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Abstract The investigation in the present work is carried out on the spatially homogeneous and anisotropic axially symmetric
space-time in the presence of two fluids, one being the pressureless matter and other being the different kinds of holographic dark
energy (HDE). Eventually, in the present work, cosmological models with Tsallis HDE, Renyi HDE, Sharma–Mittal HDE by taking
Hubble radius as infrared (IR) cutoff (L � H−1) are obtained. The geometrical and matter parts of space-time are solved within
the Saez–Ballester scalar-tensor theory of gravitation. Interestingly, in this study a time varying deceleration parameter (q) which
exhibits a transition from deceleration to acceleration phase is obtained without assuming any scale factor. In the present work,
the study of cosmic expansion is done through the scalar field (φ) and various cosmological parameters like EoS, deceleration,
statefinder, etc. The EoS parameter exhibits quintom-like behavior for Tsallis HDE model, the transition from matter-dominated
phase to phantom phase for Renyi HDE model, whereas it shows quintessence behavior for Sharma–Mittal HDE. The stability
analysis for three models is studied through the squared speed of sound (v2

s ). For all redshift (z) values v2
s > 0, the Sharma–Mittal

HDE model is stable throughout the universe’s expansion. In this work, the obtained results match with recent observational data.

1 Introduction

At present, the universe is going through a phase of accelerated expansion, and this is suggested by numerous observational data
such as type Ia supernovae [1–4], cosmic microwave background (CMB) anisotropies [5–7], large-scale structure (LSS) [8–11].
This expanding phase of cosmos is due to some mysterious force containing repulsive gravitational effects, referred as dark energy
(DE). This exotic type of fluid consists of positive energy density and negative pressure. There are mainly two ways to study this
mysterious force and cosmic acceleration. To understand this strange component, the first approach is a modification in the geometric
part of the action principle in general relativity (GR), resulting in alternative theories of gravity. The modification in geometric parts
involves some invariants depending on specific features like scalars, torsion, curvature, etc. The different alternative theories of
gravity are scalar-tensor theories like Brans–Dicke theory [12], Saez–Ballester theory [13] and modified theories of gravity like f (R)
[14–16], f (T ) [17–19], f (R, T ) [20] and so on. Another approach is by modifying the matter part of Einstein field equations, which
leads to various dynamical DE models. Besides these various dynamical DE models, the cosmological constant(�) is the simplest
fundamental candidate, but this cosmological constant experiences enormous incidents and fine-tuning problems [21, 22]. Due to
this reason, various dynamical DE models have been proposed like ghost [23], K-essence [24, 25], quintessence [26], phantom [27,
28], Chaplygin gas [29–31], tachyon [84], polytropic gas [33, 34], holographic dark energy models (HDE) [35–39].

The holographic dark energy (HDE) has become an interesting concept in present period as it has some significant features
regarding quantum gravity [35, 40, 41], so it has been proposed as candidate of dark energy (DE) to explain the recent phase
transition of cosmos. The HDE is based on holographic principle (HP) [40], which is originated from the thermodynamics of the
blackhole. The holographic principle is even applied to string theory by Susskind [41]. This principle proposes that the degrees of
freedom of entropy of a system depends on its bounding area but not on its volume. The formation of blackholes gives a limit as
it gives a relation between ultraviolet cutoff (short-distance cutoff �) and the infrared cutoff (long-distance cutoff L). The energy
density related to HDE [42] is given as

ρde � 3c2m2
pL

−2,

in the above equation, the reduced Planck mass and infrared (IR) cut-off were denoted as mp, L , respectively, and the numerical
parameter as c. The HDE is inversely proportional to the square of infrared cutoff, so due to this fact, the horizon is taken in the
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form of Hubble horizon (H−1), event horizon, particle horizon, conformal universe age, Ricci scalar radius, Grand-Oliveros cutoff.
Hence, horizon entropy is treated as the backbone of HDE.

Li [35] has shown that Hubble horizons and particle horizons are not in good agreement with the cosmos while the future event
horizon is the best model for non-interacting holographic DE with suitable constant c. The Hubble horizon is a natural candidate
for IR cut-off which is also free from causality, but Hsu [43] found that it gives wrong equation of state (EoS) of DE. Later on,
it was shown [36] that if there is an interaction between two dark components of the cosmos the identification of L with Hubble
horizon, L � H−1, may give suitable EoS of DE. It has also been shown that it necessarily implies a constant ratio of the energy
densities of the two components regardless of the details of the interaction. Thus, the HDE models may also alleviate the cosmic
coincidence problem which provides an advantage to HDE models over the other DE models. These HDE models with various
infrared cutoffs prove that the value of transition redshift from early deceleration phase (q > 0) to current acceleration phase (q < 0)
is in agreement with modern observational [44–51]. Shanthi and Sobhan babu [52, 53] have investigated the Tsallis holographic dark
energy (considering IR cut-off as Hubble radius, i.e., L � H−1) in homogeneous and anisotropic Kantowski–Sachs and Bianchi
type-III cosmological models within the frame-work of Saez–Ballester scalar tensor theory of gravitation

As gravity is a long-range interaction, generalized statistical mechanics can be used to investigate gravitational systems. According
to this, the Bekenstein entropy can be determined by applying Tsallis statistics to the system [54–56]. Based on this recently, three
new HDE models have been proposed, titled Tsallis holographic dark energy (THDE) [57, 58], Renyi holographic dark energy
(RHDE) [59] and Sharma–Mittal holographic dark energy (SMHDE) [60]. The late-time accelerated universe can be described by
these three models with Bekenstein entropy. In non-interacting universe, Tsallis HDE is never stable [57, 58] at the classical level,
Renyi HDE shows more stability by itself [59], Sharma HDE is stable at the classical level [60]. Aditya et al. [61] worked on Tsallis
HDE in logarithmic Brans–Dicke theory using flat FRW universe. Aditya and Prasanthi [62, 63] worked on the Renyi HDE model
in general relativity using Bianchi-V I0 and Kantowski–Sachs space-time.

