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Abstract We conduct an analysis to examine the thermodynamic character of a Schwarzschild black hole surrounded by quintessence
matter under a generalized Heisenberg algebra with a quadratic and linear terms in momentum. We compute the temperature, heat
capacity, and entropy associated with this black hole using this modified algebra in the presence of quintessence matter surrounding
the black hole. When computing the thermodynamical variables for this black hole using this deformed algebra, we also examine
the behavior of the isotherms for this black hole. We compare each computed result with the standard result of the Schwarzschild
black hole. As we can see, a remnant of the black hole is indicated by this modified algebra, which is seen to be a plausible solution
to the information loss problem.

1 Introduction

A fascinating prediction of the general theory of relativity is the possibility of the existence of black holes. Astronomical observation
has now made it clear that black holes might exist in nature. Strong evidence for the existence of black holes includes the observation
of gravitational waves, the success in capturing the shadow of the M87∗ supermassive black hole, and the subsequent success
in capturing the shadow of the Sgr A∗. Naturally, the study of different aspects of black holes has gained renewed interest. It is
generally agreed that black holes are thermal bodies, and the laws of thermodynamics can be used to describe their characteristics.
This proposal was put forward a little more than half a century ago by Hawking and Bekenstein [1–3]. According to the information
obtained from these papers [1–3], a black hole is a thermodynamic system that emits radiation with a characteristic temperature
closely related to its surface gravity. Moreover, the entropy of these objects is linearly proportional to the area covered by the
event horizon in Planck units. With these innovative proposals, they tested several models of black holes by computing Hawking
temperature and mass in the framework of statistical mechanics and reached the conclusion that the basic laws of thermodynamics
are no longer violated [4].

According to the most recent observational astronomical data, our Universe is expanding at an accelerating rate [5–7]. To explain
this acceleration, the existence of a distinctly different form of matter having negative pressure has been postulated. This dark energy
content is expected to be around seventy percent of the total energy density of the Universe. Although the use of the concept of the
cosmological constant could have been an effective technique to characterize this acceleration, its experimental value is found to
be significantly smaller than what is theoretically anticipated [8]. Different alternative models were consequently suggested. These
compelling models [9–14] differ from one another in terms of the parameters relating to the ratio of pressure to the density of
dark energy. These models are essentially based on the dynamics of specific scalar fields. Black hole thermodynamics is thought
to be significantly influenced by the dark energy surrounding them. The literature of recent times contains a wealth of studies on
this subject. We suggest readers to the review [15] and the references therein for an in-depth discussion and evaluation of those
models. The quintessence matter, which is notable among the dark energy contenders, was taken into consideration by Kiselev in the
foundational work, and a useful study has been conducted. The literature of recent times contains a wealth of studies on this subject
[16]. A few years later, Chen et al. investigated the Hawking radiation of any D-dimensional, spherically symmetric, static black
hole, where the very nature of matter is thought to be a potential candidate for dark matter [17]. The study of the thermodynamic
characteristics of black holes, inspired by the quintessence, attracted more and more attention throughout time. Therefore, exploration
of thermodynamics in the presence of quintessence matter for the Reissner–Nordstrom (NR) black hollow [18], the NR black hollow
in de-Sitter spacetime [19], Narai-kind black holes [20, 21] was carried out. Bardeen-type regular black holes were presented later
in due course [22]. Shahjalal recently compared the thermodynamics of this black hollow in the presence of the quintessence matter
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[23], taking into account quantum correction to the Schwarzschild black hole. Thermodynamic parameters of a rotating nonlinear
magnetic-charged black hole embedded with the quintessence matter were recently estimated by Ndogmo et al. [24].

It is well known that the famous Heisenberg algebra plays a pivotal role in the quantization of a theory. As a matter of fact,
the role of gravitational interaction, which is a phenomenon associated with the quantization of gravity, is believed to be the most
challenging problem in physics. Unfortunately, the entire wing has not yet been developed. Therefore, it has recently been the focus
of numerous theoretical investigations to address the issues that arise when one tries to combine general relativity and quantum
mechanics to obtain a comprehensive quantum gravity theory [25–30]. Since the quantum influence of gravity cannot be disregarded
at a very large energy scale, a number of techniques, including string theory, loop quantum gravity, noncommutative geometry, etc.
[31–36], have surfaced. All of these admirable and decent attempts, incidentally, suggest that there is a minimum measurable length
of the order of the Planck length.

