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Abstract In the context of the modified higher-order teleparallel f
(
T, B̂

)
gravity and specifically in the case of f

(
T, B̂

)
� T + F(

B̂
)

theory, we investigate the existence of anisotropic solutions in a Bianchi I spacetime. Invariant B̂ is defined as B̂ � B − 2T ,

in which B is term which relates the Ricciscalar R with the torsion scalar T , R � −T + B, and B̂ is also a boundary term. We
investigate the existence of Kasner and Kasner-like solutions. We find the conditions for the limit of General Relativity, while
Kasner-like solutions exist as asymptotic solutions for the field equations. Furthermore, anisotropic exponential solutions are not
preferred by the theory. As far as the Kasner universes are concerned, we show that they are always unstable in this fourth-order

theory of gravity. Finally, we discuss the condition for the general f
(
T, B̂

)
theory where the Kasner universes are recovered.

1 Introduction

One of the most famous cosmological solutions of General Relativity in vacuum is that of the anisotropic Kasner universe [1]. The
latter solution describes the anisotropic evolution of the spacetime in a Bianchi background spacetime which is invariant under a
three-dimensional Abelian translation group, the spacetime is known as Bianchi I space [2]. Kasner spacetimes are described by
three parameters p1, p2, p3, the indices of the three power-law scale factors, which satisfy the so-called Kasner algebraic relations.
Specifically, the Kasner indices take the values of the common points of a three-dimensional unitary sphere, p2

1 + p2
2 + p2

3 � 1, and
of a plane with the sum of the Kasner parameters to be one; that is, p1 + p2 + p3 � 1 [1]. Because of the two Kasner algebraic
relations, the Kasner universes are one-parameter family of exact solutions. In the case of the Mixmaster universe, the Kasner
solution describes the dynamics and the evolution of the field equations when the effects of the Ricci scalar of the three-dimensional
spatial hypersurface are negligible, as we reach the initial singularity. Indeed, the Kasner power-law solutions can approximate the
general Bianchi models at intermediate stages of their evolutions and at early and late-time asymptotes [3].

Furthermore, there are also many cosmological applications in the literature of the Kasner universes, these applications cover
various areas of cosmological studies such is the particle creation, baryosynthesis and many others [4–14]. Because of the importance
of the Kasner solution, there are various studies on the generalization. Kasner-like exact solutions have been investigated in details
in literature for higher dimensional theories of gravity and for alternative modified theories of gravity. Kasner-like solutions have
the property to admit additional Kasner parameters, with Kasner-like relations similar to that of General Relativity [15–22].

A family of modified theories of gravity which have drawn the attention of cosmologists are these which are based on the
modification of the teleparallel theory of gravity. Although General Relativity is based on the use of the torsion-less Levi-Civita
connection, in teleparallel gravitational theory the curvature-less Weitzenböck connection is used, while the invariant which is used
for the definition of the gravitational Action Integral is that of the torsion scalar T . A natural extension of teleparallel theories of
gravity is to define as gravitational Lagrangian a function f of the torsion scalar T , or of other invariants defined by T , see for instance
[23–30]. In this work we are interested in the higher-order teleparallel theory of gravity known as f (T, B) theory where B is the
boundary term related to the Ricciscalar as T � R − B [30]. f (T ) theory of gravity is a second-order theory because T includes
only first-order derivatives for the vierbein fields [23]. However, because B includes second-order derivatives of the vierbein fields,
f (T, B) theory is a fourth-order theory of gravity. A special case for the function f (T, B) is the f (T, B) � T + F(B). In this case
it was found that in cosmological studies the field equations can be derived by a point-like Lagrangian with the same dynamical
degrees of freedom as the scalar tensor theories. Indeed, by using a Lagrange multiplier the higher-order derivatives can be attributed
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to a scalar field [31–33]. Recently, by using this property for the f (T, B) theory the quantization of the field equations and the exact
solutions of the Wheeler-DeWitt equations were investigated in [34].