Several authors worked on these three newly proposed HDE models using different theories in a flat FRW universe. A few of
them are Younas et al. [64], who have studied Tsallis, Renyi, Sharma–Mittal entropies in flat FRW universe using Chern–Simons
gravity. Maity and Debnath [65] worked on D-dimensional fractal universe discussing these three HDE models. Iqbal and Jawad
[66] studied these three HDE models in a flat FRW universe within the frame of DGP braneworld. Jawad et al. [67] have investigated
Tsallis, Renyi, Sharma–Mittal HDE models in loop quantum cosmology. All these works are carried on homogeneous and isotropic
FRW universe. The observations from CMBR [68] have revealed the existence of transition from the anisotropic phase of the
universe to the isotropic phase. So to represent the early phase of cosmos, only the isotropic model cannot express the early stage of
cosmos; to overcome this, it is always suggestible to study anisotropic and spatially homogeneous space-time [69]. So due to this
cause, the interest in anisotropic and spatially homogeneous space-times has been increased over the last few decades in theoretical
cosmology. With these exciting aspects in the present-day universe, we consider spatially homogeneous and anisotropic axially
symmetric space-time in the present paper.

As Einstein’s theory of general relativity does not seem to resolve some of the important problems in cosmology such as dark
matter or the missing matter problem there has been considerable interest in alternative theories of gravitation. The most important
among them are scalar-tensor theories proposed by Brans–Dicke, Saez–Ballester and so on. The Saez–Ballester scalar-tensor theory
of gravitation was developed by Saez and Ballester [13] in 1986. In this scalar-tensor theory, the metric potentials are coupled with
dimensionless scalar field φ. Here, the dimensionless coupling constant w governs the strength of coupling between gravity and
field further the missing matter problem in non-flat FRW cosmologies can be solved using this theory.

The action principle for this scalar-tensor theory is expressed as

A �
∫
R

(L + χLm)
√−gdx1dx2dx3dx4,

With a slight variation to this A (action principle) so that the metric and scalar field vanishes at the boundary region R. Hence, the
action principle gives rise to field equations of this scalar-tensor theory as

Ri j − 1

2
Rgi j − wφn

(
φ,iφ, j − 1

2
gi jφ,kφ

,k
)

� −8πGTi j , (1)

In the above equation (1), w is the dimensionless constant, Ti j is energy momentum tensor, n is the arbitrary dimensionless constant,
G is gravitational constant (8πG � 1) and φ is the scalar field satisfying the following equation

2φnφ
,i
;i + nφn−1φ,kφ

,k � 0, (2)

here, in equation (2) the partial and covariant differentiation are denoted by comma (,) and semi-colon (;), respectively. The energy
conservation equation is given by

T i j
; j � 0 (3)

Many researchers like Ramesh et al. [70], Rao et al. [71], Rasouli et al. [72], Sharma et al. [73], have worked with different
cosmological models using this scalar-tensor theory. Mishra et al. [74–76] worked on this theory using time-varying deceleration
parameter (DP), cosmological and gravitational constants (�,G) and bilinear varying deceleration parameter (DP). Rasouli et al.
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[77] have discussed the cosmic acceleration for the future time by considering two scalar fields, the first scalar representing the
Saez–Ballester theory and the second one having an extra dimension. Also, few works can be found in [78–83].

The HDE model is the first theoretical model of DE inspired by the HP, and it agrees well with current cosmological evidence.
As a result, HDE is a really attractive option for DE. Moreover, the HDE hypothesis has received a lot of interest and has been
intensively investigated in the last few years. These are as follows

1. The features of HDE are addressed in several modified gravity theories, including the scalar-tensor theories like Brans–Dicke
theory, Saez–Ballester theory, and DGP brane-world theories, which can be found in the works [71, 84–87].

2. The HDE is employed in the reconstruction of various scalar-field DE and modified gravity models.
The Saez–Ballester theory provides a dynamical framework that is more suitable to study HDE models as HDE belongs to

the family of dynamical DE candidates. Setare [84] discussed the holographic dark energy model in the Brans–Dicke theory. The
cosmological dynamics of the interacting holographic dark energy model are obtained by Setare and Vanegas [88]. Aditya and
Reddy discussed FRW type kaluza–klein modified holographic Ricci dark energy models in Brans–Dicke theory of gravitation [89].

Hence, by the motivation of these works we have discussed Tsallis, Renyi, Sharma–Mittal HDE models in axially symmetric
space-time using Saez–Ballester scalar-tensor theory of gravitation in the present work. The plan of this paper is as follows metric,
and its field equations are discussed in Sect. 2, and the solutions of the field equations are obtained in Sect. 3. The behavior of
cosmological parameters along with graphical representation is discussed in Sect. 4, and finally, the conclusions are discussed in
Sect. 5.

2 Metric and field equations

The homogeneous and anisotropic axially symmetric space-time proposed by Bhattacharaya and Karade [90] is given by

ds2 � dt2 − A2(t)
[
dχ2 + f 2(χ)dφ2] − B2(t)dz2, (4)

where χ, φ, z are comoving coordinates, A, B are functions of cosmic time t and f is a function of coordinate χ alone.
The Saez–Ballester field equations for combined matter and dark energy (DE) are given as

Ri j − 1

2
Rgi j − wφn

(
φ,iφ, j − 1

2
gi jφ,kφ

,k
)

� −(Ti j + T i j ) (5)

The conservation equation for energy momentum tensor is given by
(
Ti j + T i j

)
; j � 0 (6)

In equation (5), Ti j is energy momentum tensor for pressureless matter and T i j is HDE which are given as

Ti j � ρmuiu j (7)

T i j � (ρde + pde)uiu j − pdegi j (8)

where ρm is energy density of matter, pde and ρde are the pressure and energy density of HDE, respectively, ui is the four-velocity
vector component of fluid satisfying ui � (0, 0, 0, 1). As the equation of state (EoS) parameter is defined as ωde � pde

