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Abstract The modeling of fluid flows with a p-Laplacian operator has attracted the interest of researchers to describe non-Newtonian
fluids. One of the main reasons is the possibility of obtaining values for p (in the p-Laplacian) based on experimental settings. The
main contributions of our study consist in providing analytical assessments of weak solutions, together with a numerical validating
analysis, to a one-dimensional fluid in magnetohydrodynamics (MHD) flowing in porous media. We define a new Darcy–Forchheimer
term and a generalized form of a constitutive kinematic that provides a p-Laplacian operator. Firstly, we discuss about the regularity
and boundedness of weak solutions to support the existence and uniqueness analyses. Afterward, we explore solutions based on a
selfsimilar profile. The resulting elliptic equation is solved based on the analytical perturbation technique. Eventually, a numerical
analysis is provided with the intention of validating the analytical solution obtained. As a remarkable outcome, we establish minimum
values in the selfsimilar variable for which the global distances between the analytical and the numerical solutions are below 10−2

and 10−3. Indeed, the convergence between both solutions is given under an asymptotic approach, where the decaying rates in the
obtained solutions are sufficiently close.

1 Introduction

The article under discussion is intended to give an extension of a known Darcy–Forchheimer flow in porous media with applications
in MHD. The new ideas can be mentioned as follows:

• The introduction of a generalized viscosity law that ends in a p-Laplacian operator.
• The reformulation of the Darcy-Forchheimer law, with a new independent term, to model the effect of variations in the velocity

profile, together with the kinematic conditions close the nanoboundaries induced by the existence of porosity.

The shear stress in a fluid can be described based on the relative motion between fluid layers. Mathematically, and given a velocity
scalar function v1, this can be expressed by a term of the form |∇v1|p−2, where p ∈ R. For p < 2, the fluid can be considered as
non-viscous (for example, superflowing fluids, volatile gases and unsaturated gas flows) For p � 2, the flow falls in the category of
a Newtonian fluid (typical of air and water flows), while for p > 2, the fluid motion is mainly driven by viscosity (porous media
flows and oils, for example). Considering the term |∇v1|p−2 to describe the shear stress in a fluid flow, and after making standard
operations, the momentum equation is formulated in terms of a p-Laplacian operator.

The use of a p-Laplacian operator in fluid dynamics is not new. It has been used to model filtration in flow of fluids within a
porous medium. The works introduced by Smreker, to make further accurate the application of the Darcy’s law, led to a p-Laplacian
diffusion (refer to [1, 2]). To support the theoretical analysis introduced by Smreker, Missbach performed important contributions
based on experimental works (refer to [3] and the studies referenced therein).

Within a purely mathematical scope, in [4] the authors analyzed the quenching behavior of solution for a p-Laplacian filtration
together with different applications. In [5], a similar filtration equation was introduced. In this occasion with a local source to study
the existence and blow-up behavior of solutions. Furthermore, in [6], the authors studied a 1-D filtration equation formulated with a
free, and physically plausible, parameter. They obtained results about the existence of a boundary layer together with the dependency
of such solution and layer with the free parameter. The references mentioned up to now are fully representative of the mathematical
techniques employed to study solutions for a p-Laplacian equation, nonetheless we should notice that the literature is vast in this
regards (see [7] for an interesting compilation).

In many situations, the researchers have introduced different models supported by the p-Laplacian operator (see the remarkable
references [8–10]). Bognar [11], considered problems involving fluid mechanics and the p-Laplacian operator. He introduced
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several methods based on numerical and analytical procedures that are of interest to study nonlinear problems. Diaz and Thelin [12]
introduced a turbulent flow in a pipe of porous medium supported by the p-Laplacian operator. They provided different behaviors
in the solutions under a weak formulation approach. Douchet [13], provided an analysis about the positive solutions for problems
involving discontinuous nonlinearities. Drabek et al. [14], introduced the quasilinear elliptic problem formulated with the p-Laplacian
operator and got some existence criteria for global solutions.

Other interesting works can be mentioned dealing with non-Newtonian fluids formulated with the p-Laplacian operator, in
particular the studies: [15–17]. Additionally, in [18], the authors introduced a general equation to study the Euler fluids. They
considered the Benamou–Brenier characterization of Wasserstein-p distances to obtain a generalized constitutive relation, that in
turn was based on the Euler–Lagrange equation. The resulting formulation is known as p-Navier–Stokes equation.

The fact of modeling with nonlinear operators is not only linked to the p-Laplacian one. Indeed, in some occasions, a nonlinear
diffusion phenomena can be modeled with a porous medium equation constituted by a degenerate diffusivity (see [19, 20] for a
wide mathematical treatment). Both, the already cited p-Laplacian and the porous medium equation, are interesting examples of
how some mathematical properties, introduced by the mentioned diffusion operators, can permit to model any physical phenomena.
Indeed, we may consider the mathematical properties of the p-Laplacian operator to model special kinds of broad diffusion emerging
in biology [21–25], as already mentioned in porous flows [26–28], glaciology [35] or petroleum extraction [29] .

The equation, motivating our coming analyses, is based on the MHD science that is actually an important area of applications
of non-Newtonian fluids. For instance, in [30], the authors provided an interesting mathematical approach to explain the relation
between the wave dynamics in a thin film compressible isothermal MHD viscous-plastic fluid and the instabilities. In our case, we
will show that the solutions are regular, so that the perturbations introduced will no became unstable (in an asymptotic condition).
In addition, in [31], another perturbation approach, named as noisy reduced magnetohydrodynamic (NRMHD) model, was used to
predict the turbulent fluctuations in the fluid. Furthermore, in some cases, other physical variables have been considered in MHD
fluids. For instance, in [32], the temperature variable is considered to model a heat transfer process in a viscoelastic fluid flowing
through a flat plate. There exist other interesting analyses concerning MHD and non-Newtonian fluids, that allow us to remark the
vigor of this area of research. Akbar et al. [33] employed an Eyring–Powell MHD fluid to model a two- dimensional flow in a
stretching surface. In addition, Bhatti et al. [34] considered, as well, a two-dimensional Erying–Powell MHD fluid, for carrying out
the heat transfer analysis by introducing a set of ordinary differential equations.

To introduce the driving equation, firstly consider the known equation of a Darcy–Forchheimer fluid in porous medium and
under the MHD scope. The fluid is flowing through the x-axis (then the velocity profile under study varies with the orthogonal
spatial variable) and the associated velocity profile under study is considered to be radially symmetric. These hypothesis allow us
to consider a velocity vector of the form V � (v1(y, t), 0, 0), so that the equation reads:

∂v1

∂t
� − 1

ρ

dP

dx
+ ν

∂2v1

∂y2 −
(

σ B2
0

ρ
+

ν

K

)
v1 − v2

1

ρK1
, (1.1)

where ρ and ν � μ
ρ

refer to the fluid density and kinetic viscosity, respectively, σ is the electrical fluid conductivity, P refers to
the fluid pressure distribution in the flowing fluid, K is the permeability (or hydraulic conductivity), B0 is the externally imposed
magnetic field that makes the fluid to flow and K1 is the inertial permeability typical in porous medium.