In order to render a faithful and decent account for the quantum gravity effect, GUP has been given substantial consideration.
Therefore, the amendment of quantum correction due to gravity motivated through GUP is considered seriously and accepted as an
adequate tool for describing black holes and their thermodynamic properties to capture quantum gravity correction. The prominence
of the GUP can be attributed to the fact that it was first proposed as a sequel to perturbative string theory with addition an additional
quadratic term in momentum along with conventional Heidelberg algebra [29, 30, 37–39]. Although it is has been found instrumental
to capture the effect of quantum gravity, it is worth mentioning that such an extension is not unique. Hence, different GUP proposals
appeared in the literature. A series of papers were perused adding only a quadratic term in momentum which was proposed initially
as a modification of standard Heisenberg algebra. Later on, by inserting an extra linear term with the quadratic term in momentum
further modification of Heisenberg algebra was pursued. Using the exponential term in momentum is the most general extension
that has also has come in the literature. In the papers [40–52], the authors used several types of deformed algebra consistent with a
minimum measurable length or a minimum measurable length with a maximum measurable momentum proposition. Consequently,
a number of phenomenological methods were implemented in an effort to constrain the parameter associated with the GUP [53–56]
in due course.

In the paper [57], the authors used the deformed algebra with a quadratic term in the momentum to study the black hole
thermodynamics of a Schwarzschild black hole immersed in quintessence matter within the GUP framework. This allowed them
to study quantum corrected thermodynamic variables inspired by GUP, such as temperature, entropy, heat capacity, energy density,
etc. The generalization that includes both linear and quadratic terms in momenta together is often called linear and quadratic GUP
(LQGUP). This GUP proposal was simulated by making the uncertainty principle compatible with Doubly Special Relativity (DSR)
[58, 59]. Each of the non-equivalent algebraic deformations results in different new characteristics. The minimum measurable
minimal length scenario occurred when the deformation is associated with only the quadratic term in the momentum [60]. The
minimum measurable length along with maximum measurable momentum follows from the deformed algebra containing both the
linear and quadratic terms (LQGUP) [58, 59]. Using different modified Heidelberg algebra, several studies have been carried out
which have appeared in a series of publications [61, 61–67]. The LQGUP framework is exploited in [68] in order to make the
Thomas–Fermi model consistent with the Planck scale.

In this work, we explore the thermodynamic properties of the Schwarzschild black hole within the LQGUP framework, which
carries the coexistence of both linear and quadratic terms in momentum in the deformed Heisenberg algebra. The purpose of this
project is to examine how novel properties like the existence of a minimal measurable length and a maximal observable momentum
afforded by LQGUP contribute to our knowledge of the thermodynamics of Schwarzschild black holes surrounded by quintessential
matter.

The paper is organized as follows. In Sect. 2, we introduce the metric taking into consideration the black hollow surrounded by the
quintessence matter. In Sect. 3, we describe LQUP framework associated with the deformation of Heisenberg algebra through a linear
and quadratic term in momentum. Section 4 is devoted to study the LQGUP inspired thermodynamical variables like temperature,
pressure, heat capacity, and entropy. After having those thermodynamic features, in Sect. 5 with the precise admissible values of
the quintessence state parameter, we study the GUP-corrected density and equation of state. Finally, in Sect. 6, we round up with a
conclusion and discussion.

2 Description of generalization of Heisenberg algebra

The Heisenberg algebra is given by

[x, p] � i�, (1)

which corresponds to the celebrated Heisenberg principle

(�x)(�p) ≥ 1

2
�. (2)

It is stated in the introduction that GUP has drawn a lot of attention since it offers a credible correction of quantum gravity. The
significance of GUP can be traced to the fact that it is an outcome of perturbative string theory, and it can be formulated from
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standard Heisenberg algebra by adding a quadratic term in momentum [29, 30, 37–39]. The following is a generalization of Eq. (1)
with that quadratic term in the momentum

(�x)(�p) ≥ �

2

(
1 + α(�p)2), (3)

which correspond to the extended Heisenberg algebra [60]

[x, p] � �
(
1 + α(�P)2), (4)

where α is a parameter proportional to the Planck length that leads to a minimum uncertainty in position (�x)min � √
α. While it

has been demonstrated that this modification (3) is helpful in capturing the influence of quantum gravity, it is important to note that
this extension is not the only one that can render this service. Later, Heisenberg algebra was further modified by adding a second
linear term over quadratic term of the momentum. It was found in [59] that the simulation for this new extension came from double
special relativity (DSR). It is supplied by

(�x)(�p) ≥ 1

2

(
1 − 2η(�p) + 4η2(�p)2), (5)

where η is called the GUP parameter; it is non-negative and proportional to the Planck length. The generalized algebra which follows
from the LQGUP in Eq. (5) is