ρde
, equations

(7) and (8) become

Ti j � diag[0, 0, 0, ρm] (9)

T i j � diag[−ωdeρde,−ωdeρde,−ωdeρde, ρde]

and after parametrization it reduces to

T i j � diag
[−ωdeρde,−ωdeρde,−(ωde + γ )ρde, ρde

]
(10)

here, the skewness parameter γ is the deviation from EoS parameter (ωde) on z-direction.
The field equations (5), (2) for the metric (4) are as follows

Ä

A
+

Ȧ Ḃ

AB
+
B̈

B
− wφnφ̇2

2
� − ωdeρde (11)

Ȧ2

A2 +
2 Ä

A
− f

′′

A2 f
− wφnφ̇2

2
� − ωdeρde − γρde (12)

Ȧ2

A2 +
2 Ȧ Ḃ

AB
− f

′′

A2 f
+

wφnφ̇2

2
�ρde + ρm (13)
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φ̈ + φ̇

(
2 Ȧ

A
+
Ḃ

B

)
+
n

.

φ2

2φ
� 0 (14)

The functional dependence of the given line element with the help of (12) and (13) gives the relation

f
′′

f
� k2

1, k2
1 � const (15)

If k1 � 0, then

f (χ) � (const)χ, 0 < lt ; χ <lt ; ∞
For suitable choice of units for φ, the constant can be equal to unity. This leads to f (χ) � χ resulting in a flat model of the

universe [91].

3 Solutions of field equations

With the help of equation (15), equations (11)-(14) reduce to

Ä

A
+

Ȧ Ḃ

AB
+
B̈

B
− wφnφ̇2

2
� − ωdeρde (16)

Ȧ2

A2 +
2 Ä

A
− wφnφ̇2

2
� − ωdeρde − γρde (17)

Ȧ2

A2 +
2 Ȧ Ḃ

AB
+

wφnφ̇2

2
�ρde + ρm (18)

φ̈ + φ̇

(
2 Ȧ

A
+
Ḃ

B

)
+
nφ̇2

2φ
� 0 (19)

The energy conservation equation (Ti j + T i j ); j � 0 is obtained as

ρ̇m + ρ̇de + (ρm + ρde + ρdeωde)

(
2 Ȧ

A
+
Ḃ

B

)
+ γρde

Ḃ

B
� 0 (20)

Here, we assume there is no energy transfer between dark matter and dark energy, so the above equation reduces into two separate
conservation equations as

ρ̇m + ρm

(
2 Ȧ

A
+
Ḃ

B

)
� 0 (21)

ρ̇de + (ρde + ρdeωde)

(
2 Ȧ

A
+
Ḃ

B

)
+ γρde

Ḃ

B
� 0 (22)

The obtained four field equations (16)-(19) contain six unknowns namely A, B, φ, ωde, ρm, γ , so in order to solve these unknowns
we assume the following two physical valid conditions.

Here, we assume the power law relationship between metric potentials by using the condition σ ∝ θ (shear scalar (σ ), expansion
scalar (θ )), which is considered as,

A � Bl (23)

here, l is a positive constant that preserves the anisotropy of the model for l �� 1 and for l � 1, the model leads to a isotropic
model. The physical importance for considering this relation is given by Thorne [92], and from the velocity-redshift observations
for extragalactic sources advice that Hubble expansion of cosmos is isotropic for present time with the range ≈ 33% [93, 94]. These
observations suggest that the cosmos attains isotropy for σ

H ≤ 0.3. Further, the valid physical assumption was given by Collins [95]
for the case of perfect fluids and barotropic EoS. Many authors have derived the solutions by using this condition few of them are
Aditya et al. [62, 96], Mishra and Sahoo [97].

From equations (16), (17) and (23), we obtain

B̈

Ḃ
+ 2l

Ḃ

B
� B

Ḃ

γρde

(1 − l)
(24)
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As in recent times, it has been a quite interesting part in finding the general and explicit solutions of the derived equations, so the
skewness parameter is assumed in terms of energy density of dark energy (DE). The relation among skewness parameter (γ ) and
energy density of DE (ρde) was considered by Akarsu et al. [98], in the process of solving anisotropic DE models with LRS Bianchi
type-I universe. Now, in order to solve equation (24) we consider a relationship between skewness parameter (γ ) and energy density
(ρde) of DE as

γ � Ḃ

B

(1 − l)γ1

ρde
, (25)

where γ1 is an arbitrary constant. Various authors have worked with this assumption [99, 100]; alternatively, in the literatures [96,
101] the authors have studied this assumption in the study of anisotropic DE models in various theories of gravitation. Now, on
solving equation (24) with the help of (25), we obtain the metric coefficients

A �
(
c1(2l + 1)

exp(γ1t)

γ1
+ c2(2l + 1)

) l
(2l+1)

(26)

B �
(
c1(2l + 1)

exp(γ1t)

γ1
+ c2(2l + 1)

) 1
(2l+1)

(27)

and using the values of A, B in (19) we obtain Saez–Ballester scalar field φ as

φ �
(

2 + n

2

) 2
2+n

(
γ1c3t − c3log(c1exp(γ1t) + γ1c2)

γ1c2 + 2γ1c2l

) 2
2+n

(28)

In above equations (26), (27), (28), c1, c2, c3 are integrating constants and by substituting the values of A, B in (4) the line-element
becomes

ds2 � dt2 −
(
c1(2l + 1)

exp(γ1t)

γ1
+ c2(2l + 1)

) 2l
(2l+1) [

dχ2 + f 2(χ)dφ2]

−
(
c1(2l + 1)

exp(γ1t)

γ1
+ c2(2l + 1)

) 2
(2l+1)

dz2

4 Tsallis holographic dark energy

The energy density (ρde) for Tsallis HDE [57] is defined as

ρde � αL2δ−4 (29)

where α is a unknown parameter, L is infrared (IR) cutoff. Here, we assume Hubble horizon as IR cutoff, so we have L � H−1.
From this, energy density of THDE becomes

