, we can solve Eq. (19) using a perturbative method up to the arbitrary order and consider a solution as

ρ � ρ0 + δρ1 + · · · (22)

where ρ0 is the solution without squared terms and correction δρ1 satisfies the following differential equation,

δρ̇1 + 3H(1 + ω)δρ1 − α̃
[
ζρ0ρ̇0 + 3ξHρ2

0

] � 0 (23)

Applying the perturbative method obtains,

ρ � c1a
−3(1+ω)

(
1 + α̃c1

(
ζ − ξ

1 + ω

)
a−3(1+ω)

)
(24)

where c1 is an integration constant. Observations demonstrate that matter, baryonic and dark matter, and dark energy components
play a key role in the evolution of the Universe in late time [37]. Thus, by ignoring radiation energy density in the whole of this
study, Eq. (24) presents the evolution of matter and we set c1 � ρm0. With aid of the definition of fractional energy density

�m ≡ κρ

3H2 (25)

for the current Universe, a(t0) � 1, we get

�m0 � κρm0

3H2
0

(
1 + α̃ρm0

(
ζ − ξ

1 + ω

))
(26)

Moreover, the first Friedmann Eq. (16) recasts to

1 � �m0 + �� − α̃

2
ζ�2

m0 (27)

To find constraints on this model, we use observational data, �m0 ≈ 0.32, �� ≈ 0.68, and H0 ≈ 67.4 [37]. Solving Eqs. (26)
and (27) for α̃ and ω yields

α � κα̃ ≈ −3.97 × 10−6, ω � 0 (28)

It shows that energy–momentum squared gravity does not disturb the standard cosmic evolution in late time for geometrical
interpretation of the cosmological constant scenario. However, analyzing this scenario and using the cosmological data may give
some deviations in cosmological parameters during matter-dominated era [33–35]. In order to show this, we have plotted the behavior
of the effective equation of the state ωe in Fig. 1 for ω � 0.

ωe � −1 − 2Ḣ

3H3 (29)

As shown, the deviation of the effective equation of state of the model is not too large with respect to its corresponding parameter
in the 3CDM model; its error is around ∼ 6% in z ≈ 4.
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4 � as matter sector

In this section, the second scenario in which the cosmological constant behaves as part of the matter field is investigated. Thus, as
shown in [33] and Sect. 2, this interpretation of cosmological constant satisfies field Eq. (10) for �μν �� 0. Therefore, Friedmann
equations for the such scenario are given by

3H2 � κρ + � − α

2

(
ρ2 + 3p2 + 8ρp

)
+

α�

2

(
3ρ − p +

2�

κ

)
(30)

3
ä

a
� −κ

2
(ρ + 3p) + � + α

(
ρ2 + 3p2 + 2ρp

) − 2α�

κ

(
2p − �

κ

)
(31)

In this case, since the cosmological constant is treated as part of the matter field, we assume dark energy includes two parts, the
cosmological constant and terms that arise from the energy–momentum squared part, see Eq. (13). As a result, the effective energy
density and pressure of dark energy becomes, respectively

ρX � � − α

2

(
ρ2 + 3p2 + 8ρp

)
+

α�

2

(
3ρ − p +

2�

κ

)
(32)

pX � −� − α

2

(
ρ2 + 3p2) − α�

2

(
ρ − 3p +

2�

κ

)
(33)

Obviously, for α � 0, we get ωX � −1 and so this model coincides with 3CDM theory. With the same process and using
barotropic fluid assumption p � ωρ, Eqs. (32) and (33) become

ρ
[e]
X � � − α

2
ζρ2 +

α�

2

(
(3 − ω)ρ +

2�

κ

)
(34)

p[e]
X � −� − α

2
(ξ − 4ω)ρ2 − α�

2

(
(1 − 3ω)ρ +

2�

κ

)
(35)

where ρ
[e]
X and p[e]

X denote effective energy density and pressure of dark energy, respectively. The equation of the state of dark energy
becomes