[x, p] � i(1 − ηp + 2η2 p2). (6)

This deformed algebra leads to a minimum uncertainty in the position as well as maximum uncertainty in momentum:

(�x)min ≈ η, (7)

(�p)max ≈ 1

η
. (8)

Here η � η0
mpc

� η0
l p
�

, where mpc2 � 1019 GeV, and the Planck length l p � 10−35 m. Unlike the quadratic generalization,
the concept of maximum momentum along with the minimum length is admissible here and here lies the fundamental difference
between these two. The minimum length and maximum momentum admissible to this deformed algebra, respectively, are

�x ≥ �xmin ≈ η0l p,�p ≤ �pmax ≈ mpc

η0
. (9)

Note that Eq. (6) is satisfied by the following representation of position and momentum, respectively.

xi � x0i ,

pi � p0i (1 − ηp + 2η2 p2). (10)

The invariant phase space volume in D dimensions for this deformation needs the following modification

[Dμ] � dDxdD p

J
, (11)

where J is the jacobin for transformation which is given by [33, 61]

J �
[

1 − ηp +

(
2

D + 1
+

1

2

)
η2 p2

]D+1

. (12)

3 Description of the metric

We take into account a static, spherically symmetric spacetime that is connected to a black hole encircled by quintessential matter.
It was derived in the paper [16]. The basis for the derivation was that the vacuum was replaced in the exact solution of Einstein’s
equations by a slowly fluctuating quantum field with negative pressure, which simulated the accelerating expansion of the Universe.

ds2 � −F(r )dt2 +
1

F(r )
dr2 + r2d�2

2, (13)

where, for the Schwarzschild black hole, N(r) can be taken as

F(r ) � 1 − 2M

r
− ξτq

r (3τq+1) , (14)

Here τq is the quintessential state parameter and ττq is the positive normalization factor that depends on the density of quintessence
matter and the mass of the black hole is specified byM. It is a remarkably popular model. A special feature of this metric is that it
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can explain the accelerated expansion of the universe when the consideration of the quintessence state parameter lies in the range
−1 < τq < −1/3. One of the other reasons for its popularity is its generic character: ξτq � 0 corresponds to Schwarzschild metric,
τq � 1/3 corresponds to Reissner–Nordström metric, and τq � −1 refers to the Schwarzschild–(anti)-de Sitter (Kottler) metric.
Another intriguing reason is that it includes the effect of the anisotropic surrounding medium. The non-vanishing components of
the stress–energy–momentum tensor of the quintessence matter fluid for the Kiselev black hole solution are given by

T t
t � T r

r � −ρ, (15)

T θ
θ � T φ

φ � ρ

2
(3τq + 1). (16)

The matter–energy density ρq has the form

ρq � − 3ξτq

2r3(τq+1) . (17)

, and the pressure is expressed as

Pq � τqρq . (18)

Therefore, the matter–energy density takes only positive values; however, the pressure of the quintessence matter takes only negative
values if the quintessence state parameter lies in the range −1 < τq < −1/3.

With this settings, let us see the position of the event horizon. It is known that the solution of the equation

F(r )|r�rH � 1 − 2M

r
− ξ

r (3τq+1) |r�rH � 0, (19)

gives the description of the horizon corresponding to this black hole. A careful look reveals that the solutions of Eq. (19) can be
classified in three distinct cases for different values of τq : we find two horizons with radii, namely inner horizon (r−) and outer
horizon (r+), for τq � −2/3:

r− � 1

2ξ

(
1 − √

1 − 8Mξ
)
, (20)

r+ � 1

2ξ

(
1 +

√
1 − 8Mξ

)
. (21)

However, for τq � −1/3, only one horizon is found and the radius of the horizon is given by

rH � 2M

1 − ξ
. (22)

A completely new situation arises for τq � −1. A de-Sitter–Schwarzschild solution is obtained, if ξ � �
3 is chosen. Here � refers

to the cosmological constant.