ρde � αH4−2δ (30)

H is the Hubble parameter and its value for the present model is obtained as

H � 1

3

(
2 Ȧ

A
+
Ḃ

B

)
� c1γ1exp(γ1t)

(3c1exp(γ1t) + 3c2γ1)
(31)

By substituting equation (31) in (30), we obtain the energy density (ρde) for Tsallis HDE as

ρde � α9δc4
1γ

4
1 exp(4γ1t)(

c1γ1exp(γ1t)
(c1exp(γ1t)+c2γ1) )−2δ

81(c1exp(γ1t) + c2γ1)4 (32)

Now, from equations (18), (25) with the help of equation (32) we obtain the values of ρm, γ

ρm � −1

81(l + 1
2 )2(c1exp(γ1t) + c2γ1)4

(
γ 2

1

(
c4

1exp(4γ1t)
(
αγ 2

1 9δ(l +
1

2
)2(

c1γ1exp(γ1t)

(c1exp(γ1t) + c2γ1)
)(−2δ) − 81l2

4
− 81l

2

)

− 81c2
1(c2

2l(l + 2)γ 2
1 +

wc2
3

2 )exp(2γ1t)

4
− 81c2γ1(c3

1l(l + 2)exp(3γ1t) +
wc2

3(c1exp(γ1t)+
c2γ1

2 )
2 )

2

))

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(33)

γ � −819−δ(−1 + l)exp(−3γ1t)(c1exp(γ1t) + c2γ1)3( c1γ1exp(γ1t)
(c1exp(γ1t)+c2γ1) )2δ

αγ 2
1 c

3
1(2l + 1)

(34)
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Fig. 1 Plot of scalar field (φ)
versus redshift (z) for
n � 0.01, l � 0.325, γ1 � 0.12

Fig. 2 Plot of energy density
(ρde) versus redshift (z) for THDE
model

Fig. 3 Plot of energy density of
matter (ρm ) versus redshift (z)

In order to study the behavior of energy densities ρm , ρde, skewness parameter (γ ) of Tsallis, Renyi, Sharma–Mittal HDE models,
we plot them (ρm , ρde, γ ) with respect to redshift (z) (redshift is defined as 1 + z � a0

a(t) ; we assume a0 � 1).
From Fig. 1, it is observed that the scalar field (φ) is positive throughout the evolution of cosmos and increases as redshift (z)

decreases. The plots of energy density (ρde) of THDE and energy density for pressureless matter with respect to redshift (z) for two
different values of δ � 0.89, 1.2 are given in Figs. 2, 3. It is observed that for both the values of δ the energy density (ρde) of THDE
and pressureless matter (ρm) are positive throughout the evolution of cosmos and decreases as redshift (z) decreases.

The skewness parameter (γ ) corresponding to redshift (z) for δ � 0.89, 1.2 is shown in Fig. 4. For both the values of δ, the
skewness parameter is positive throughout the evolution of cosmos and increases as redshift (z) decreases.
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Fig. 4 Plot of skewness parameter
(γ ) versus redshift (z)

5 Renyi holographic dark energy

The energy density for Renyi HDE [59] is defined as

ρde � 3c2

8πL2(1 + δπL2)
, (35)

where c, δ are constants, and IR cutoff is considered as Hubble radius (i. e. L � H−1). Hence, the energy density for Renyi HDE
is given as

ρde � 3c2H2

8π
(

1 + δπ
H2

) (36)

Now, using equation (31) in (36), we obtain the energy density (ρde) for Renyi HDE as

ρde � c2c4
1γ

4
1 exp(4γ1t)

24π (c1exp(γ1t) + c2γ1)2(18πc2γ1δc1exp(γ1t) + 9πc2
2γ

2
1 δ + 9c2

1exp(2γ1t)πδ + c2
1exp(2γ1t)γ 2

1 )
(37)

From equations (18) and (25) with the help of (37) we obtain the expressions for ρm, γ as

ρm � ι1

ι2
(38)

γ � 1

c3
1(2l + 1)c2γ 2

1

− 216π (−1 + l)exp(−3γ1t)(c1exp(γ1t) + c2γ1)

(
c2

1exp(2γ1t)

(
δπ +

γ 2
1

9

)

+ 2γ1δπc2(c1exp(γ1t) +
c2γ1

2
)

)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(39)

where

ι1 � −γ 2
1

(
c4

1exp(4γ1t)

(
γ 2

1 (π (−6l2 − 12l) +

(
l +

1

2

)2

c2) − 54π2δl(l + 2)

)
− 54π

(
c2

1exp(2γ1t)

(
γ 2

1

(
lc2

2δ(l + 2)π +
wc2

3

18

)
+

wπc2
3δ

2

)
+

πδγ1c2(4c3
1l(l + 2)exp(3γ1t) + wc2

3(c2γ1 + 2c1exp(γ1t)))

2

))

ι2 � 24π

(
l +

1

2

)2(
c2

1exp(2γ1t)(9πδ + γ 2
1 ) + 9γ1πc2δ(c2γ1 + 2c1exp(γ1t))

)
(c1exp(γ1t) + c2)2

For RHDE model, the energy density (ρde), energy density of pressureless matter corresponding to redshift (z) is shown in Figs. 5,
6. It is observed that both ρde, ρm are positive throughout the evolution of cosmos and decreases as redshift (z) decreases for both
the values of δ � 0.89, 1.2. Similarly, the positive value of skewness parameter with respect to redshift (z) for δ � 0.89, 1.2 is
observed in Fig. 7.
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Fig. 5 Plot of energy density
(ρde) versus redshift (z) for
RHDE model

Fig. 6 Plot of energy density of
matter (ρm ) versus redshift (z)

Fig. 7 Plot of skewness parameter
(γ ) versus redshift (z)