ωX � −1 +
2κρ(1 + ω)((3ω + 1)ρ − �)(

ζρ2 + �ρ(ω − 3)
)
κ − 2�2 − 2κ�/α

(36)

Using ωX0 � −1 and solving Eqs. (30) and (36) for the current Universe give two plausible constraint sets on the constant α and
cosmological constant:

� � 3H2
0 (1 − �m0), α � 0. (37)

� � 3H2
0 �m0

κ
(1 + 3ω), α � −

(
κ

3�m0H0

)2
(�m0(1 + 3ω) − κ(1 − �m0))

κ
(
1 − 3ω2

)
+ (1 + 3ω)2 (38)

In the first case, canceling out the energy–momentum squared term gives 3CDM model and so it presents no new dark energy
theory.

Substituting the second set of constraints (38) into the equation of state (36) and using current observational data reveal to have
accelerated expansion in late time, the equation of state of matter must be small, 0 ≤ ω < 2×10−2. As result, Eq. (36), the coupling
constant of energy–momentum squared gravity, and cosmological constant become, respectively

ωX � −1 +
2κρ(ρ − �)(

ζρ2 − 3�ρ
)
κ − 2�2 − 2κ�/α

(39)

α � −
(

κ

3�m0H0

)2
(�m0 − κ(1 − �m0))

κ + 1
(40)

� � 3H2
0 �m0

κ
(41)

where we set ω � 0. Comparing Eq. (41) with its corresponding value in the 3CDM model shows the second set of constraints (38)
coincides with the cosmological constant theory for �m0 ≈ 0.96. Thus, the second case (38) behaves such as 3CDM theory during
pick of the matter-dominated era, only. In Fig. 2, the behavior of the equation of state of dark energy for this case is plotted. For
high redshift, it behaves like matter component when ωX → 1, while in current time it is about ∼ −1 and in near future it goes to
≈ −0.52 for z ≈ −0.43. However, its value grows up and treats such as cosmological constant at z � −1, again. It indicates dark
energy keeps its negative pressure in the evolution of the Universe as main cosmic component.

However, this scenario gives no valuable model. To show this, by using the definition of deceleration parameter and using Eqs.
(32) and (33), we get

q � −1 − Ḣ

H2 � −1 − 3ρκ(1 + ω)(κ − ((1 + 3ω)ρ − �)α)(
ζρ2 + κρ�(ω − 3) − 2�2

)
α − 2ρκ2 − 2κ�

(42)

123
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Fig. 2 Evolution of equation of
state of dark energy versus
redshift for the second scenario.
We set ω � 0

Fig. 3 Deceleration parameter as a
function of redshift for ω � 0

For small values of ω, the deceleration parameter becomes

q � −1 − 3ρκ(κ − (ρ − �)α)(
ζρ2 − 3κρ� − 2�2

)
α − 2ρκ2 − 2κ�

(43)

Although plotting Eq. (43) gives a transition point zT ≈ 0.58 which satisfies observations [38], for high redshifts q → 2 and so
it does not give well matter structure formation during a matter-dominated era [39, 40]. Moreover, this case is not stable classically.
To show that, we study perturbation effects in classical stability theory wherein the squared speed of the sound υ2

s � ∂pX/∂ρX

should be positive and υ2
s ≤ 1. The computing of this parameter gives negative υ2

s for z < 1.3. Moreover, υ2
s > 1 for 0 ≤ z ≤ 1.94

which shows causality broken in this interval of redshift (Fig. 3).
In the short conclusion, assuming cosmological constant as part of matter field gives valuable evolution of the Universe only for

α � 0. In other words, by assuming the second scenario, Eq. (13), when α �� 0, the model is not stable classically and gives no
valuable matter structure formation in high redshifts (Fig. 4).