The new model introduced, as an alternative to the last equation, started based on the literature review done by the authors and
is supported by the mathematical principles introduced by the p-Laplacian operator (in fact, this operator allows the definition of a
finite speed of propagation for compactly supported functions, that can be used to model with accuracy the slow motion of a fluid in
porous media). In addition, we introduce a new term, to generalize the well-known Darcy–Forchheimer independent term in (1.1).
Such a new term has the form:

f (v1) � −
(

σ B2
0

ρ
+

ν

K

)
vb1 − v2

1

ρK1
, (1.2)

where 0 < b < 1.
The new term vb1 aims at modeling the following idea: Given a set of distributed porous points in the domain, there may be zones

where the fluid velocity is almost null to comply with the nanoboundary conditions in the proximity of the porous zones. Under
the influence of such nanoboundary, it may be the case that the fluid is perturbed, or simply the velocity changes as a result of a
higher external magnetic field applied. Then, the new term vb1 can model any fast variation in the velocity profile that can impact the
nanoboundary. In addition, the newly introduced p-Laplacian operator exhibits the property of propagating support that, combined
with the last mention effect, would lead us to model any possible induced velocity change in the domain characterized by a finite
speed (this is important for fluids with p > 2).

As a consequence, the following equation holds:

∂v1

∂t
� − 1

ρ

dP

dx
+ ν

∂

∂y

((
∂v1

∂y

)p−2
∂v1

∂y

)
−

(
σ B2

0

ρ
+

ν

K

)
vb1 − v2

1

ρK1
, (1.3)
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with the non-dimensional variables given by (see [36] and references therein as supporting material):

v∗
1 �v1

v0
, x∗ � x

L
, y∗ � y

L
, t∗ � v0t

L
, P∗ � P

ρv2
0

, Re � v0L

ν
,

M �B0L

√
σ

ρν
, A1 � v

p−4
0

ReL p−2 , A2 � ν

v0K
, A3 � 1

ρK1
. (1.4)

The Eq. (1.3) can be rewritten as follows (ignore * for the sake of simplicity):

∂v1

∂t
� − 1

ρ

dP

dx
+ A1

∂

∂y

((
∂v1

∂y

)p−2
∂v1

∂y

)
− 1

v1−b
0

(
M2

Re
+ A2

)
vb1 − A3v

2
1, (1.5)

where y > 0, t > 0, p > 1.

Making the first differentiation with regards to x, and integrating, it holds that − 1
ρ

dP
dx � A4. Renaming as 1

v1−b
0

(
M2

Re
+ A2

)
� A5,

the Eq. (1.5) reads

∂v1

∂t
� A4 + A1

∂

∂y

((
∂v1

∂y

)p−2
∂v1

∂y

)
− A5v

b
1 − A3v

2
1 . (1.6)

This previous equation constitutes the basis for the coming analyses. We should consider that the equation is formulated with no
additional constrains in terms of boundary conditions and geometrical structures. This approach is followed to provide the widest
scope and to allow us to provide evidences on new solutions to the involved fluid that can be used in all kind of applications.

Furthermore, we shall consider a bounded and Lebesgue measurable distribution as initial data. This approach is common in
fluid flow modeling, so that the results are given under the most general initial data (refer to [3] for additional insights). Essentially,
we shall require that the initial distribution is bounded, together with the condition of a finite velocity profile in the sense of the L1

space.

v1(y, 0) � v0(y) ∈ L∞(R) ∩ L1(R). (1.7)

2 Previous supporting results

The following Propositions 1 and 2 are introduced based on the works in [37, 38] and are reproduced here for convenience.

Proposition 1 Given the basic p-Laplacian equation vt � ∇ · (|∇v|p−2∇v
)
, in R

d × (0, T ], where p > 1 with a finite mass of size
Nδ at the origin v(y, 0) � Nδδ(x), Nδ > 0. Then; the following solution, in the sense of Barenblatt, holds:

v(y, t) � t−a0
(
C1 − C2|ζ | p

p−1

) p−1
p−2

+
, (2.1)

where

ζ � y/t
a0
d , a0 �

(
p − 2 +

p

d

)−1
, C1 � C3(d, p)Nβ

δ , C2 �
( p − 2

p

)(a0

d

) 1
p−1

, β � p(p − 2)/d(p − 1), (2.2)

and C3 can be obtained based on the mass preserving condition:
∫

v(y, t)dy � Nδ.

Proposition 2 Assume that v0(y) ∈ L1(Rd ), then there exits a time T (||v0||1) and a weak solution for the basic p-Laplacian
equationvt � ∇ · (|∇v|p−2∇v

)
in 0 < t ≤ T (||v0||1) such that:

T (||v0||1) ≤ C4(d, p)||v0||−(p−2)
1 . (2.3)

Furthermore, if the initial data has compact support, then the following bounds hold for any R > 0:

|v(·, t)|1≤ C5(d, p)||v0||1, (2.4)

|v(y, t)|≤ C6(d, p)t−a0 Rp(p−2)||v0||
pa0
d

1 , |y|≤ R, (2.5)

|∇v(y, t)|≤ C7(d, p)t−
(d+1)a0

d R
2

p−2 ||v0||
2a0
d

1 , |y|≤ R, (2.6)

The results, provided in the last propositions, were obtained for y ∈ R
d and they can be made applicable to the one- dimensional

case as well. Indeed, the propositions were provided for |y|< R, that can be similarly obtained, with no formal inconsistency, for
d � 1. Furthermore, the constants C3, C4 and C5 are assessed in a ball as per Proposition 2.1 in [37] that can be similarly defined
for the case of a one- dimensional spatial variable. Eventually, the results related to the existence and the uniqueness of the solutions
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are based on assessments in bounded domains (this is balls in R
d ) that can be made applicable with no formal constrains for the

case of d � 1.
The following proposition is introduced hereunder to support the regularity analysis to come.

Proposition 3 Consider that a particular flat solution to (1.6) is given by the following expression:

v1(t) � 1

A3t
+

εt−b

A1+b
3 (b − 2)

+ O(ε2) (2.7)

where A3 is a constant defined in (1.4), and ε is a small parameter that compiles the terms of order two and higher. This solution
has been obtained under the assumption of a null pressure gradient at y → ∞, i.e., A4 ∼ 0.