6 Sharma–Mittal holographic dark energy

The energy density (ρde) for Sharma–Mittal HDE [102] is defined as

ρde �
3c2

(
(1 + δπL2)

R
δ − 1

)

8πRL4 (40)

where R, δ are two constants, L is the IR cutoff. By considering IR cutoff as Hubble horizon cutoff L � H−1, the energy density
of Sharma–Mittal HDE becomes

ρde �
3c2H4

(
(1 + δπ

H2 )
R
δ − 1

)

8πR
(41)
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Fig. 8 Plot of energy density
(ρde) versus redshift (z) for SHDE
model

Fig. 9 Plot of energy density of
matter (ρm ) versus redshift (z)

By substituting equation (31) in (41), we obtain the energy density of Sharma–Mittal HDE as

ρde � c2c4
1γ

4
1 (ι7 − 1)exp(4γ1t)

216(c1exp(γ1t) + c2γ1)4πR
(42)

Now, from Eqs. (18) and (25) with the help of (42) we obtain the expressions for ρm, γ as

ρm � −1

216Rπ (l + 1
2 )2(c1exp(γ1t) + c2γ1)4

(
− 54

(
c2

2γ
2
1 l(l + 2) +

wc2
3

2

)
Rc2

1πexp(2γ1t)

+ c4
1exp(4γ1t)

(
(ι7 − 1)

(
l +

1

2

)2

c2γ 2
1 − 54πRl(l + 2)

)
− 27(4c3

1l(l + 2)exp(3γ1t)

+ wc2
3(c2γ1 + 2c1exp(γ1t)))c2Rπγ1

)
γ 2

1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(43)

γ � −216πR(−1 + l)exp(−3γ1t)(c1exp(γ1t) + c2γ1)3

c2γ 2
1 c

3
1(2l + 1)(ι7 − 1)

}
(44)

The energy density (ρde) of Sharma–Mittal HDE, energy density of pressureless matter for δ � 0.89, 1.2 corresponding to
redshift (z) are shown in Figs. 8, 9. From graphs, it can be observed that for both values of δ � 0.89, 1.2 energy densities are positive
throughout the evolution of cosmos and decreases as redshift (z) decreases. The skewness parameter with respect to redshift is shown
in Fig. 10, and it is observed that it is positive throughout the evolution of cosmos and increases as redshift (z) decreases.

7 Cosmological parameters

Here, we discuss both physical and geometrical aspects such as volume (V ), Hubble parameter (H), expansion scalar (θ ), EoS
parameter (ωde), deceleration parameter (q), statefinder parameters {r, s}, squared speed of sound (v2

s ).
The average scale factor of the present model is obtained as
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Fig. 10 Plot of skewness
parameter (γ ) versus redshift (z)

Fig. 11 Plot of volume (V ) versus
redshift (z)

a(t) � (A2B)
1
3 �

(
(2l + 1)(c1exp(γ1t) + c2γ1)

γ1

)1/3

The volume (V ) of the present model is obtained as

V � (2l + 1)(c1exp(γ1t) + c2γ1)

γ1

The volume (V ) corresponding to redshift (z) is shown in Fig. 11. It is observed that volume is positive throughout the evolution
of cosmos and increases as the redshift (z) decreases. These observations confirm the fact that the universe is expanding in an
accelerating way, that is as the volume increases, the energy density decreases for the obtained model.

The Hubble parameter (H) of the present model is obtained as

H � c1γ1exp(γ1t)

(3c1exp(γ1t) + 3c2γ1)

The expansion scalar for the present model is obtained as

θ � 3H � c1γ1exp(γ1t)

(c1exp(γ1t) + c2γ1)

8 EoS parameter

For � cold dark matter (CDM) model, the state of dark energy remains constant. For describing dark energy, an important model
associated with it is equation of state (EoS) parameter, which is defined in terms of pressure (pde) and energy density (ρde) and
denoted as ωde. Nowadays, to explain dark energy models, different equations of state (EoS) parameters came into existence, whose
value needs not be a constant. Quintessence (−1 < ωde < −−1

3 ) model of dark energy, phantom model of dark energy (ωde < −1),
vacuum era (ωde � −1) and quintom like behavior (combination of quintessence and phantom regions).
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Fig. 12 Plot of EoS parameter
(ωde) of THDE versus redshift (z)

Fig. 13 Plot of EoS parameter
(ωde) of RHDE versus redshift (z)

The EoS parameter for Tsallis HDE model is obtained by solving equation (22), with the help of equations (26), (27), (32), (34).

ωde � −1
αc3

1γ 2
1 (2l+1)2(c1exp(γ1t)+c2γ1)

(4exp(−γ1t)

(−819−δ(−1+l)(3H )2δexp(−2γ1t)(c1exp(γ1t)+c2γ1)4

4

+α
(((

exp(2γ1t)c2
1 − 2(c1

(
δ − 5

2

)
exp(γ1t) + c2γ1(−2 + δ)

)
γ1c2

)(
l + 1

2

)2
c2

1γ
2
1

))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(45)

Similarly, the EoS parameter (ωde) for Renyi, Sharma–Mittal HDE models is obtained by solving equation (22), with the help of
equations (26), (27), (37), (39), (42), (44).