In this study we investigate the existence of Kasner and Kasner-like solutions if f (T, B) theory. It is preferable in alternative
theories of gravity the limit of General Relativity to be recovered. In the case of f (T ) gravity, Kasner and Kasner-like solutions
were found for the first time in [35] while the stability of these solutions was the subject of study in [36, 37]. We extend the previous
results in the modified teleparallel theory and we study the limit of General Relativity in f (T, B) � T + F(B) theory in a vacuum
Bianchi I background space while we investigate the stability of the Kasner and Kasner-like solutions. In addition we study the
existence of anisotropic exponential solutions. The plan of the paper is as follows.

In Sect. 2, we define the cosmological model of our study which is that of f (T, B) theory. We focus on the special case of f
(T, B) � T + F(B) theory and we present the gravitational field equations in the case of Bianchi I background space. In Sect. 3
we investigate the limit of General Relativity, and specifically we search for the conditions where Kasner and Kasner-like solutions
exist. Moreover, the limit of anisotropic Bianchi I solution with cosmological constant term is also studied. The stability properties
of the Kasner solutions are investigated in Sect. 4. Finally, in Sect. 5, we summarize our results and present the algebraic constraint
in which for general f (T, B) theory the Kasner solution is recovered.

2 f (T, B) theory

The fundamental geometric objects of teleparallelism are the vierbein fields eμ(xσ ) [?]. The vierbein fields form an orthonormal
basis for the tangent space at each point P such that g(eμ, eν) � eμ · eν � ημν , where ημν is the line element of the Minkowski

spacetime, ημν � diag(−, +, +, +). The commutator relations for the vierbein fields are [eμ, eν] � cβ
νμeβ where cβ

(νμ) � 0.

Consider now the in the nonholonomic coordinates the covariant derivative ∇μ which is defined by the connection

�̊
μ
νβ �

{
μ
νβ

}
+ �̂

μ
νβ (1)

where {μνβ} is the symmetric Levi-Civita connection of Riemannian geometry which is used in General Relativity and

�̂
μ
νβ � 1

2
gμσ (cνσ,β + cσβ,ν − cμβ,σ ). (2)

is the antisymmetric component with the properties �̂μνβ � −�̂νμβ, �̂μνβ � gμσ �̂
μ
νβ .

When eμ · eν � ημν is the flat space, �̂
μ
νβ correspond to the Weitzenböck connection [?] from where the nonnull torsion tensor

can be defined

T β
μν � �̊β

νμ − �̊β
μν. (3)

The modified higher order teleparallel f (T, B) gravitational theory is a fourth-order of theory of gravity in which the gravitational
Action Integral is defined as follows [30]

S ≡ 1

16πG

∫
d4xe( f (T, B)) + Sm, (4)

in which e � det(eiμ), ei (xμ) are the vierbein fields defining the dynamical variables of teleparallel gravity. T is the scalar of the
torsion tensor, T � Sβ

μνT β
μν, and Sβ

μν is defined as

Sβ
μν � 1

2
(δμ

β T
θν

θ − δν
βT

θμ
θ − 1

2
(Tμν

β − T νμ
β − Tβ

μν)). (5)

Finally, B � 2
e ∂μ

(
eT ρμ

ρ

)
is the boundary term which is related with the Ricciscalar as T � R − B.

In the case of vacuum the gravitational field equations are [30]

4πGeT (m)
a

λ � 1

2
ehλ

a

(
f,B

);μν
gμν − 1

2
ehσ

a

(
f,B

) ;λ
;σ +

1

4
e

(
B f,B − 1

4
f

)
hλ
a + (eSa

μλ),μ f,T

+ e
(
( f,B),μ + ( f,T ),μ

)
Sa

μλ − e f,T T
σ

μa Sσ
λμ, (6)

where T (m)
a

λ is the energy-momentum tensor of the matter source. In the following we shall consider that the spacetime is vacuum.
We observe that when f (T, B) � f (T )+ f1B the second-order f (T ) teleparallel gravity is recovered, while when f (T, B) � f

(−T + B), the fourth-order f (R)-theory is recovered. Finally, when f (T, B) � αT + βB Eq. (6) reduce to that of Einstein’s field
equations of General Relativity.