5 Dark energy as a geometrical-matter field component

As the last possible scenario, one can assume that dark energy fluid is a geometrical-matter field in which cosmological constant
built geometrical part and terms arise from a squared part of the action (1) constructed matter sector. As result, one can use same
Eqs. (16)–(18) for this scenario when effective energy density of dark energy becomes (we set p � ωρ),

ρ
[e]
X � � − αζ

2
ρ2 (44)

123
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Fig. 4 Squared speed of sound for
this scenario versus redshift. We
set ω � 0

where the energy density of matter field calculated through perturbative method and given by Eq. (24). By ignoring effects of
radiation in late-time evolution and assuming matter as pressureless field, ω � 0, the energy density (24) shrinks to standard energy
density of matter,

ρ � ρm0a
−3 (45)

As result, Friedmann equations for a flat Universe become

3H2 � κρ + � − α

2
ρ2 (46)

3
ä

a
� −κ

2
ρ + � + αρ2 (47)

Thus, the effective energy density and pressure of dark energy in this scenario are given by, respectively

ρ
[e]
X � � − α

2
ρ2 (48)

p[e]
X � −� − α

2
ρ2 (49)

To develop this scenario in the absence of radiation, it is worthwhile to define the following fractional energy density of different
terms of the model as

�� ≡ �

3H2 , �m ≡ κρ

3H2 , �ψ ≡ αρ2

6H2 . (50)

As result, the fractional energy density of dark energy becomes

�X � �� − �ψ (51)

By using e-number x � ln(a), evolution of �X becomes

�
′
X + 3

(
2�ψ−�m

)
�X − 6�ψ � 0 (52)

where we use

�
′
m + 3�m

(
1 + 2�ψ − �m

) � 0 (53)

�
′
ψ + 3�ψ

(
2 − �m + 2�ψ

) � 0 (54)

The prime denotes derivative with respect to x . Equation (52) presents evolution of dark energy component in the last possible
scenario. For late-time Universe in which energy density of matter vanished, �m → 0, the energy density of matter sector of dark
energy goes to zero, �ψ → 0, and thus, �X � const.

In order to find observational constraints on the model, solving Eqs. (53) and (54) gives

�ψ � c2

c3e6x + 6e3x − c2
, �m � −6e−3x

c2e−6x − 6e−3x + c3
(55)

where c2 and c3 are constants. Using Eqs. (46), (50), and (55) for the current Universe, we find

c2 � c3�m0 + 6(�m0 − 1)

�m0
, �� � c3�m0

6
(56)

123
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Fig. 5 Deceleration parameter
versus redshift for ε � 0.05 (red
curve), ε � 0.1 (green curve),
ε � 0.2 (purple curve) compared
with �CDM model (blue curve)

Fig. 6 The equation of state of
dark energy as a function of
redshift for ε � 0.1 (red curve),
ε � 0.2 (green curve), ε � 0.3
(purple curve) compared with
�CDM model (blue curve)

The deceleration parameter for this model becomes,

q � − äa

ȧ2 � 1

2

(
1 − 3

(
� + 2ρ2

)
κρ + � − α

2 ρ2

)
(57)

which for α → 0, it coincides with the �CDM model. The evolution of the deceleration parameter is plotted in Fig. 5. It indicates
the model is not in conflict with the �CDM model.

Using Eqs. (48) and (49), the equation of state of dark energy is given by

ωX � −1 − 2�ψ

1 − �m
� −1 +

12 − 2(c3 + 6)�m0

c3�m0e6x − (6 + c3)�m0 + 6
(58)

where Eq. (55) are used. As result, for c3 � −6 + 6/�m0, model coincides with �CDM theory. This value of c3 cancels out �ψ

which implies α � 0. Hence, c3 �� −6+6/�m0 gives some deviations from �CDM theory in which the energy–momentum squared
part is preserved, α �� 0. Consequently, it indicates the equation of state of dark energy in late time must be opposite to −1 which
supports by some independent observations [41–43]. In follows, we assume c3 � −6 + ε + 6/�m0 in which ε is depending on
coupling constant α,

ε � 9α�m0H2
0

κ2 (59)

which gives α ≈ 48 × 10−3ε. In Fig. 6, we have plotted the evolution of the equation of the state of dark energy in the last scenario
(14) for some positive values of ε as a function of redshift. As shown, the model for ε � 0 gives �CDM theory, while for ε �� 0,
the model presents quintessence dark energy which behaves like matter in high redshift values, ωX � 1, and treats such as a
cosmological constant in near future.