ωde � −1 − ι3 − ι4 (46)

ωde � −1 − ι5 − ι6 (47)

The values ι3, ι4, ι5, ι6 are given in the appendix section.
The EoS parameter (ωde) for Tsallis, Renyi, Sharma–Mittal HDE models with respect to redshift (z) for two values of δ � 0.89, 1.2

is shown in Figs. 12, 13, 14, respectively. From Fig. 12, it is observed that for δ � 0.89 the ωde exhibits phantom phase and for
δ � 1.2 the ωde starts from quintessence phase and reaches to phantom phase crossing phantom divide line (ωde � −1) (that is it
shows quintom like behavior). The EoS parameter for Renyi HDE shows transition from decelerating phase to accelerating phase
for both the values of δ � 0.89, 1.2 at z � 0.67, z � 0.72, respectively. And the model starts from matter dominated phase and
exhibits quintom like behavior for both the values of δ � 0.89, 1.2 is shown in Fig. 13. The EoS parameter for Sharma–Mittal HDE
for both the values of δ � 0.89, 1.2 shows transition from decelerating phase to accelerating phase at z � 0.475, and model enters
into quintessence phase from matter dominated phase is shown in Fig. 14.
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Fig. 14 Plot of EoS parameter
(ωde) of SHDE versus redshift (z)

Fig. 15 Plot of deceleration
parameter (q) versus redshift (z)

9 Deceleration parameter

The evolution of the cosmos can be described by the deceleration parameter (q). Based on the deceleration parameter, we can test
whether our model is accelerating or decelerating. It is defined as

q � −aä

ȧ2 (48)

here, a is the scale factor, if q > 0, the model decelerates; if −1 < q < 0, the model accelerates, if q � 0 a stable rate in expansion
will be observed. Further, if q � −1, the universe shows de Sitter or exponential expansion; if q < −1, the universe shows super
exponential expansion. The value of q for our model is obtained as

q � −exp(−γ1t)(c1exp(γ1t) + 3c2γ1)

c1
(49)

According to observations from high redshift supernova, type Ia supernova combined with BAO and CMB observations investigated
that present-day universe is undergoing a phase of transition from deceleration to acceleration.

The plot of deceleration parameter (q) with respect to redshift (z) for c1 � 0.265, c2 � −1.25, γ1 � 0.12 is shown in Fig. 15. It is
observed that in the present model, the transition of universe occurs at zt � 0.6 for q � 0. This zt � 0.6 matches with observations
obtained by various theoretical values by Busca [103] zt � 0.82 ± 0.08, Capozziello et al. [104], zt � 0.7679+0.1831−0.1829, Yang and
Gong [105] zt � 0.60+0.21−0.12, Lu et al. [106] zt � 0.69+0.23−0.12. In the present model, the decelerating phase is observed for q > 0,
accelerating phase is observed for q < 0. The present value of the deceleration parameter is obtained as q � −0.6758.

10 Stability analysis

In this section, the stability analysis of Tsallis, Renyi and Sharma–Mittal HDE models is verified through an important quantity
namely squared speed of sound (v2

s ). The value of v2
s is identified as

v2
s � ṗde

ρ̇de
� ωde +

ρde

ρ̇de
ω̇de (50)
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Fig. 16 Plot of squared speed of
sound (v2

s ) of THDE versus
redshift (z)

Fig. 17 Plot of squared speed of
sound (v2

s ) of RHDE versus
redshift (z)

Fig. 18 Plot of squared speed of
sound (v2

s ) of SHDE versus
redshift (z)

The stability of the model is described depending on the signature of v2
s . The model is said to be stable if v2

s is positive, whereas it
is unstable if v2

s is negative. The squared speed of sound v2
s value for the three models is given in the appendix section.

The behavior of v2
s for all the three models corresponding to redshift (z) is shown in Figs. 16, 17, 18, respectively. For both the

values of δ � 0.89, 1.2 in Tsallis HDE model the v2
s < 0 which indicates unstable behavior of the model, whereas in Renyi HDE

model for δ � 0.89 it is observed that v2
s > 0 in early-times and at present (z � 0) which indicates stable behavior of the model,

v2
s < 0 for late-times which indicates unstability. For δ � 1.2 in Renyi HDE v2

s > 0 in early-times indicating stable behavior of
model, v2

s < 0 at present (z−0), late-times indicating unstable behavior model of the universe. Sharma–Mittal HDE model exhibits
stable behavior throughout for both the values of δ � 0.89, 1.2 as v2

s > 0.
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Fig. 19 Plot of r versus s

11 Statefinder parameters

The expansion of the present-day cosmos in an accelerating way is being illustrated by much dark energy (DE) models. Many dark
energy models have been constructed to overcome the fine-tuning issue and analyze the cosmos accelerating phase. A cosmological
diagnostic pair (r, s) known as statefinder parameter to discuss these various forms of dark energy models was proposed by Shani
et al. [107], Alam et al. [108]which is defined as

r �
...
aa2

ȧ3 , s � r − 1

3
(
q − 1

2

) (51)

here, q is the deceleration parameter, a is the scale factor, and H is the Hubble parameter. The study of dark energy in (r, s)
parameter is being independent of the model, instead of depending on the theory of gravity. Hence, the statefinder is referred to
as a ’geometric’ tool as it depends on the scale and the metric describing space-time. This geometric tool is analyzed for various
dark energy candidates, including holographic dark energy, agegraphic dark energy, quintessence, Chaplygin gas, etc. The values
of these parameters obtained for our model are as follows

r � (exp(2γ1t)c2
1 + 9c2

2γ
2
1 )exp(−2γ1t)

c2
1

(52)

s � −2c2
2γ

2
1 (c3

2γ
3
1 exp(−γ1t) + c3

1exp(2γ1t) + 3γ1c2
1c2exp(γ1t) + 3γ 2

1 c1c2
2)

c1(c1exp(γ1t) + c2γ1)3(c1exp(γ1t) + 2c2γ1)
(53)

The graphical representation of statefider parameter (r, s) is shown in Fig. 19. For all values of r, we have s < 0 which indicates
the present model is exhibiting Chaplygin gas and at late-times it reaches to �CDM model (r � 1, s � 0).