Proof For the particular flat solution searching, we take the following time evolution based on (1.6):

∂v1

∂t
� −A5v

b
1 − A3v

2
1, (2.8)

where A5 is considered as a small parameter. Assuming A5 � ε and using a perturbation technique, the solution of (2.8) is of the
form:

v1(t) � v10 + εv11 + ε2v12... (2.9)

After using (2.8), we have

∂

∂t

(
v10 + εv11 + ε2v12...

)
� −A5

(
v10 + εv11 + ε2v12...

)b − A3

(
v10 + εv11 + ε2v12...

)2
. (2.10)

comparing coefficient of ε and ε2, we have

∂v10

∂t
� −A3v

2
10, (2.11)

and

∂v11

∂t
� v10v

b
10 − 2A3v10v11. (2.12)

Solving (2.11), we have

v10 � 1

A3t
. (2.13)

After using v10 into (2.12), we get

∂v11

∂t
+

2

t
v11 � − t−1−b

A1+b
3

. (2.14)

The solution of (2.14) is

v11 � t−b

A1+b
3 (b − 2)

. (2.15)

Combining (2.13) and (2.15) with (2.9), the solution of (2.8) is

v1 � 1

A3t
+

εt−b

A1+b
3 (b − 2)

+ O(ε)2. (2.16)

�

3 General discussion about solutions

3.1 On existence and uniqueness of solutions

Theorem 1 Assuming that v1(y, t) ≥ 0 is a solution to (1.6) with v0 ∈ L1(R); then, the following asymptotic convergence holds:

lim
t→∞|v1(y, t) − v(y, t)| � 0, (3.1)

uniformly for any y ∈ R.

123



Eur. Phys. J. Plus        (2022) 137:1328 Page 5 of 16  1328 

Proof Let us consider a smooth test function, φ7, satisfying the following regularity condition: φ7 ∈ C∞([0, T ] × R) ∩
L∞([0, T ],W 1,p(R)). After multiplying the expression (1.6) by φ7 and making the integration, the following weak formulation
holds (see [39] for additional insights):∫

R

v1(t)φ7(t) �
∫
R

v1(0)φ7(0)

+
∫ t

0

∫
R

(
v1

∂φ7

∂t
− A1

∣∣∣∣∂v1

∂y

∣∣∣∣
p−1

∂φ7

∂y
− A5φ7v

b
1 − A3φ7v

2
1 + A4φ7

)
ds.

(3.2)

The fundamental solution, v, can be weakly formulated as well∫
R

vφ7(t) �
∫
R

v(0)φ7(0) +
∫ t

0

∫
R

(
v
∂φ7

∂t
− A1

∣∣∣∣∂v

∂y

∣∣∣∣
p−1

∂φ7

∂y

)
ds. (3.3)

Assume a test function of the form

φ7(y, t) � e− j2(t)

(1 + |y|2)b1
, (3.4)

where j2(t) ≥ 0 is a Holder continuous function and b1 > 0 shall be selected for the asymptotic convergence of the involved
integrals in the last two weak formulations.

Since v is the fundamental solution, we can make use of Proposition 2 so that the integral in (3.3) can be evaluated as:∫
R

∣∣∣∣∂v

∂y

∣∣∣∣
p−1

∂φ7

∂y
ds ≤

∫
R

C p−1
7 t−2a0(p−1)|y|2+ 2

p−2 ‖v0‖2a0(p−1)
1 |−b1| 2|y|e− j2(t)

(1 + |y|2)b1+1 . (3.5)

The convergence in the last integral requires to select b1 ≥ b2 � p−1
2(p−2) , then the integral vanishes asymptotically in the test function

tail.
Subtracting (3.3) from (3.2) and using the resulting expression in (3.5), we have∫

R

(v1 − v)(t)φ7(t) ≤
∫
R

(v1 − v)(0)φ7(0) +
∫ t

0

∫
R

(v1 − v)
∂φ7

∂t
ds

−
∫ t

0

∫
R

A1

(∣∣∣∣∂v1

∂y

∣∣∣∣
p−1

∂φ7

∂y
− A5φ7v

b
1 − A3φ7v

2
1 + A4φ7

)
ds. (3.6)

After using Propositions 2 and 3, the following holds:

A1

∫ t

0

∫
R

∣∣∣∣∂v1

∂y

∣∣∣∣
p−1

∂φ7

∂y
ds ≤

∫ t

0

∫
R

A1

(
C p−1

7 t−2a0(p−1)|y|2+ 2
p−2 ‖v0‖2a0(p−1)

1

+
( 1

A3t
+

εt−b

Ab+1
3 (b − 2)

+ O(ε2)
)p−1)2|−b1||y|e− j2(t)

(1 + |y|2)b1+1 ds (3.7)

For asymptotic convergence in the involved integrals, we require b1 ≥ b3 � p−1
2(p−2) .

Again, based on Propositions 2 and 3, it holds that∫ t

0

∫
R

A5v1φ7ds ≤
∫ t

0

∫
R

A5

(
C6t

−a0 |y|p(p−2)‖v0‖pa0

+
1

A3t
+

εt−b

Ab+1
3 (b − 2)

+ O(ε2)
) e− j2(t)

(1 + |y|2)b1+1 ds. (3.8)

The integral is asymptotically convergent if b1 ≥ b4 � p(p−2)
2 .

Using again Proposition 2 and 3, we get that∫ t

0

∫
R

A3v
2
1φ7ds ≤

∫ t

0

∫
R

A3

(
C2

6 t
−2a0 |y|2p(p−2)‖v0‖2pa0

+

(
1

A3t
+

εt−b

Ab+1
3 (b − 2)

+ O(ε2)

)2) e− j2(t)

(1 + |y|2)b1+1 ds. (3.9)

In this case, we shall choose b1 ≥ b5 � p(p − 2).
Eventually, the asymptotic convergence of the last term in (3.6) requires to select b1 such that b1 ≥ b6

1
p−2 .
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Making an overall compilation of the assessed integrals, any value of b1 complying with the asymptotic behavior of solutions
for (3.6) shall be

b1 ≥ max(b2, b3, b4, b5, b6). (3.10)

Coming again to the expression (3.6) and considering the contraction condition in the space L1 (see [40]):∫
R

(v1 − v)φ7(t) ≤ ‖v1 − v‖1‖φ7‖∞(t) ≤ ‖v0 − v0‖1‖φ7‖∞(t) +
∫ t

0
ε(s)‖v1 − v‖1(s)ds, (3.11)

where ε(s) � maxR

{
∂φ7
∂t

}
and exists given the defined regularity condition in the test function.