4 LQGUP-inspired thermodynamical features

In the vicinity of the Planck scale, quantum correction to gravity should be taken into account. However, mature formulation of
quantum gravity is not in hand right now. There are several ways to incorporate the quantum effect of gravity in an indirect manner.
A few instances include the usage of non-commutative spacetime, the development of the bumblebee field, and the modification of
Heisenberg algebra by converting the Heisenberg uncertainty principle (HUP) to the generalized Heisenberg uncertainty principle
(GUP). The existence of a minimal length scale is considered in the central issue since it follows from penetrative string theory.
Although the provision of minimal length is absent from the standard Heisenberg algebra, the generalized uncertainty principle
(GUP) allows for the introduction of that useful idea into the theory. A further substantial generalization derived from double special
relativity (DSR) was ideally suited to describing the minimum measurable length and maximum measurable momentum as they
were prominently provided in Eq. (6)

From the studies [42, 69–74], we have seen that the deformation parameter is not always positive. It can be negative, and even it
can be regarded as a dynamic variable. With this in view, if we solve Eq. (9) we have a bound for �P:

(η + �x)

4η2

⎡

⎣1 −
√

1 − 4η2

(η + �x)2

⎤

⎦ ≤ �p ≤ (η + �x)

4η2

⎡

⎣1 +

√

1 − 4η2

(η + �x)2

⎤

⎦. (23)

Since 4η2

(η+�x)2 � 1, the left-hand side of the inequality can be considered as a small correction over the Heisenberg uncertainty
corresponding to p, and the right-hand side can be regarded as an upper bound value to the uncertainty in momentum. So it reveals
that �p cannot be erratic so far increasing momentum uncertainty is considered. considered.
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4.1 Computation of temperature and heat capacity

With this information, let us now study the effect of GUP on the thermodynamic properties of the Schwarzschild black hole
surrounded by quintessence matter. In the semiclassical notion, the entropy (S) can be considered as a function of the hole area
enclosed within the event horizon A. So, the characteristic temperature of the black hole can be expressed as follows [75]

T � κ

8π

dA

dS
, (24)

where κ is the surface gravity at the outer horizon. It is defined as

κ � lim
r→rH

√

−g11

g00

(g00)
′

g00 � 1

rH

(

1 +
3ξτq

r
3τq+1
H

)

. (25)

Here upper prime (′) is indicating the differentiation with respect to r. If a black hole absorbs a particle, then its changes in the area
are proportional to the mass and size of the particle mass which is associated with the uncertainties in momentum and position. This
minimal change in the area will be reflected in the entropy. However, the change of entropy in this situation cannot be smatter than
ln2 [75]. Therefore, we can write

dA

dS
� (�A)min

(�S)min
� ε

ln2
(�x)(�p). (26)

Here ε is used as a calibration factor. Now we proceed tp calculate dA
dS . To calculate this, we can consider position uncertainty as

the diameter of the black hole �x � 2rH . From Eq. (23), we can have the uncertainty in �p. With this we have

dA

dS
� εrH

2ln2

(η + 2rH )

η2

[

1 −
√

1 − 4η2

(η + 2rH )2

]

. (27)

Upon substituting of Eqs. (25) and (27) in Eq. (24), the following expression for T results

T � εrH
16πln2

(η + 2rH )

η2

[

1 −
√

1 − 4η2

(η + 2rH )2

](

1 +
3ξτq

r
3τq+1
H

)

, (28)

In the absence of the quintessence and the correction due to the GUP η � ξ � 0, and ξq � 0 then Eq. (28) turns into T � ε
16πrH ln2

that should correspond to the Hawking temperature, T � 1
4πrH

[1, 2]. Therefore, the calibration factor in this situation turns out to
be ε � 4ln2. Hawking temperature with the correction due to GUP can be written as (28)

T � 1

4π

(η + 2rH )

η2

⎡

⎣1 −
√

1 − 4η2

(η + 2rH )2

⎤

⎦
(

1 +
3ξτq

r
3τq+1
H

)

. (29)

Setting only η → 0, in Eq. (29), we get the Hawking temperature of Schwarzschild black hole surrounded by the quintessence when
no correction due to the generalization of Heisenberg uncertainty principle is absent.

T � 1

4πrH

(

1 +
3ξτq

r
3τq+1
H

)

. (30)

The characteristics temperature of a black hole must be real valued which supplies the interesting information that the radius of the
black hole has to satisfy the condition

rH ≤ (3τq+1)
√−3ξτq , (31)

which implies that it is bounded from the above. A careful look reveals that for ξ > 0 and τq < 0, the radius of the horizon has a
positive root unless the quintessence state parameter takes the value τq � −1

3 . For τq � −1
3 , the horizon radius is not bounded from

above. In the presence of quintessence matter encompassing the black hole, the greatest possible event horizon may obtain. It can
be seen in the way that the presence of quintessence has an enhancing tendency of entropy.

Furthermore, Eq. (29) ensures that the modified Hawking temperature depends not only on the properties of the black hole but
also it acquires a correction due to the use of GUP and that gives rise to one more constraint.

rH ≥ η

2
. (32)

Equation (32) confirms the lowest value of the radius of the black hole. Therefore, maximal temperature along with the GUP
correction is found out as

T � 1

2πη

[

1 + 3ξτq

(η

2

)(−3τq−1)
.