As discussed, the equation of state of this model behaves like matter in past, and thus, at an earlier time the matter component
is greater than in the best fits of the standard cosmological model. Accordingly, it is necessary to explore structure formation to

123
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Fig. 7 The theoretical CMB TT
spectrum (dashed red curve),
compared with the �CDM model
(solid black curve) for ε � 0.05

Fig. 8 The linear matter power
spectrum of the model (dashed red
curves) compared with
observational data (solid black
curves) for ε � 0.05

see whether this dark energy would affect the growth rate of density perturbation or not. We investigate structure formation by
modifying CAMB module [44]. As the first step, we have studied the angular spectrum of the CMB spectrum in Fig. 7. As shown,
our model coincides with the �CDM model with small errors. The largest difference in the CMB TT spectrum between our model
and the �CDM model is about ∼ 18% for ε � 0.05 at � ≈ 875.

Considering the CMB spectrum indicates dark energy in our model has no effective influence on structure formation when it
behaves as matter during the matter-dominated era. Investigating the linear matter power spectrum confirms these results in which
the model satisfies observational data (Fig. 8). The errors in the linear matter power spectrum for z � 0 are around ≈ 0.85% for
k � 5.5 × 10−2.

Furthermore, investigating the squared speed of the sound υ2
s � ∂pX/∂ρX demonstrates model preserves causality, υ2

s � 1, and
thus, model is stable, classically.

6 Remarks

The exploring accelerated expansion of the late-time Universe needs to introduce a new mysterious component, called dark energy.
The origin of this cosmic component is not clear, and thus, people with different approaches attempt to find a well-fixed dark energy
model with observations. In this context, alternative theories in general relativity are considered one robust tool. In this study, we try
to rebuild dark energy by reconsidering the new modified gravity theory in which the energy–momentum squared term is added to
the usual Einstein-Hilbert action in the presence of a cosmological constant. As shown in Ref. [33], unlike Einstein’s field equation,
the interpretation of the cosmological constant plays a key role. If it is suggested as the geometrical effect of space–time, one could
keep it on the left-hand side and thus extra terms arise from energy–momentum squared term only effects on matter evolution.
In such a model, dark energy is given by a cosmological constant. However, if we assume that the cosmological constant plays a
part in the matter field, one finds out the additional term on the right-hand side of the field equation which it is depending on the
cosmological constant and coupling constant α. In other words, dark energy can be assumed as a non-Einsteinian matter source
including cosmological constant and energy–momentum squared terms. As result, these two interpretations of cosmological constant
give two different field equations. In the first case, the cosmological constant presents dark energy as a geometrical component,
while in the second case, dark energy includes the cosmological constant and its coupling with energy–momentum squared terms
and plays as a non-familiar matter field. However, we can propose another case in which dark energy arises from geometrical
effects, the cosmological constant, and matter field effects, terms from the energy–momentum squared part. In this study, we have
investigated these three scenarios for dark energy. As discussed, the first model gives a pure cosmological constant model for dark
energy, while we have some deviations in the evolution of matter. Although the second scenario obtains well dark energy model,
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this theory suffers from stability and structure formation during a matter-dominated era when α �� 0 and so energy–momentum
squared term preserved. The last case, geo-matter dark energy, gives a good candidate in which the model deviates so small from the
3CDM model. In this scenario, dark energy behaves like quintessence field. Since dark energy depends on matter field, coincidence
problem is alleviated. Furthermore, in this case, the fine tuning is avoided, because dark energy is not associated only with �, but
with the energy density of squared matter field, ∝ ρ2.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1140/epjp/s13360-023-03723-w.
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