Since v0(y) is a finite mass distribution, i.e.,
∫
R v0 � K , we can consider a sequence {v0,n} of compactly supported distributions

that approximates to v0 with 0 ≤ v0,n ≤ v0, n ∈ N. Each element in the sequence is finite mass as well,
∫

v0,n � Kn, with
Kn ↗ K .

Assuming now the following scaling (refer to [41] for additional insights):

Tkv1 � 1

ka0
v1

(
y

ka0
,
t

k

)
, (3.12)

that is introduced as a normalizing scaling to compare any evolution in the sequence departing from each {v0,n}. Such evolution
sequence of solutions is given by {v1,n}, then the following holds:∥∥Tk(v1,n) − Tk(v)

∥∥
1(t)‖φ7‖∞(t) ≤ ∥∥v0,n − v0

∥∥
1‖φ7‖∞(t) +

∫ t

0
ε(s)‖v1 − v‖1(s)ds (3.13)

Consider no the first term on the right-hand side of (3.13), so that the following holds:∥∥v0,n − v0
∥∥

1 ≤
∫

v0,n −
∫

v0 � Kn − K . (3.14)

After using the integration over mean values in the last term of (3.13), and using (3.14), we have(‖φ7‖∞(t) − tε(τ )
)∥∥Tk(v1,n) − Tk(v)

∥∥
1(t) ≤ (Kn − K )‖φ7‖∞(t). (3.15)

for an appropriate 0 < τ < t. Making n → ∞, the convergence of Kn ↗ K and hence v1,n ↗ v1 hold, leading to:(‖φ7‖∞(t) − tε(τ )
)∥∥Tk(v1,n) − Tk(v)

∥∥
1(t) ≤ 0. (3.16)

In the asymptotic approach 1 << k << t then:

Tk(v1) � ε(k)v1

(
y

ka0
,
t

k

)
, Tk(v) � ε(k)v

(
y

ka0
,
t

k

)
. (3.17)

Now, when |ε(k)|<< 1, then (3.17) becomes

v1(y′, t ′) � v(y′, t ′), y′ → 0, t ′ → 0, (3.18)

where (y′, t ′) are the rescaled variables.
Similarly for k → 0:

v1(y′′, t ′′) � v(y′′, t ′′), y′′ → ∞, t ′′ → ∞. (3.19)

Based on the provided arguments, we conclude on the asymptotic convergence of any spatially distributed solution to the fundamental
solution. �

Based on the last theorem shown, it is possible to state that given any initial distribution, and the associated solution evolving as
per (1.6), the solution behaves asymptotically as the Barenblatt solution given in Proposition 1.

The coming intention is to introduce an analysis about the boundedness of the weak solutions. To this end and previously, it shall
be introduced the regularity of the evolution under the weak formulation scope with the test function (3.4). Assume that r � |y|� 1
and the ball, Br , centered at the origin and with radium r. Consider now the coming problem Pφ7 defined in [0, T ] × Br :

v1
∂φ7

∂t
− A1

∣∣∣∣∂v1

∂y

∣∣∣∣
p−1

∂φ7

∂y
− A3φ7v

2
1 + A4φ7 − A5φ7v

b
1 � 0. (3.20)

Here we consider that the ball Br has sufficiently smooth boundary ∂Br , where the test function satisfies the following null flux
condition:

∇φ7 · π � 0, (3.21)
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where π refers to the unitary normal vector to ∂Br . It should be noticed that the initial distribution is bounded, i.e., v0(y) ∈
L1(R) ∩ L∞(R), and the domain Br as well. Then, the regularity study of Pφ7 requires us to introduce the following truncatures to
control the boundedness of the involved terms:

v1,ϑ �
{

v1, |v1|< ϑ

ϑ, |v1|≥ ϑ

}
. (3.22)

Further, the following Lipschitz approximation to the reaction term is introduced as for a generic function g:

Vδ(g) �
{

δb−1g, 0 ≤ g < δ

gb, g ≥ δ

}
, (3.23)

where δ > 0. Similarly, the following truncatures can be defined for (3.23) leading to:

Vδ,ϑ (gϑ ) �
{

δb−1gϑ , 0 ≤ gϑ < δ

gbϑ , gϑ ≥ δ

}
, gϑ �

{
g, |g|< ϑ

ϑ, |g|≥ ϑ

}
, gbϑ �

{
gb, |gb|< ϑ

1
b

ϑ
1
q , |gb|≥ ϑ

1
b

}
. (3.24)

As a consequence, the following truncated problem Pφ7
ϑ is proposed:

v1,ϑ

∂φ7

∂t
− A1

∣∣∣∣∂v1,ϑ

∂y

∣∣∣∣
p−1

∂φ7

∂y
− A3φ7v

2
1,ϑ + A4φ7 − A5φ7Vδ,ϑ � 0, (3.25)

where the boundary and initial set of conditions are the same to the previous problem Pφ7 . The solution, φ7(y, t), of problem Pφ7
ϑ

does exist and is unique. This can be shown based on available results in the literature (see [37, 41] for some analyses in this regard
involving weak derivatives) and the maximum principle for the p-Laplacian operator for positive solutions (see [37, 38]).

Once we have shown that there exists a parabolic evolution of a test function, we shall recall that our objective is to obtain the
boundedness of weak solutions. To this end, consider the following theorem:

Theorem 2 Any positive solution v1(y, t) to the problem (1.6) is bounded in t ∈ [0,∞) and for y ∈ Br , where 0 < r < ∞.

Proof Consider firstly ζ ∈ R
+ so that the following cut off function (ψ) is defined (refer to [42]):

ψζ ∈ C∞
0 (R), 0 ≤ ψζ ≤ 1,

ψζ � 1, y ∈ Br−ζ , ψζ � 0, y ∈
[
R − Br−ζ

]
(3.26)

so that

|∇ψλ| ≤ d1

ζ
, |�ψλ| ≤ d1

ζ 2 . (3.27)

Multiplying (3.25) by ψζ , the following holds for (t, y) ∈ (0, τ ) × Br where 0 < τ < t < ∞:∫ τ

0

∫
Br

v1,ϑ

∂φ7

∂t
ψζ − A1

∫ τ

0

∫
Br

∣∣∣∣∂v1,ϑ

∂y

∣∣∣∣
p−1

∂φ7

∂y
ψζ − A5

∫ τ

0

∫
Br

φ7v
b
1,ϑψζ

− A3

∫ τ

0

∫
Br

φ7v
2
1,ϑψζ + A4

∫ τ

0

∫
Br

φ7ψζ � 0, (3.28)

where φ7,
∂φ7
∂t and ψζ are continuous and smooth functions complying with a decaying behavior at infinity. For the boundedness of

any solution, we have to show that
∫ τ

0

∫
Br

v1,ϑ
∂φ7
∂t ψζ is finite. For this, we use Proposition 2 to show the asymptotic convergence of

each of the involved integrals in the last expression together with the test function φ7 given in (3.4):