]

(33)
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If the surroundings of the black hole are free from quintessence matter ξ tales a vanishing value and it is noticed that the temperature
of the black hole with GUP correction will remain restricted within the range

0 < T ≤ 1

2πη
. (34)

Depending on the allowed values of the equation of state parameter of the surrounding medium, the temperature of the black hole
shows different possibilities when the correction due to GUP is present. First consider the case when τq � −1. The GUP-corrected
temperature of the Schwarzschild black hole surrounded by the quintessence matter is found to be

T(τq�−1) � 1

4π

(η + 2rH )

η2

(
1 − 3ξr2

H

)
⎡

⎣1 −
√

1 − 4η2

(η + 2rH )2

⎤

⎦, (35)

and the event horizon radius can only take values lying in following range

1√
3ξ

≥ rH ≥ η

2
. (36)

As a result, the temperature will lie within the range

0 ≤ T(τq�−1) � 4 − 3ξη2

8πη
. (37)

Note that, in the absence of the GUP, there is no lower bound of the radius. Therefore, there is no upper limit for temperature.
For τq � −2

3 , the GUP-corrected temperature of the Schwarzschild black hole in presence of surrounding matter will be

T(τq�−2/3) � 1

4π

(η + 2rH )

η2 (1 − 2ξrH )

⎡

⎣1 −
√

1 − 4η2

(η + 2rH )2

⎤

⎦. (38)

The permitted range of event horizon radius will be

1

2ξ
≥ rH ≥ η

2
. (39)

As a consequence, the temperature will lie in the range

0 ≤ T(τq�−2/3) � 1 − ξη

2πη
. (40)

For τq � −1/3, the GUP-corrected temperature results to be

T(τq�−1/3) � 1

4π

(η + 2rH )

η2 (1 − ξ)

⎡

⎣1 −
√

1 − 4η2

(η + 2rH )2

⎤

⎦. (41)

In this situation, an upper bound on the horizon radius ceases to emerge. Hence, temperature of the black hole will be restricted
within the following range.

0 ≤ T(τq�−1/3) � 1 − ξ

2πη
. (42)

In Fig. 1, we have the temperature of the black hole versus the horizon radius in the usual, i.e., when the Heidelberg uncertainty
principle (HUP) is maintained and in the GUP-motivated situation. In the absence of quintessence matter, temperature has no upper
bound in the usual HUP-involved case, whereas there exists upper bound of temperature for the GUP-motivated case.

The black holes are considered as thermodynamical system. So it is instructive to calculate the correction due to the GUP on the
heat capacity of the Schwarzschild black hole in the presence of encompassing quintessence matter. It can be will be computed by
the straightforward use of the definition

C � dM

dT
. (43)

Using the definition (43), we obtain

C � −
2πη2

√
1 − 4η2

(η+2rH )2

(
1 + 3ξτq

r
3τq+1
H

)

[(
2 − 3ξητq (3τq+1)

r
3τq+2
H

− 8ξτ 2
q

r
3τq+1
H

)(
1 −

√
1 − 4η2

(η+2rH )2

)
+ 4η2

(η+2rH )2

(
6ξτq

r
3τq+1
H

+ 3ξητq (3τq+1)

r
3τq+2
H

+
18ξτ 2

q

r
3τq+1
H

)] . (44)

123



Eur. Phys. J. Plus        (2022) 137:1270 Page 7 of 14  1270 

(a) (b)

(d)(c)

Fig. 1 Plots of temperature (T ) versus horizon radius (rH )

It is noteworthy that the black hole ceases to exchange any radiation with its surrounding space if the heat acquires a vanishing value.
This situation corresponds to the black hole remnant. It is striking to observed that at rrem � η

2 , Eq. (44) approaches to a vanishing
value which transpires that black hole remnant exists. Like other GUP, the extension associated with LQGUP suggests a remnant.
An unlimited amount of information may be stored in it. This information lies in the absolute future with respect to an external
observer and remains inaccessible forever for the external observer. Therefore, the information laid in the absolute future should not
lead to any paradoxes in calculating physical processes observed by external observers. This suggests one of the possible ways for
a resolution of the information paradox [76]. Moreover, the stable remnants can serve as dark matter candidates [77, 78]. It agrees
with the conjecture of saving a black hole from the danger of the information loss paradox. Actually, it is now accepted that from
the perspective of quantum gravity black holes preserves information. The existence of black hole remnants has also been predicted
in the context of noncommutative geometry [79, 80]. Therefore, the plausible reason for observing remnants may be thought of as
it is due to the quantum correction that has entered into the picture due to the implementation of deformed Heisenberg algebra or
non-commutative spacetime setting [79, 80]