In our consideration we should define the invariant function B̂, that is,

B̂ � B − 2T, (7)
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thus in the following we consider the Action Integral

S � 1

16πG

∫
d4xe

(
f (T, B̂)

)
, (8)

with f (T, B̂) � f (T, B − 2T ), while we work with the f (T, B̂) � T + F
(
B̂

)
theory. From (6) with the change of variable to the

field equations correspond to the Action Integral (8)

4πGeT (m)
a

λ � 1

2
ehλ

a

(
f
,B̂

);μν

gμν − 1

2
ehσ

a

(
f
,B̂

) ;λ

;σ
+

1

4
e

((
B̂ + 2T

)
f
,B̂ − 1

4
f

)
hλ
a + (eSa

μλ),μ f,T

+ e
(

( f
,B̂),μ + ( f,T ),μ

)
Sa

μλ − e f,T T
σ

μa Sσ
λμ. (9)

Thus, for the f (T, B̂) � T + F
(
B̂

)
theory the field equations read

4πGeT (m)
a

λ � 1

2
ehλ

a

(
F

,B̂

);μν

gμν − 1

2
ehσ

a

(
F

,B̂

) ;λ

;σ
+

1

4
e

((
B̂ + 2T

)
F

,B̂ − 1

4
(T + F)

)
hλ
a + (eSa

μλ),μ

+ e
(

( f
,B̂),μ

)
Sa

μλ − eT σ
μa Sσ

λμ. (10)

or equivalent

Gλ
a � 4πGeT (m)

a
λ + T

(
B̂

)

a
λ

where Gλ
a is the Einstein tensor and

T
(
B̂

)

a
λ � 1

2
ehλ

a

(
F

,B̂

);μν

gμν − 1

2
ehσ

a

(
F

,B̂

) ;λ

;σ
+

1

4
e

((
B̂ + 2T

)
F

,B̂ − 1

4
F

)
hλ
a + e

(
(F

,B̂),μ
)
Sa

μλ .

2.1 Bianchi I spacetime

We consider the Bianchi I line element

ds2 � −dt2 + a2(t)dx2 + b2(t)dy2 + c2(t)dz2, (11)

where without loss of generality we have selected the lapse function to be a constant.
For the vierbein fields we consider the following diagonal frame hiμ(t) � diag(1, a(t), a(t), a(t)), thus we calculate [33]

T � 2

(
ȧ

a

ḃ

b
+
ȧ

a

ċ

c
+
ḃ

b

ċ

c

)
, B̂ � 2

(
ä

a
+
b̈

b
+
c̈

c

)
(12)

where a dot mark total derivative with respect to the variable t, that is ȧ � da
dt , ḃ � db

dt and ċ � dc
dt .

In f
(
T, B̂

)
� T + F

(
B̂

)
the Action Integral (8) reads

S � 1

16πG

∫
d4xe

(
T + F

(
B̂

))
. (13)

Moreover, we introduce the Lagrange multiplier λ such that

S � 1

16πG

∫
d4xe

(
T + F

(
B̂

)
− λ

(
B̂ − 2

(
ä

a
+
b̈

b
+
c̈

c

)))
. (14)

Variation with respect to B̂ gives that λ � F
,B̂ . Thus integration by parts provides the point-like Lagrangian

L
(
a, ȧ, b, ḃ, c, ċ, φ, φ̇

) � −2
(
aḃċ + bȧċ + cȧḃ

)
+ 2

(
bcȧφ̇ + acḃφ̇ + abċφ̇

) − abcV (φ), (15)

where now the scalar field φ � f B̂

(
B̂

)
and V (φ) � B̂F

(
B̂

)
,B̂

− F
(
B̂

)
. The scalar field has been defined in a similar way with

that of fourth-order f (R) gravity [38]. We observe that this theory belongs to the family of Hordenski theories [39].
The gravitational field equations are calculated