A1

∫ t

0

∫
Br

∣∣∣∣∂v1,ϑ

∂y

∣∣∣∣
p−1

∂φ7

∂y
ψζ

≤
∫ t

0

∫
Br

A1

(
C p−1

7 t−2a0(p−1)r
2(p−1)
p−2 ‖v0‖2a0(p−1)

1

)
2|−b1|re− j2(t)

(1 + r2)b1+1 ψζ

≤
∫ t

0

∫
Br

A1

(
C p−1

7 t−2a0(p−1)r
2(p−1)
p−2 ‖v0‖2a0(p−1)

1

)
2b1re− j2(t)

(1 + r2)b1+1

b1

ζ

≤
∫ t

0

∫
Br

A1

(
C p−1

7 t−2a0(p−1)r
2(p−1)
p−2 +2b1+2‖v0‖2a0(p−1)

1

)
2b1b1e

− j2(t). (3.29)

The asymptotic convergence in the previous integral requires to consider that b1 ≥ b7 � p−1
2(p−2) .
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Similarly: ∫ t

0

∫
Br

A5v1,ϑφ7ψζ ≤
∫ t

0

∫
Br

A5C
b
6 t

−a0rbp(p−2)‖v0‖pba0r−2b1 (3.30)

The integral is asymptotically convergent for b1 ≥ b8 � pb(p−2)
2 .∫ t

0

∫
Br

A3v
2
1,ϑφ7ψζ ≤

∫ t

0

∫
Br

A3C
2
6 t

−2a0r2p(p−2)‖v0‖2pa0r−2b1 . (3.31)

Again, the integral is asymptotically convergent for b1 ≥ b9 � p(p − 2). In addition:∫ t

0

∫
Br

A4φ7ψζ ≤
∫ t

0

∫
Br

A4r
−2b1 . (3.32)

The integral converges asymptotically if b1 > 0.

Consequently, for the convergence of (3.28), the following holds:

b1 > max(b7, b8, b9, 0). (3.33)

Coming back to (3.28), considering the initial condition of a positive solution and taking r → ∞, we have

0 <

∫ τ

0

∫
Br

v1,ϑ

∂φ7

∂t
ψζ ≤ M+, (3.34)

where M+ is the resulting value after compilation of the assessed asymptotically convergent integrals. This implies that any solution
v1,ϑ is bounded. To recover the original solution, we shall make ϑ � 1 to conclude on the boundedness of any weak solution
v1(y, t) to the problem (1.6). �

The theorem to come shows the uniqueness of solutions to (1.6).

Theorem 3 Assume any initial distribution with a positive mass, together with the pairs (ṽ1,ϑ , Ṽδ,ϑ ) and (v̄1,ϑ , V̄δ,ϑ ) formed of
maximal and minimal solutions, respectively, for (3.25) in Br × (0, T ). Then, the maximal and minimal solutions to (3.25) coincides,
leading to the existence of asymptotic uniqueness to the problem (1.6).

Proof Assuming that ṽ1,ϑ is the maximal solution of (3.25), such a solution is obtained departing from an initial data of form:

ṽ1,ϑ (y, 0) � v0(y) + ε, (3.35)

with ε > 0. The minimal solution of (3.25), v̄1,ϑ , departs from the following initial distribution:

v̄1,ϑ (y, 0) � v0(y), (3.36)

where
∫
Br

v0 > 0. The weak formulations for the maximal and minimal solutions are given by:∫
Br

ṽ1,ϑ (t)φ7(t) �
∫
Br

ṽ1,ϑ (0)φ7(0) +
∫ τ

0

∫
Br

(
ṽ1,ϑ

∂φ7

∂t
− A1

∣∣∣∣∂ṽ1,ϑ

∂y

∣∣∣∣
p−1

∂φ7

∂y

)

−
∫ τ

0

∫
Br

(
A3φ7ṽ

2
1,ϑ + A4φ7 − A5φ7Ṽδ,ϑ

)
(3.37)∫

Br
v̄1,ϑ (t)φ7(t) �

∫
Br

v̄1,ϑ (0)φ7(0) +
∫ τ

0

∫
Br

(
v̄1,ϑ

∂φ7

∂t
− A1

∣∣∣∣∂ṽ1,ϑ

∂y

∣∣∣∣
p−1

∂φ7

∂y

)

−
∫ τ

0

∫
Br

(
A3φ7v̄

2
1,ϑ + A4φ7 − A5φ7V̄δ,ϑ

)
(3.38)

As shown in Theorem 1: ∫ τ

0

∫
R

∣∣∣∣∂ṽ1,ϑ

∂y

∣∣∣∣
p−1

∂φ7

∂y
� 0,

∫ τ

0

∫
R

∣∣∣∣∂v̄1,ϑ

∂y

∣∣∣∣
p−1

∂φ7

∂y
� 0. (3.39)

Subtracting (3.38) from (3.37) and taking ε → 0, we have∫
Br

(
ṽ1,ϑ − v̄1,ϑ

)
(t)φ7(t)

�
∫ τ

0

∫
Br

(
(ṽ1,ϑ − v̄1,ϑ )

∂φ7

∂t
− A3φ7(ṽ

2
1,ϑ − v̄2

1,ϑ ) − A5φ7(Ṽδ,ϑ − V̄δ,ϑ )
)

≤
∫ τ

0

∫
Br

(
(ṽ1,ϑ − v̄1,ϑ )

∂φ7

∂t
− A3φ7(ṽ1,ϑ + v̄1,ϑ )(ṽ1,ϑ − v̄1,ϑ ) − A5φ7(Ṽδ,ϑ − V̄δ,ϑ )

)
. (3.40)
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Since ṽ1,ϑ and v̄1,ϑ are bounded solutions, in accordance with the results of Theorem 1, we can choose A6 such that A3(ṽ1,ϑ +v̄1,ϑ )
)

≤
A6. Then, the expression (3.34) becomes:∫

Br

(
ṽ1,ϑ − ū11

)
(t)φ7(t) ≤

∫ τ

0

∫
Br

(∂φ7

∂t
(ṽ1,ϑ − v̄1,ϑ )

+ A6φ7(ṽ1,ϑ − v̄1,ϑ ) + A5φ7(Ṽδ,ϑ − V̄δ,ϑ )
)
. (3.41)

As both Ṽδ,ϑ and V̄δ,ϑ are Lipschitz: ∣∣∣Ṽδ,ϑ − V̄δ,ϑ

∣∣∣ ≤ δb−1
∣∣ṽ1,ϑ − v̄1,ϑ

∣∣ (3.42)