Tt is possible to see the presence of remnant temperature of the black hole by substituting rrem � η
2 in Eq. (29):

Trem � 1

2πη

[
1 + 3ξτq

(η

2

)−3τq−1
]
, (45)

and indeed, there exists a remnant mass

Mrem � η

4

[
1 − ξ

(η

2

)−3τq−1
]
. (46)

In the absence of quintessence matter, ξ � 0; therefore, GUP-corrected specific heat and the remnant temperature become

C � −
πη2

√
1 − 4η2

(η+2rH )2
(

1 −
√

1 − 4η2

(η+2rH )2

) , (47)
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Trem � 1

2πη
. (48)

It is remarkable that for η → 0, Eq. (47) renders standard heat capacity function C � −2πr2
H . Remnant temperature is not found

to be zero, and correspondingly, remnant mass also ceases to zero.
Let us now focus on the expressions of GUP-corrected specific heat and remnant temperature to study correction entered into

these thermodynamical variables for allowed values of the quintessence state parameter if we set τq � −1 the specific heat C and
the remnant temperature Trem reduce to

C � −
2πη2

√
1 − 4η2

(η+2rH )2

(
1 − 3ξr2

H

)

[
(
2 − 6ξηrH − 8ξr2

H

)(
1 −

√
1 − 4η2

(η+2rH )2

)
+ 4η2

(η+2rH )2

(
12ξr2

H + 6ξηrH
)
] , (49)

Trem � 1

2πη

[
1 − 3ξη2

4

]
. (50)

Setting another allowed value for the state parameter for τq � −2/3, the above thermodynamical quantities acquire the following
expression.

C � −
2πη2

√
1 − 4η2

(η+2rH )2 (1 − 2ξrH )
[
(
2 − 2ξηrH − 32

9 ξrH
)(

1 −
√

1 − 4η2

(η+2rH )2

)
+ 4η2

(η+2rH )2 (4ξrH + 2ξηrH )

] , (51)

Trem � 1

2πη
[1 − ξη]. (52)

One more allowed value of τq is there which is τq � −1/3; the above thermodynamical quantities with this value of τq turn into

C � −
2πη2

√
1 − 4η2

(η+2rH )2 (1 − ξ)
[
(
2 − 8

9ξ
)(

1 −
√

1 − 4η2

(η+2rH )2

)]
, (53)

Trem � 1

2πη
[1 − ξ ]. (54)

In Fig. 2, we depicted a specific heat function versus the horizon radius. In the absence of quintessence matter, specific heat and
lower value of horizon radius increase with the rise of the GUP parameter.

4.2 Computation of entropy, energy density, and isothermal behavior

The entropy of a black hole is an intriguing issue. We now turn to calculate the entropy of the Schwarchlid black hole when it is
surrounded by the quintessence matter in the GUP framework. Using the standard definition

S �
∫

dM

T
, (55)

we find that (55)

S � π

2
(η + 2rH )2

⎡

⎣1 +

√

1 − 4η2

(η + 2rH )2

⎤

⎦ − 2πη2ln(η + 2rH ) − 2πη2

⎡

⎣1 +

√

1 − 4η2

(η + 2rH )2

⎤

⎦. (56)

by using Eqs. (32) and (29). From Eq. (56), it is observed that quintessence matter surrounding the black hole does not have any
influence on the black entropy of the black hole. However, it has crucial dependence on the parameter η. So generalized uncertainty
takes significant correction on the entropy of the black hole. In the absence of η, the entropy reduces to the Bekenstein limit

S � 4πr2
H � A

4
. (57)

Equation (17) enables us to have an energy-matter density of the quintessence which also has crucial dependence on the parameter
η associated with the generalization Heisenberg algebra.

ρq � −3ξτq

2

[
1

8
(η + 2rH )2

⎛

⎝1 +

√

1 − 4η2

(η + 2rH )2

⎞

⎠ − 1

2
η2ln(η + 2rH ) − 1

2
η2ln

⎛

⎝1 +

√

1 − 4η2

(η + 2rH )2

⎞

⎠

]− (3τq+3)
2

. (58)
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(a) (b)

(d)(c)

Fig. 2 Plots of specific heat (C) versus horizon radius (rH )

When η → 0, it reduces to

ρq � − 3ξτq

2r
3τq+3
H

. (59)

Based on different allowed values of quintessence state parameters, the energy-matter density function ρq acquires different expres-
sions. For τq � −1, Eq. (58) turns into

ρq � −3ξ

2
. (60)