12 Analysis of solution through perturbation techniques

The solutions of the present model are verified through perturbation technique. This process is carried by many researchers like,
Chen and Kao [109] who have studied the perturbations in anisotropic space-time in a detailed manner, in f (R, T ) theory this analysis
is done by Sharif and Zubair [110]. Sahoo et al. [111], Saha et al. [112], Sharma et al. [113], have studied perturbation techniques
in both isotropic and anisotropic models for obtaining desired results. For the three expansion factors ai the perturbations of metric
are given as

ai → aBi + δai � aBi (1 + δbi ) (54)

Corresponding to the above equation the perturbations expression in terms of volume (VB � �3
i�1ai ), directional Hubble parameter

(θi � ȧi
a ), mean Hubble parameter (θ � ∑3

i�1
θi
3 ) is given as

V → VB + VB

∑
i
δbi

θi → θBi +
∑

i
δbi
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Fig. 20 Plot of actual fluctuations
(δai ) versus redshift (z)

θ → θB +
1

3

∑
i
δbi

The linear order perturbations δbi of the metric perturbations satisfy the following conditions∑
i

δb̈i + 2
∑

θBi δḃi � 0 (55)

δb̈i +
V̇B

VB
δḃi +

∑
δḃ jθBi � 0 (56)

∑
δḃi � 0 (57)

By solving these three equations (55)-(57), we obtain

δb̈i +
V̇B

VB
δḃi � 0 (58)

Here, in equation (58) VB is volume, for present model VB is given as

VB � (2l + 1)(c1exp(γ1t) + c2γ 1)

γ1
(59)

with the help of equation (59) in (58) and on integrating, we obtain

δbi � d1(γ1t − ln(c1exp(γ1t) + c2γ1))

c2γ1(2l + 1)
+ d2 (60)

where d1, d2 are integrating constants. By substituting equation (60) in (54) we obtain the actual fluctuations δai � aBi δbi as

δai � γ1

(2l + 1)(c1exp(γ1t) + c2γ1)

(
d1(γ1t − ln(c1exp(γ1t) + c2γ1))

c2γ1(2l + 1)
+ d2

)
(61)

Figure 20 shows that the actual fluctuations (δai ) are plotted against redshift (z). The δai initially starts with small positive value
and later approaches to zero value, which indicates the background solution is stable corresponding to perturbations of gravitational
field.

13 Conclusions

The scalar fields in the universe produce long-range forces. Due to this reason, the scalar-tensor theories are fundamental in various
disciplines in cosmology and gravitational physics. The dark matter or missing matter issue in cosmology is not discussed in
Einstein’s general theory of relativity. But an alternative to Einstein’s theory, scalar-tensor theories can discuss these problems.
These dimensionless scalar field models have been studied by several authors. Due to these interesting aspects in the present work,
we have worked with the Saez–Ballester scalar-tensor theory of gravitation. Here, we studied the homogeneous and anisotropic
axially symmetric metric. The field equations of this space-time are obtained using Saez–Ballester theory by considering the two
fluids, one being pressureless matter and the second being HDE (Tsallis, Renyi, Sharma–Mittal models). Moreover, in the study of
these three Tsallis, Renyi, Sharma–Mittal HDE models, we constructed different cosmological parameters along with their graphical
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representation such as deceleration parameter, EoS parameter, squared speed of sound (v2
s ), statefinder parameters (r, s) for two

different values of δ � 0.89, 1.2 and observed the following.
∗ The graphical behavior of scalar field (φ) with respect to redshift (z) is shown in Fig. 1 and it is observed that scalar field (φ) is

positive throughout the evolution of cosmos and it increases as redshift (z) decreases. From the behavior of this plot along with the
plots of matter energy density, energy density of Tsallis HDE, Renyi HDE, and Sharma–Mittal HDE, it is observed that there is a
clear contribution from the scalar field and the HDE to the cosmic expansion. Because as the scalar field increases, the dominance of
matter energy density ρm , the energy density ρde of Tsallis, Renyi, Sharma–Mittal HDE is delayed considerably and both the energy
densities were positive throughout the evolution of cosmos and decreases as redshift (z) decreases, which shows the expansion of
cosmos.

∗ For the obtained three models, the energy density (ρm) of pressureless matter and energy density (ρde) of Tsallis, Renyi,
Sharma–Mittal HDE models are positive throughout the evolution of cosmos and decreases as redshift (z) decreases for both values
of δ � 0.89, 1.2 which is shown in Figs. 2, 3, 5, 6 and 8, 9.

∗ The skewness parameters (γ ) for all the three Tsallis, Renyi, Sharma–Mittal HDE models are positive throughout the evolution
of cosmos and increases as redshift (z) decreases. In Figs. 4, 7 and 10, the behavior of the skewness parameter with respect to redshift
(z) is plotted.

∗ From Fig. 11, it is observed that volume is positive throughout the evolution of cosmos and increases as redshift (z) decreases
this indicates that the present universe is expanding in an accelerating way.

∗ The deceleration parameter (q) in the present work shows the transition from decelerating phase to the accelerating phase,
which agrees with recent observational data. The transition (zt ) observed is zt � 0.6, and the present value of the deceleration
parameter is q � −0.6758, and it is in the acceptable range.

∗ In modern cosmology, the EoS parameter plays an important role as it controls the gravitational properties of DE and its
evolution. The EoS parameter (ωde) of Tsallis HDE model for δ � 0.89 exhibits phantom behavior (ωde < −1), and for δ � 1.2
it exhibits quintom like behavior (i.e., ωde starts from quintessence phase, passes through phantom divide line (ωde � −1) and
reaches the phantom phase ) which represents the accelerating expansion of universe.

∗ In the case of the RHDE model, the EoS parameter (ωde) for the values of δ � 0.89, 1.2 shows the transition from decelerating
phase to accelerating phase at z � 0.67, 0.72, respectively, and the model starts from matter-dominated phase exhibiting quintom
like behavior. In Sharma–Mittal HDE, the EoS parameter for the values of δ � 0.89, 1.2 shows the transition from decelerating
phase to accelerating phase at z � 0.475. It enters into the quintessence phase from the matter-dominated phase, representing the
universe’s accelerating expansion. The EoS parameter ωde for the three HDE models in the present work meets the range ωde �
−1.13+0.24

−0.25 [114](Planck+nine years WMAP), SNe Ia data with galaxy clustering, CMBR anisotropy statistics −1.33 < ωde <

−0.79 and −1.67 < ωde < −0.62 [115], respectively, and present Planck collaboration data (2018) [116] gives the range of EoS
as ωde � −1.028 ± 0.031 (68%, Planck TT, TE, EE+lowE+ lensing+SNe+BAO), ωde � −0.76 ± 0.20 (Planck+BAO/RSD+WL),
ωde � −0.957 ± 0.080 (Planck+SNe+BAO), ωde < −0.95 (95%, Planck TT, TE, EE+low E+ lensing+SNe+BAO) with these
observations the EoS parameter (ωde) in present model matches with recent observational data. The complete behavior of EoS
parameters for three models is plotted in Figs. 12, 13 and 14.