2(H1H2 + H1H3 + H2H3) + 2(H1 + H3 + H3)φ̇ + V (φ) � 0 , (16)

2
(
Ḣ2 + Ḣ3 + H2

2 + H2H3 + H2
3

)
+ 2φ̈ + V (φ) � 0 , (17)

2
(
Ḣ1 + Ḣ3 + H2

1 + H1H3 + H2
3

)
+ 2φ̈ + V (φ) � 0 , (18)

2
(
Ḣ1 + Ḣ2 + H2

1 + H1H2 + H2
2

)
+ 2φ̈ + V (φ) � 0 , (19)
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while for the field φ the constraint equation follows

2
(
Ḣ1 + Ḣ2 + Ḣ3 + (H1 + H2 + H3)

2) + V (φ)φ � 0. (20)

where H1 � ȧ
a , H2 � ḃ

b and H3 � ċ
c .

In the following, we are interested on the investigation of the existence of anisotropic solutions for Bianchi I spacetimes of Kasner
and Kasner-like solutions and that of General Relativity solution with the cosmological constant term.

3 Limit of General Relativity

In the case of vacuum from the (6), it follows that the limit of General Relativity is recovered when F
(
B̂

)
� F1 B̂ + F0 , where F0

plays the role of the cosmological constant. However, this is not the unique case. Indeed, any solution of General Relativity with or

without a cosmological constant is a solution of T + F
(
B̂

)
theory for every B̂ � B̂0. Therefore, the contribution of the F

(
B̂

)
in

the field equations is summarized by the energy-momentum tensor

T
(
B̂

)

a
λ � − �̃

16πG
hλ
a , �̃ � B̂0F,B̂ |B̂→B̂0

. (21)

This indeed is a similar result with that found before by Barrow and Ottewill condition of f (R)-gravity [40].

Consider now the field Eqs. (16)–(20) for the Bianchi I background space. They can be written equivalently asGλ
a � T

(
B̂

)

a
λ ,where

T
(
B̂

)

0
0 � −2(H1 + H3 + H3)φ̇ − V (φ), (22)

T
(
B̂

)
1

1 � T
(
B̂

)
2

2 � T
(
B̂

)
3

3 � 2φ̈ + V (φ) , (23)

3.1 Kasner universes

The Kasner solution is the vacuum solution of Bianchi I spacetime in General Relativity. The solution describes an anisotropic
universe where the scale factors are a(t) � a0t p1 , b(t) � b0t p2 and c(t) � c0t p3 . As far as the indices pi are concerned, they
satisfy the Kasner relations

p1 + p2 + p3 � 1, (24)

p2
1 + p2

2 + p2
3 � 1. (25)

The Kasner relations says that two of the indices p2, p3 are positive (or negative) while p1 is negative (or positive), while the indices
take values on the range |pi | ≤ 1.

We replace the Kasner solution in the field Eqs. (16 )–(20) and we find

2φ̇ + tV (φ) � 0 , 2φ̈ + V (φ) � 0 (26)

which means that φ(t) � φ0 + φ1t2 and V (φ) � −2φ1.

However, a constant potential V (φ) � V0 gives that F
(
B̂

)
� V0 + F1 B̂ which is not an acceptable solution because that is a

second-order theory. However, this is not the unique solution. The problem has another special solution which is φ(t) � φ0 and

V (φ) � 0. The latter reads, B̂F
,B̂ − F

(
B̂

)
� 0, while for the Kasner solution from (12) we calculate B̂ � 0. The following

proposition follows.

Proposition 1 In f
(
T, B̂

)
� T +F

(
B̂

)
theory of gravity the Kasner universe is recovered for every function F

(
B̂

)
which satisfies

the condition F
(
B̂

)
|B̂→0

� 0.