Note that it is independent of η. So for this value of the state parameter, the energy-matter density does not acquire any correction
due to the generalization of uncertainty. However, for the other allowed values of the state parameter, the situation is different. In
those cases, the correction due to the use of generalized uncertainty is given as follows. For τq � −2/3, Eq. (58) becomes

ρq � ξ

[
1

8
(η + 2rH )2

⎛

⎝1 +

√

1 − 4η2

(η + 2rH )2

⎞

⎠ − 1

2
η2ln(η + 2rH ) − 1

2
η2ln

⎛

⎝1 +

√

1 − 4η2

(η + 2rH )2

⎞

⎠

]− 1
2

, (61)

and in the limit η → 0, it reduces to

ρq � ξ

rH
. (62)

For τq � −1/3, Eq. (58) acquires the following simplification:

ρq � ξ

2

[
1

8
(η + 2rH )2

⎛

⎝1 +

√

1 − 4η2

(η + 2rH )2

⎞

⎠ − 1

2
η2ln(η + 2rH ) − 1

2
η2ln

⎛

⎝1 +

√

1 − 4η2

(η + 2rH )2

⎞

⎠

]−1

, (63)
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(a) (b)

(d)(c)

Fig. 3 Plots of energy-matter density of quintessence (ρq ) versus horizon radius (rH )

and in the limit η → 0, it becomes

ρq � ξ

2r2
H

. (64)

The behavior of the energy-matter density of quintessence with respect to horizon radius is shown in Fig. 3. In Fig. 4a and b, the
behavior of energy-matter density for η � 0 and η �� 0, respectively, is shown graphically. We observe that for τq � −1 the
energy-matter density is independent of horizon radius.

The study of the equation of states of the black hole is also instructive when the generalization of the Heisenberg uncertainty
relation is made in use. So attempts are made to derive equations of states with the help of the relations between the pressure and
the quintessence matter–energy density which have already been derived in Eqs. (18) and (17). It enables us to express the Mass of
the black hole in terms of pressure and horizon radius as follows.

M � rH
2

+
Pqr3

H

3τ 2
q

. (65)

Using thermodynamic relation V � ∂M
∂Pq

, and Eq. (65), we express volume in terms of the radius of the horizon of the black hole:

V � r3
H

3τ 2
q

. (66)

Of course, the expression (66) has crucial dependence on the state parameter of the quintessence matter [81]. Then, by the use of
Eq. (29) we land on the expression of temperature:

T � 1

4πη2

(
η + 2 3

√
3τ 2

q V
)[

1 −
√√√√1 − 4η2

(η + 2 3
√

3τ 2
q V )2

](

1 − 2Pq (3τ 2
q V )2/3

τq

)

. (67)
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(a) (b)

(d)(c)

Fig. 4 Isotherm for T � 1: pressure (Pq ) versus volume (V ) curve

Now to find out the equation of state we have to set the desired isotherm. For simplicity, we chose T � 1 isotherm. In this specific
situation, the equation of state that is obtained from Eq. (67) for non-vanishing η is

Pq � τq

2(3τ 2
q V )2/3

[

1 − π
(
η + 2 3

√
3τ 2

q V
)
⎡

⎢
⎣1 +

√√√√1 − 4η2

(η + 2 3
√

3τ 2
q V )2

⎤

⎥
⎦

]

. (68)

In the limit η → 0, it (68) turns into

Pq � τq

2(3τ 2
q V )2/3

[
1 − 4π(3τ 2

q V )1/3
]
. (69)

In general, pressure is a real quantity. Therefore, in order to obtain a real-valued pressure for η �� 0 the following restriction is to
be maintained:

V ≥ 1

3τ 2
q

(η

2

)3
, (70)

due to the fundamental constraint on rH ≥ η
2 associated with the GUP framework.

Like the other thermodynamical quantities let us now examine the equation of states for three different values of the quintessence
state parameter. First consider the case for τq � −1; Eq. (68) with this specified value of τq turns into

Pq � − 1

2(3V )2/3

⎡

⎢⎢
⎣1 − 4πη2

(
η + 2 3

√
3V

)[
1 −

√
1 − 4η2

(η+2 3√3V )2

]

⎤

⎥⎥
⎦. (71)
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If now set η � 0, we get

Pq � − 1

2(3V )2/3

[
1 − 4π

(
3
√

3V
)]

. (72)

For τq � −2/3, Eq. (68) reduces to

Pq � − 1

3( 4V
3 )2/3

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − 4πη2

(
η + 2 3

√
4V
3

)
⎡

⎣1 −
√

1 − 4η2

(η+2 3
√

4V
3 )2

⎤

⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (73)