After using (3.42) into (3.41), we have∫
Br

(
ṽ1,ϑ − ū11

)
(t)φ7(t) ≤

∫ τ

0

∫
Br

(∂φ7

∂t
(ṽ1,ϑ − v̄1,ϑ ) + (A6φ7 + A5φ7δ

b−1)(ṽ1,ϑ − v̄1,ϑ ). (3.43)

Given the particular form of a test function in (3.4), we can introduce a bounding constant as A7 � max
{

∂φ7
∂t

}
< 0. Then for a large

time, τ � 1, in (3.43), it holds that: ∫
Br

(
ṽ1,ϑ − v̄1,ϑ

)
(t)φ7(t)

≤
∫
Br

(
A7 + A5φ7δ

b−1
)
t(ṽ1,ϑ − v̄1,ϑ ), (3.44)

which implies that ∫
Br

(
ṽ1,ϑ − v̄1,ϑ

)(
φ7 − A5δ

b−1t − A7t
)

≤ 0. (3.45)

Note that

ṽ1,ϑ − v̄1,ϑ ≥ 0, φ7 − A5δ
b−1t − A7t > 0, (3.46)

where the value of A7 is negative, therefore∫
Br

(
ṽ1,ϑ − v̄1,ϑ

)(
φ7 − A5δ

b−1t − A7t
)

≥ 0, (3.47)

which contradict (3.45). Then we shall consider that ṽ1,ϑ − v̄1,ϑ � 0 which implies that ṽ1,ϑ � v̄1,ϑ , leading to the uniqueness of
solutions to the problem (3.25). The asymptotic uniqueness of solution to the original problem (1.6) is achieved in the limit with
ϑ → ∞ and δ → 0+. �

As an additional piece of analysis, the uniqueness of the solutions can be proved based on the positivity property of the p-Laplacian
operator for positive solutions (see [37]). Indeed, assume again that ṽ1,ϑ is a maximal solution with initial data (3.35) and v̄1,ϑ is a
minimal solution with initial data (3.36), together with a particular form of a test function given by:

φ7(y, s) � ea1(T−s)(1 + y2)−b1
, (3.48)

where a1 and b1 are finite constants. Differentiate (3.48) with respect to s,

∂φ7

∂s
� −a1φ7. (3.49)

After subtraction of the equations involving the mentioned maximal and minimal solutions, which are expressed in (3.37) and (3.38),
the expression (3.40) becomes∫

Br

(
ṽ1,ϑ − v̄1,ϑ

)
(t)φ7(t) ≤

∫ τ

0

∫
Br

(
(A6 − a1)(ṽ1,ϑ − v̄1,ϑ )(t)φ7(t) + A5(Ṽδ,ϑ − V̄δ,ϑ )(t)φ7(t)

)

≤
∣∣∣A6 − a1 + A5δ

b−1
∣∣∣ ∫ τ

0

∫
Br

(ṽ1,ϑ − v̄1,ϑ )(t)φ7(t). (3.50)

where we have used the Lipschitz condition (3.42). After differentiating with respect to t, we have

0 ≤ d

dt

∫
Br

(
ṽ1,ϑ − v̄1,ϑ

)
(t)φ7(t) ≤

∣∣∣A6 − a1 + A5δ
b−1

∣∣∣ ∫
Br

(ṽ1,ϑ − v̄1,ϑ )(t)φ7(t). (3.51)
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Now, after application of the Gronwall inequality, we have∫
Br

(
ṽ1,ϑ − v̄1,ϑ

)
(t)φ7(t) ≤ e

∣∣A6−a1+A5δ
b−1

∣∣ ∫
Br

εφ7(0). (3.52)

Taking ε sufficient small (this is, making the initial conditions (3.35) and (3.36) sufficiently close) in the last expression, the minimal
solution v̄1,ϑ converges to the maximal solution ṽ1,ϑ , showing then the asymptotic uniqueness of solutions.

3.2 A comparison principle

The next intention is to show the asymptotic order preservation of solutions. To this end, the following theorem is given:

Theorem 4 Assuming that v0,1(y, t) and v0,2(y, t) are different and positive initial distributions complying with the order:
v0,1(y, t) ≥ v0,2(y, t), then the resulting solutions, according to these initial conditions, preserve the order property; this is:
v11(y, t) ≥ v12(y, t) in Br × (0, T ).

Proof Considering the involved truncatures in (3.22), (3.23), (3.24), the already discussed weak formulations and the expression
(3.41) for r � 1 in 0 < τ ≤ T the following applies (note that the term ∼ refers to a sufficiently close condition for our purposes):∫

Br

(
v11,ϑ − v12,ϑ

)
(t)φ7(t) ∼

∫
Br

(
v0,1 − v0,2

)
(0)φ7(0)

+
∫ τ

0

∫
Br

(∂φ7

∂t
(v11,ϑ − v12,ϑ ) + A6φ7(v11,ϑ − v12,ϑ ) − A5φ7(V11,δ,ϑ − V12,δ,ϑ )

)
(3.53)

which implies that ∫
Br

(
v11,ϑ − v12,ϑ

)
(t)φ7(t)

−
∫ τ

0

∫
Br

(∂φ7

∂t
(v11,ϑ − v12,ϑ ) + A6φ7(v11,ϑ − v12,ϑ ) − A5φ7(V11,δ,ϑ − V12,δ,ϑ )

)

∼

∫
Br

(
v0,1 − v0,2

)
(0)φ7(0) ≥ 0 (3.54)

From (3.48) ∂φ7
∂t � −a1φ7, and after applying the Gronwall inequality, the expression (3.54) becomes∫

Br

(
v11,ϑ − v12,ϑ

)
(t)φ7(t) +

∫
Br

A8

(
a1 − A6

)
(v11,ϑ − v12,ϑ )φ7

−
∫
Br

A9

(
a1 − A6

)(
v0,1 − v0,2

)
(0)φ7(0) −

∫
Br

A10(V11,δ,ϑ − V12,δϑ )φ7

+
∫
Br

A11

(
v0,1 − v0,2

)
(0)φ7(0) ≥ 0. (3.55)

where Ai ≥ 0, i � (1, 2, 3, 4) refer to the Gronwall’s constants. Asymptotically, for |y|� 1, recovering the original solution for
δ → 0+, ϑ � 1 and using the Lipschitz condition (3.42), we have∫

Br

(
1 + A8(a1 − A6) − A10δ

b−1
)(

v11,ϑ − v12,ϑ

)
(t)φ7(t)

≥
∫
Br

(
A9(a1 − A6) − A11

)
(v0,1 − v0,2)φ7(0) ≥ 0, (3.56)

where the a1 constant can be selected such that 1 + A10a1 > A8A6 + A10δ
b−1 and A9a1 > A9A6 + A11, i.e.,

a1 > max

[
A8A6 + A10δ

b−1 − 1

A10
, A6 +

A11

A9

]
. (3.57)