Let us now investigate if there exist Kasner-like solutions with other relations for the indices. We replace a(t) � a0t p1 , b
(t) � b0t p2 and c(t) � c0t p3 in the field equations and we find

t2V (φ) + 2
(
p1 p2 + (p1 + p2)p3 + (p1 + p2 + p3)t φ̇

) � 0, (27)

2
(
p2

2 + (p2 + p3)(p3 − 1)
)

+ t2(V (φ) + 2φ̈
) � 0, (28)

2
(
p2

1 + (p1 + p3)(p3 − 1)
)

+ t2(V (φ) + 2φ̈
) � 0, (29)
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2
(
p2

1 + (p1 + p2)(p2 − 1)
)

+ t2(V (φ) + 2φ̈
) � 0, (30)

Consequently, for 1 + p1 + p2 + p3 �� 0 from the first two equations we find

φ � φ0 + φ1t
1+p1+p2+p3 +

(
p2

2 + p2
3 − p2 − p3 − p1(p2 + p3)

)

1 + p1 + p2 + p3
ln t, (31)

V (φ(t)) � 2(1 − p1 − p2 − p3)
(
p2

2 + p2 p3 + p2
3

)

(1 + p1 + p2 + p3)t2 − 2(p1 + p2 + p3)φ1t
−1+p1+p2+p3 . (32)

However, by replacing in the rest of the equations we end with the conditions

(p1 − p2)(1 − p1 − p2 − p3) � 0, (33)

(p1 − p3)(1 − p1 − p2 − p3) � 0, (34)

that is, p1 � p2 and p1 � p3 which means that the final solution is the scaling solution of an isotropic Friedmann–Lemaître–Robert-
son–Walker universe, or the anisotropic Kasner-like solution with the constraint p1 + p2 + p3 � 1.

However, in the anisotropic solution with p1 + p2 + p3 � 1. It follows that φ(t) � 1
2φ1t2 + φ0, V (φ(t)) � −2φ1 which as

before provides that F
(
B̂

)
� V0 + F1 B̂. The latter solution it is not accepted for this modified theory because we are interested in

nonlinear functional forms of F
(
B̂

)
.

Moreover, we calculate B̂(t) � 2(p1(p1−1)+p2(p2−1)+p3(p3−1))

t2
, which in contrary to the previous does not have the special solution

at B̂ � 0 as before. Therefore, there can be asymptotic Kasner-like solutions for the field equation for large values of t, such that

limt→∞ B̂(t) � 0 and limt→∞ F
(
B̂(t)

)
� 0 with φ1 � 0. In the case of φ1 �� 0 it follows that F

,B̂ � F0

B̂
which gives F(

B̂
)

� F0 ln B̂. However, in this case the potential function V (φ) is derived V (φ) � F0(1 + ln φ) 	 ln t , which does not admit the

constant value as an asymptotic. Hence, necessarily it follows F0 � 0, i.e., φ1 � 0.

3.2 Exponential solution

The Bianchi I exact solution with the cosmological constant terms is that in which the scale factors are a(t) � a0ep1t , b(t) � b0ep2t

and c(t) � c0ep3t , with the relation for the indices p1 + p2 + p3 � 0. Thus, by replacing the latter scale factors in the field Eqs.
(16)–(20) we end

φ(t) � φ0 + φ1t − (
p2

1 + p1 p2 + p2
2

)
t2,

V (φ(t)) � 2
(
p2

1 + p1 p2 + p2
2

)
.

As far as the boundary term B̂(t) is concerned, we calculate B̂(t) � 2
(
p2

1 + p1 p2 + p2
2

)
. However, φ(t) � F

(
B̂

)
,B̂

, hence φ(t)

cannot be a function of t, that is,
(
p2

1 + p1 p2 + p2
2

) � 0, or B̂(t) � 0. However, the later algebraic equation does not admit any real
solution which means that there is not any anisotropic exponential solution with the cosmological constant term.