, and in the absence of the correction due to the generalization of Heisenberg uncertainty relation, the equation of states will be
obtained if we set η � 0, and in this situation, we get the following simplified version of the equation of states:

Pq � − 1

3( 4V
3 )2/3

[

1 − 4π

(
3

√
4V

3

)]

. (74)

For the quintessence state parameter τq � −1/3, Eq. (68) takes the form

Pq � − 1

6( V3 )2/3

⎡

⎢⎢⎢⎢⎢⎢
⎣

1 − 4πη2

(
η + 2 3

√
V
3

)⎡

⎣1 −
√

1 − 4η2

(η+2 3
√

V
3 )2

⎤

⎦

⎤

⎥⎥⎥⎥⎥⎥
⎦

, (75)

and in the limit η → 0 it reduces to the following simplified form.

Pq � − 1

6( V3 )2/3

[

1 − 4π

(
3

√
V

3

)]

. (76)

This completes the description of the equation of state for different allowed values of the quintessence state parameter. In Fig. 4,
we have given the plot of the P-V isotherms T � 1. Figure 4a portrays the results for η � 0, and it shows that with the increases in
volume, the pressure decreases slowly for the higher quintessence state parameter. In Fig. 4b–d, the effects of the η on the equation
of states for the quintessence state parameter τq � −1,− 2

3 ,− 1
3 , respectively, are shown. It is noteworthy that pressure increases to

maximum value for any chosen value of the parameter η, but in the asymptotic region it follows the isotheres for η � 0.

5 Discussion and conclusion

This work discusses the effects of LQGUP on the thermodynamic properties of Schwarzschild black holes in the presence of
quintessential matter. LQGUP is used to describe the impact of quantum gravity without going through the formal quantization of
gravitational theory. Needless to say, no formal quantization of the theory of gravity is available yet. Because of this, getting quantum
correction via GUP is exciting and important in its own right. There are several GUP proposals, but quadratic and linear–quadratic
GUP is of particular interest. The first one is related to perturbative string theory, and the second proposal was simulated by making
the uncertainty principle compatible with the double special relativity (DSR). In the first proposal, thermodynamic aspects of Kiserev
black holes were investigated in [57]. Therefore, an extension with LQGUP was another possibility to explore what we have carried
out here in detail.

Using the laws of thermodynamics, we have calculated the heat capacity and entropy function of the LQGUP-corrected black
hole. In the presence of this new deformation algebra, a nonzero residual temperature is observed. From this perspective, we also
evaluate the black hole equation of state. It turns out that the quantum effect slightly increases the energetic matter density function
which is in sharp contrast with the result obtained in [42] by using quadratic GUP. Finally, we examine the pressure-volume isotherms
of black holes. We observe the effect of the deformation algebra on the pressure when the volume is small. We graphically compare
the results in the context of usual and deformed Heisenberg algebras.

In addition, we show and compare the effect of LQGUP corrections on the thermal properties of black holes for three different
values of the quintessential state parameter. Like other GUP proposals, the LQGUP extension too suggests a remnant. It can keep
stored an unlimited amount of information. This information may be considered as it is located in the absolute future with respect
to an external observer and remains inaccessible forever to the external observer. Therefore, computing physical events viewed by
outside observers should not encounter any paradoxes due to information laid out in the absolute future. This suggests one approach
to solving the information paradox as noted in [76]. Additionally, the stable remnants can be regarded as potential candidates for dark
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matter [77, 78]. The existence of a remnant may potentially be associated with the significant phenomenological implications for the
finding of black holes at the Large Hadron Collider (LHC) [82, 83]. Therefore, the viable presence of remnants may additionally be
belied that it would be due to quantum correction attributable to the implementation of deformed Heisenberg algebra or the calling
for a non-commutative spacetime framework [79, 80]

Besides neutrino pair annihilation νν̄ → e−e+ was studied in the framework of BH surrounding by a quintessence matter in
[84, 85]. It was shown in [84] that a shift of the photosphere radius was found to occur in the allowed range of parameters of the
quintessence model, as compared to the one computed in the general theory of relativity, and consequently, an enhancement of the
rate of admission energy was found to take place. Such an enhancement could be relevant for the generation of gamma-ray bursts in
close neutron star binary mergers, for which neutrino pairs annihilation had been proposed as a possible source, and it was argued
that the parameter ξ present in the quintessence sector could be constrained. The impact of the generalized uncertainty on neutrino
pair annihilation process could be a follow-up investigation.

Data Availability Statement The article is based on analytical calculation. The data used here are generated by numerical computation.
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