In return to (3.56), and considering the positivity of the test function, we get that

v0,1 ≥ v0,2 → v11,ϑ ≥ u12,ϑ , (3.58)

as intended to prove. �
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4 Profiles of analytical solutions

The objective in this section is to continue the exploration about the behavior of solutions to (1.6) for p �� 2. To this end, consider
that A4 � 0 for the sake of simplicity and with no impact in the generality of the obtained results, together with the following
truncation to the reaction term:

fφ2 � min
[
vb1 , φb−1

2 v1

]
, φ2 > 0 (4.1)

Note that the original reaction term holds for φ2 → 0+. Based on the truncation introduced, the following problem is proposed:

∂v1

∂t
� A1

∂

∂y

((
∂v1

∂y

)p−2
∂v1

∂y

)
− A5 fφ2 − A3v

2
1, (4.2)

where the reaction term is now a Lipschitz function. The exploration of solutions is performed based on selfsimilar structures of the
form:

v1(y, t) � t−α0g(η), η � |y|tβ0 , (4.3)

where g(η) refers to the selfsimilar and radially symmetric profile.
It should be noted that the assessments to come are given for y ∈ R

d , where d ≥ 1, to account for a further general analysis, and
in the consideration that working in R

d provides easier computations.
Substituting (4.3) into (4.2), we have

−α0t
−α0−1g + β0ηt

−α0−1g′ � A1t
−α0(p−1)(p − 1)(g′)p−2g′′ +

d − 1

η
(g′)p−1 − A5gφ2 + A3t

−2α0g2, (4.4)

where

fφ2 (g, t) � min
[
gb, φb−1

2 t−α0(b−1)g
]
, (4.5)

or equivalently:

fφ2 (g, t) � min
[
t−α0bgb, φb−1

2 t−α0g
]
. (4.6)

A value for α0 can be obtained based on the balance between the time and the spatial derivatives in the expression (4.4), to have:

α0 � 1

p − 2
. (4.7)

Note that both terms defined in (4.5) and (4.6) have the same intersection in g � f φ2. For the sake of simplicity, the coming
assessments are done with the linear term g in (4.5). In addition and for a sufficiently large time, the following holds:

fφ2 (g, t) ≥ kg, (4.8)

so that k is selected as k � −α0 + β0d , for convenience in solving (4.4).
Note that the selfsimilar profile g(η) is a solution to the elliptic problem (4.4) at each selected time (for simplification and without

loss of generality consider t � 1), then a solution profile is obtained to the equation:

−α0g + β0ηg
′ � A1(p − 1)(g′)p−2g′′ +

A1(d − 1)

η
(g′)p−1 − A5(−α0 + β0d)g − A3g

2. (4.9)

Assuming that ε � A5(−α0 + β0d) (this is for ‖v0‖1� 1 so as A5 � 1) is a small and positive parameter, a solution to (4.9) can be
analyzed by using a perturbation technique. Then the solution is expressed as:

g � g0 + εg1 + ε2g2 + · · · (4.10)

Note that this imposes a condition for β0 given by:

−α0 + β0d ≥ 0 → β0 ≥ α0

d
. (4.11)

After using (4.10) into (4.9), we have

A1(p − 1)(g′
0 + εg′

1 + ε2g′
2 + · · · )p−2(g′′

0 + εg′′
1 + ε2g′′

2 + · · · )
+

A1(d − 1)

η
(g′

0 + εg′
1 + ε2g′

2 + · · · )p−1 − β0η(g′
0 + εg′

1 + ε2g′
2 + · · · )

− ε(g0 + εg1 + ε2g2 + · · · ) − A3(g0 + εg1 + ε2g2 + · · · )2 � 0 (4.12)
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Comparing the coefficient of ε0, we have

A1(p − 1)(g′
0)

p−2g′′
0 +

A1(d − 1)

η
(g′

0)
p−1 − β0ηg

′
0 − A3(g0)

2 � 0 (4.13)

Assuming γ � A3 is a small parameter, a solution to (4.13) can be analyzed again by using a perturbation technique, such that

g0 � g00 + γ g01 + γ 2g02 + · · · (4.14)

After using (4.14) into (4.13), we have

A1(p − 1)(g′
00 + γ g′

01 + γ 2g′
02 + · · · )p−2(g′′

00 + γ g′′
01 + γ 2g′′

02 + · · · )
+

A1(d − 1)

η
(g′

00 + γ g′
01 + γ 2g′

02 + · · · )p−1 − γ0η(g′
00 + γ g′

01 + γ 2g′
02 + · · · )

− γ (g00 + γ g01 + γ 2g02 + · · · )2 � 0 (4.15)

Comparing coefficient of γ 0 and γ 1, we have

A1(p − 1)(g′
00)

p−2g′′
00 +

A1(d − 1)

η
(g′

00)
p−1 − β0ηg

′
00 � 0 (4.16)

and

A1(p − 1)(g′
00)

p−2g′′
01 + A1(p − 1)(p − 2)(g′

00)
p−1g′′

00g
′
01

+
A1(d − 1)(p − 1)

η
(g′

00)
p−2g′

01 − β0ηg
′
01 − (g00)

2 � 0. (4.17)

After solving (4.17), we get

g00 � A12η
p

p−2 , (4.18)

where A12 � β

p−1
p−2

0 (p−2)
2p−3
p−2

A
p−1
p−2

1 (dp+2d�p)
p−1
p−2

, using (4.18) into (4.17), we have

η2g′′
01 +

(
2A1 p2A2

12

(p − 2)2 + 1 − β0(p − 2)p−2

A1A
p−2
12 pp−2

)
ηg′

01 � (p − 2)p−2η
4

p−2

A1A
p−4
12 pp−4

. (4.19)

Here for simplicity we assume p+2
p−2 ∼ 1, because the solution of (4.19) is finally the product of a small parameter γ and does not

impact the solution of (4.9). Hence, the approximate solution of (4.19) is

g01 � A13η
−A14+1 +

(p − 2)p−2η
4

p−2

(16 + 4(A14 − 1)(p − 2))A1A
p−4
12 pp−4

, (4.20)

where A14 � 2A1 p2A2
12

(p−2)2 + 1 − β0(p−2)p−2

A1A
p−2
12 pp−2

. Combining (4.20) and (4.18) with (4.14), we have

g0 � A12η
p

p−2 + γ

(
A13η

−A14+1 +
(p − 2)p−2η

4
p−2

(16 + 4(A14 − 1)(p − 2))A1A
p−4
12 pp−4

)
. (4.21)

Now comparing the coefficients of ε1 and then using (4.21) (also here, we neglect the product terms of ε and γ, as both are small
parameters), we have

η2g′′
1 + A14ηg

′
01 � (p − 2)p−2η

4
p−2

A1A
p−3
12 pp−4

. (4.22)

After solving (4.22), we have

g1 � A13η
−A14+1 +

(p − 2)p−2η
4

p−2

(4 + 2(A14 − 1)(p − 2))A1A
p−3
12 pp−4

. (4.23)

Putting the value of g0 and g1 into (4.10) a solution is finally given by the following expression:

g � A12η
p

p−2 + γ

(
A13η

−A14+1 +
(p − 2)p−2η

4
p−2

(16 + 4(A14 − 1)(p − 2))A1A
p−4
12 pp−4

)

+ ε

(
A13η

−A14+1 +
(p − 2)p−2η

4
p−2

(4 + 2(A14 − 1)(p − 2))A1A
p−3
12 pp−4

)
+ O(γ )2 + O(ε)2.