In the following, we continue our analysis with the study of the stability properties for the Kasner solution.

4 Stability properties of Kasner universes

In order to study the asymptotic behavior of the field equations in the anisotropic Bianchi I background space as also to investigate
the stability conditions for the Kasner solutions, we prefer to work with the Misner variables where the line element (11) is written
as follows [2],

ds2 � −dt2 + α2(t)
(
e−2β+(t)dx2 + eβ+(t)+

√
3β−(t)dy2 + eβ+(t)−√

3β−(t)dz2
)
, (35)

where β+(t), β−(t) are the two anisotropic parameters and α(t) is the scale factor of the three-dimensional hypersurface, the
point-like Lagrangian (15) takes the following diagonal form

L
(
α, α̇, β+, β̇+, β−, β̇−, φ, φ̇

) � −6αα̇2 +
3

2
α3(β̇+

)2
+

3

2
α3(β̇−

)2 − 6α2α̇φ̇ − α3V (φ). (36)

Hence, variation with respect to the dependent variables gives that the gravitational field equations

6H
(
H + φ̇

) − 3

2

((
β̇+

)2
+

(
β̇−

)2
)

− V (φ) � 0, (37)
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4Ḣ + 6H2 +
3

2

((
β̇+

)2
+

(
β̇−

)2
)

+ 2φ̈ − V (φ) � 0, (38)

β̈+ + 3H β̇+ � 0, (39)

β̈− + 3H β̇− � 0, (40)

Ḣ + 3H2 − 1

6
V,φ � 0. (41)

4.1 H−normalization

Let us define the new variables in the context of the H-normalization,

�+ � β̇+

2H
, �− � β̇−

2H
, x � − φ̇

H
, y � V (φ)

6H2 , λ � V ′

V
. (42)

In the new variables and for the new independent variable τ � ln a, the gravitational field equations read

�′
+ � λy�+ , (43)

�
′
− � λy�− , (44)

x ′ � −(3 + 2λ)y + x(3 + λy) + 3
(
�2

+ + �2− − 1
)
, (45)

y′ � y(6 + λ(x + 2y)) , (46)

λ′ � 1

6
λ2x(�(λ) − 1) , �(λ) � V,φφV(

V,φ

)2 . (47)

where �′
+ � d�+

dτ
� 1

H �̇+, while the constraint equation becomes

1 − x − y − �2
+ − �2− � 0. (48)

We remark that the variables {x, y, �+, �−} are not bounded and can take values in the whole range of the real numbers. However,
we are interested in investigating only the stability of the Kasner universes. In order to perform a complete study of the global
dynamics, we should work by using other variables than the H-normalization, that is, because from (37) it is clear that the Hubble
function can change sign.

Let us proceed with our analysis by considering some special case for the scalar field potential V (φ).

4.1.1 Exponential potential

Assume now that V (φ) � V0eλφ , then from (47) it follows that λ � cons � t. As far as the function F
(
B̂

)
is concerned that is

calculated to be FA

(
B̂

)
�

(
B̂
λ

ln
(
B̂
λ

)
− 1

)
, we observe that for lim B̂→0 FA

(
B̂

)
� 0, which means that the Kasner solution can be

recovered according to Proposition 1. Hence, for this scalar field potential the stationary points P � (x(P), y(P),�+(P),�−(P))

for the dynamical system (43)–(48) are P1 � ( 2
λ
(3 + λ),− 6+λ

λ
, 0, 0

)
and P2 � (

1 − �2
+ − �2−, 0, �+, �−

)
.