∗ The stability analysis of these three HDE models is verified through squared speed of sound (v2
s ) and depicted in Figs. 16, 17,

18. The Tsallis HDE model shows unstable behavior for both the δ � 0.89, 1.2. The Renyi HDE model shows stable behavior at
present and early times for δ � 0.89, and at late times it shows unstable behavior. Whereas for δ � 1.2 it exhibits stability at early
times, unstability at present, and late times. The v2

s of Sharma–Mittal is always positive, so it shows stable behavior throughout the
universe’s expansion for both the values of δ � 0.89, 1.2.

∗ Statefinder parameters are plotted in Fig. 19 and observed that initially, it represents Chaplygin gas model (r > 1, s < 0) and
later approaches to �CDM model. The background solutions for the obtained models are verified through perturbation techniques
and observed that background solutions are stable against perturbation of the gravitational field represented in Fig. 20.

Finally, Tsallis, Renyi, Sharma–Mittal HDE models are obtained, and different cosmological parameters like deceleration parame-
ter, EoS parameter, squared speed of sound, statefinder parameters, etc., are discussed thoroughly. The value ofq � −0.6758 obtained
in this work matches with recent observational data. Interestingly, all the obtained values match the recent observational data, and
this type of study can be extended to other anisotropic models.
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Appendix

ι3 �
216π(−1 + l)exp(−3γ1t)(c1exp(γ1t) + c2γ1)

(
c2

1exp(2γ1t)(δπ +
γ 2

1
9 ) + 2γ1c2πδ

(
c1exp(γ1t) + c2γ1

2

))

c2γ 2
1 c

3
1(2l + 1)2

ι4 �
4γ1c2exp(−γ1t)

(
c2

1exp(2γ1t)

(
δπ +

γ 2
1

18

)
+ 2γ1c2πδ

(
c1exp(γ1t) + c2γ1

2

))

c1

(
c2

1exp(2γ1t)

(
δπ +

γ 2
1
9

)
+ 2γ1c2πδ

(
c1exp(γ1t) + c2γ1

2

))

ι5 � −
216πR(−1 + l)exp(−3γ1t)

(
c1exp(γ1t) + c2γ1

)3

c2γ 2
1 c

3
1(2l + 1)2(ι7 − 1)

ι6 � − 1

(ι7 − 1)c1

(
c2

1exp(2γ1t)

(
δπ +

γ 2
1
9

)
+ 2γ1c2πδ

(
c1exp(γ1t) + c2γ1

2

))

2γ1c2

((
πc2

2γ
2
1 (R − 2δ)exp(−γ1t) + c1

(
c1exp(γ1t)

(−2γ 2
1

9
+ π(R − 2δ)

)
+ 2πγ1c2(R − 2δ)

))
ι7

+ 2πc2
2δγ

2
1 exp(−γ1t) + 2c1

(
c1exp(γ1t)

(
δπ +

γ 2
1

9

)
+ 2γ1c2πδ

))

ι7 �
(

(9πexp(2γ1t)c2
1δ + 18πexp(γ1t)c1c2δγ1 + 9πc2

2δγ
2
1 + c2

1exp(2γ1t)γ 2
1 )exp(−2γ1t)

c2
1γ

2
1

)R/δ

By using Eqs. (32), (37), (42), (45), (46), (47) and its derivatives in (50), we obtain the expressions for v2
s . The following equations

(62), (63), (64) represent v2
s for Tsallis, Renyi, Sharma–Mittal HDE models, respectively. These are as follows

v2
s � 2 exp(−γ1t)

αc3
1γ

2
1 (−2 + δ)

(
l + 1

2

)2

(−819−δ(−1 + l) exp(−2γ1t)(c1 exp(γ1t) + c2γ1)3(3H )2δ

16

+αc2
1γ

3
1 c2(−2 + δ)

(
δ − 32)

(
l +

1

2

)2
)) (62)

v2
s � ι8

ι9
(63)

v2
s � 1

ι10
ι11 (64)

where

ι8 � −3exp(−3γ1t)

(
γ1c

6
1

(
γ 6

1

((
π

(
1

162
− l

162

)
+
c2(l + 1

2 )2

486

)
+

δπγ 4
1

(
π(−9l + 9) + c2(l + 1

2 )2
)

18

+δ2π2γ 2
1

((
15

2
− 15l

2

)
π + c2

(
l +

1

2

2))
− 63π4δ3(−1 + l)

2

)
c2exp(6γ1t) +

(
6γ 3

1 c
4
1

((
π

(
− l

36
+

1

36

)

+
c2

(
l + 1

2

)2

108

)
γ 4

1 + δπγ 2
1

(
π

(−5l

2
+

5

2

)
+ c2

(
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1

2

)2
)

− 105π3δ2(−1 + l)

4
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δc3
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π
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8
+
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c2

(
l + 1
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γ 4

1 + δπγ 2
1

(
π

(
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4
+
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4

)
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(
l +

1

2

)2
)

− 189π3δ2(−1 + l)
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5
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2
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π

(
3

2
− 3l

2

)
+ c2(l + 1/2)2

)
γ 2
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−315δπ2(−1 + l)

8

)
exp(3γ1t) − 63γ 2

1

(
c1exp(γ1t) + c2γ1

7

)
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2

8

))
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