(4.24)
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Fig. 1 Representation of the
numerical and analytical
solutions. Note that g(η) is the
numerical solution to (4.4) while
gper is a representation of the
expression (4.24). For η > 5.125,
the global, or accumulated
distance, between the numerical
solution and the analytical one is
below 10−2. It should be
remarked that the decreasing order
in the numerical profile is higher
compared to the perturbation
solution. For this reason the
numerical solution is close to zero
compared with the perturbation
one. Although the decreasing
orders are different, the global
error is kept within the mentioned
level. This leads to consider the
adequacy of the perturbation
approach under the fluid
relaxation condition for η � 1

It should be considered that the last solution holds provided the associated constants are determined. This process is strongly
influenced by the dedicated applications. Furthermore, particular value for p should be analyzed based on experimental settings
that are out of the scope of the presented study. Such a kind of experimental work depends on the considered fluid, the particular
geometry and the set of boundary conditions. An example of this approach is given in [1], wherein a power law was obtained as an
alternative to the classical Darcy’s law. In this case a value of p � 5/3 was provided.

4.1 Numerical assessment

In this section, we provide numerical solutions to the Eq. (4.4) in order to validate the perturbation approach followed to obtain the
solution in (4.24), and that will be referred as gper in this section.

The numerical approach introduced is not intended to develop a complete numerical exploration for different values in the
involved constant. In the opinion of the authors, the experimental work should provide firstly particular settings for the modeling
constant. Then, we have preferred to give certain values to such constants and then provide the required evidences to support the
adequacy of the analytical method followed that was based on the introduction of the perturbation parameters. Then, the following
set of values has been considered:

p � 3

2
; A1 � A12 � A13 � A14 � A3 � 1; ε � γ � 0.001; d � 1; b � 0.5. (4.25)

We remark the following ideas as basic principles to execute the numerical analysis:

• The numerical routine has been developed in MATLAB and with the help of the function bvp4c. This function has been built based
on a Runge–Kutta implicit algorithm with interpolant extensions [43]. The bvp4c requires to introduce the boundary conditions
to execute the collocation method at the borders. Consequently, we have introduced the following conditions that preserve the
radial symmetry: g(−∞) � 0 and g(∞) � 0.

• The effect of the collocation method over the integration domain shall be minimized to avoid mishaps in the solutions interpreta-
tions. Then, the domain of integration has been considered as sufficiently large, (−1000, 1000), compared to the region in which
we will focus the solution representations.

• To make the numerical assessment tractable, in what regards with the computational costs, the domain of integration was split in
10000. The accumulated maximum error considered for the simulation was 10−4. With such level of error and discretization, the
problem was simulated with a desktop computer leading to reasonable lead times of the order of several minutes.

• We should recall that the solution obtained, under the perturbation technique, was valid provided that ‖v0‖1� 1 to have A5 � 1
(leading to a small ε-parameter). Then, the initial condition considered was given by the following radially symmetric expression:

v0(η) � Cg e
−η2

, (4.26)

where Cg � 1.

The results are compiled in Figs. 1 and 2. It should be mentioned that both solutions, g as solution to (4.4) and gper as the solution
in (4.24), are asymptotically convergent for η � 1. As pointed in the figure’s footprints, the criteria for asymptotic convergence
between both solutions is given by a global or accumulated distance of ≤ 10−2 firstly and ≤ 10−3 afterward. A minimum value for
η has been determined, such that for any value beyond the minimum, the global distance is kept within the mentioned global errors.
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Fig. 2 Representation of the
numerical and analytical solutions.
Note that g(η) is the numerical
solution to (4.4) while gper is a
representation of the expression
(4.24). For η > 12.258, the global,
or accumulated distance, between
the numerical solution and the
analytical one is below 10−3

5 Main discussion

The intention, in this section, is to introduce a summary, together with some brief discussions, on the obtained results. Firstly, we
should state that the Eq. (1.3), with initial distributions as per (1.7), was not previously reported in the existing literature to our
best knowledge. The introduced p-Laplacian operator has a non-regular diffusivity term, leading to the analysis of weak solutions
departing from the general initial distribution (1.7). As the problem (1.3) was not previously reported, we started our analysis by
the assessments about existence and uniqueness of weak solutions. Previously, Theorem 1 stated the asymptotic convergence of
any weak solution to the fundamental one. This is certainly an interesting result in its own right, as it is the basis to ensure the
asymptotic regularity of weak solutions to (1.3). Once we successfully showed the regularity of weak solutions, we introduced
additional assessments to look for selfsimilar solutions. Actually, and supported by a perturbation approach, we proved that such
kind of solutions existed and that an analytical expression held. The numerical assessments allowed us to corroborate the analytical
approaches followed. Both solutions, the analytical by perturbation approaches and the numerical one, were shown to be sufficiently
close. The global distance between both solutions decreases for increasing values in the selfsimilar variable η, which allowed us to
validate the asymptotic approach presented.

6 Conclusions

In the present analysis, we provided a generalization of a MHD fluid flow raised in porous media. Such a generalization was introduced
based on a nonlinear diffusion (of a p-Laplacian type) and a non-Lipschitz reaction term. To our best knowledge the postulated
problem was not previously reported in the literature, being then one piece of contribution to the analysis of non-Newtonian fluids
in porous media. The introduced analyses were mainly concerned with showing the behavior of weak solutions to the proposed
problem. These contributions can be regarded as the starting points to support other more experimental works (and possibly additional
searches of numerical and analytical solutions). Firstly, we developed the analyses related to regularity, boundedness, existence and
uniqueness of the solutions. Afterward, we explored analytical solutions based on a radially symmetric selfsimilar profile. Such a
profile was obtained analytically making use of a perturbation technique. Eventually, we carried out a numerical validating exercise
to determine the adequacy of the perturbation approach followed to get the analytical solution.
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