Point P1 describes an isotropic spatially flat FLRW universe, because the anisotropic parameters are zero. The cosmological
fluid at this point is found to be that of an ideal gas with constant equation of state parameter w

(
P1

) � − 1
3 (2λ + 9), from where we

conclude that the point describes an accelerated universe when λ < − 9
2 . The eigenvalues of the linearized system which follows

from the Eqs. (43), (44) and (45) where y has been replaced by the constraint condition (48), are derived e1
(
P1

) � e2
(
P1

) � e3(
P1

) � −(6 + λ). Hence, the point is an attractor when λ > −6.
As far as the family of points P2 are concerned, they describe anisotropic solutions where the scalar field potential vanishes. As

we found before points P2 describe Kasner universes when 1 − �2
+ − �2− � 0. The eigenvalues of the linearized system around the

stationary points are derived to be e1
(
P2

) � 0 , e2
(
P2

) � 0 and e3
(
P2

) � 6 + λ
(
1 − �2

+ − �2−
)
, from where we conclude that

the Kasner universes are always unstable solutions of the field equations. For other values of the anisotropic parameters in which
1 − �2

+ − �2− �� 0, the final result is that of Kasner-like solution derived in the previous section.

4.1.2 Arbitrary potential

It is straightforward to prove that for every arbitrary potential function V (φ) in which the corresponding F
(
B̂

)
function satisfies

Proposition 1, it always admits the family of stationary points P2
K � (0, 0, �+, �−, λ), with 1 − �2

+ − �2− � 0, in which λ is an
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arbitrary point, and these points describe unstable Kasner solutions. Therefore, we conclude that the limit of General Relativity in
this specific theory is an unstable point.

As far as the general evolution for the dynamics of the field Eqs. (43)–(48) is concerned, it can be easily recovered by using

results of previous studies. Indeed, from Eqs. (39) and (39) the anisotropic functions can be replaced as β̇+ � β0
+

a3 , β̇− � β0−
a3 where

by replacing in the rest of the field equations we end with the field equations for the spatially flat FLRW universe with stiff fluid
source. Therefore, the detailed analysis presented to [33] is valid.

5 Conclusions

In this study we investigated the existence of anisotropic solutions in a higher-order teleparallel theory of gravity known as f (T, B)

theory and specifically in the f
(
T, B̂

)
theory with B̂ � B − 2T . In particular, we focused on the f

(
T, B̂

)
� T + F

(
B̂

)
theory

which is a fourth-order theory defined by the boundary term B̂. The higher-order derivatives of the theory can be described by a
scalar field in the Einstein frame. That scalar field attributes the higher-order derivatives of the theory and does not belong to the
scalar-tensor theories. For this particular theory, we found the conditions where the Kasner universe, which is the vacuum solution
of General Relativity, is recovered. In addition we found that anisotropic Kasner-like solutions exist for this specific theory as
asymptotic solutions for the field equations. On the other hand, we show that anisotropic exponential solutions which describe the

cosmological constant term are not provided in the case of f
(
T, B̂

)
� T + F

(
B̂

)
, however, that is not true for the existence of the

isotropic de Sitter solution [32].
Moreover, we investigated the stability properties of the theory and we found that the Kasner universes are always unstable

solutions for the theory for the arbitrary functional form of F
(
B̂

)
. The general asymptotic dynamics and evolution are similar with

that studied before for the spatially flat FLRW universe and the stiff matter fluid.

In the general scenario of f
(
T, B̂

)
theory, for the Bianchi I spacetime, from the field Eq. (6 and the definition for the torsion scalar

T and for the boundary B̂ as given by expressions (12) we find that the Kasner solution of General Relativity is recovered when f(
T, B̂

)
does not admit as critical point the

(
T, B̂

)
� (0, 0) and the following algebraic condition holds f

(
T, B̂

)
|
(
T,B̂

)
→(0,0)

� 0.

This analysis contributes to the subject of the determination of the exact solutions of modified theories of gravity. The derivation
of solutions of General relativity is of special interest for the validity of modified theories of gravity. In this work we focused on a
higher-order teleparallel theory and we found that the anisotropic Kasner universes are provided by the theory; however, the limit of
General Relativity is always an unstable point. In a future work we plan to investigate the existence of spherical symmetric solutions
for this higher-order theory.
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