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Abstract We study the propagation of massless scalar fields non-minimally coupled to gravity in the background of five-dimensional
Einstein–Power–Maxwell black holes, and using the WKB and the pseudospectral Chebyshev methods, we obtain the quasinormal
frequencies (QNFs), which allow us to show the existence of stable and unstable QNFs depending on the power k of the nonlinear
electrodynamics, the ξ parameter, which controls the strength of the non-minimal coupling, and on the size of the black hole.

1 Introduction

The quasinormal modes (QNMs) and quasinormal frequencies (QNFs) [1–6] have recently acquired great interest due to the detection
of gravitational waves [7]. Despite the detected signal is consistent with the Einstein gravity [8], there are possibilities for alternative
theories of gravity due to the large uncertainties in mass and angular momenta of the ringing black hole [9]. In this context, extensive
studies of QNMs of black holes in asymptotically flat spacetimes have been performed for the last few decades mainly due to the
potential astrophysical interest.

QN spectra of black holes have been investigated in detail from long time ago, although, recently, the interest in such a type
of research is higher than ever. In particular, the exact analytical calculations (for quasinormal spectra of black holes) are only
possible to get in a concrete number of cases. To name a few: (i) when the effective potential barrier acquire the (simple) form of
the Pöschl–Teller potential [10–15], or (ii) when the corresponding differential equation (for the radial part of the wave function)
can be rewritten into the Gauss’ hypergeometric function [16–22]. In general, an exact solution is not possible to achieve (due to
the complexity and non-trivial structure of the differential equation involved), reason why it is necessary to employ some numerical
method. Up to now we have a variety of methods used to obtain, in a good approximation, the corresponding QNMs of black holes.
Jut to mention a few of them, we have the Frobenius method, generalization of the Frobenius series, fit and interpolation approach,
method of continued fraction, among others. Additional details can be consulted, for example, in [1].

On the other hand, although our observable Universe is clearly four-dimensional, the question ”How many dimensions are there?”
is one of the fundamental questions that modern High Energy Physics tries to answer. Kaluza–Klein theories [23–25], Supergravity
[26] and Superstring/M-Theory [27, 28] have pushed forward the idea that extra spatial dimensions may exist. Here, we consider
as background five-dimensional black hole solutions for the power Maxwell theory coupled to gravity [29, 30], and we study the
propagation of massless scalar fields, by using, the Wentzel–Kramers–Brillouin (WKB) approximation [31–33], which have been
successful applied to different circumstances. An partial and incomplete list is, for instance: [34–39], and for more recent works
[40–50], and references therein. Also, we use the pseudospectral Chebyshev method [51], which is an effective method to find high
overtone modes and has been successfully applied to some spacetimes [52–60].

The advantage of the Einstein–Power–Maxwell (EpM) theory is that it preserves the nice conformal properties of the four-
dimensional Maxwell’s theory in any number of spacetime dimensionality D. Regular black hole solutions have been reported
in nonlinear electrodynamics [61–67]. Besides, higher-dimensional black hole solutions to Einstein-dilaton theory coupled to the
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Maxwell field were found in [68, 69] and black hole solutions to Einstein-dilaton theory coupled to Born–Infeld and power-law
electrodynamics were found in [29].

Our work in the present article is organized as follows: In the next section, we briefly review charged BH solutions in EpM theory,
and we also very briefly discuss the wave equation with the corresponding effective potential well and potential barrier for the scalar
perturbations. In the third section, we compute the QNFs adopting the WKB approximation of sixth order, for stable modes, and
the pseudospectral Chebyshev method for unstable modes, and we discuss our results. Finally, in section four, we summarize our
work with some concluding remarks. We adopt the mostly positive metric signature (−, +, +, +, +), and we work in geometrical
units where the universal constants are set to unity, c � 1 � G5.

2 Background and scalar perturbations

2.1 Charged black hole solutions in EpM theory

We will investigate a 5-dimensional theory parameterized by the action

S[gμν, Aμ] �
∫

d5x
√−g

[
1

2κ
R − α|FμνF

μν |k
]
, (1)

where R is the Ricci scalar, g the determinant of the metric tensor gμν , Aμ is the Maxwell potential, κ � 8π , k is an arbitrary rational
number and F ≡ FμνFμν is the Maxwell invariant with Fμν being the electromagnetic field strength, which is defined as

Fμν ≡ ∂μAν − ∂ν Aμ, (2)

where the indices run from 0 to 4.
It is possible to consider the absolute value in the action for the Maxwell invariant (i.e., LEM � −α|F |k,∀ α ∈ R), which ensures

that any configuration of electric and magnetic fields can be described by this Lagrangian, or alternatively, one could consider the
Lagrangian without the absolute value and the exponent k restricted to being an integer or a rational number with an odd denominator
[70]; in this case, the Lagrangian density becomes of the form L(F) ∼ Fk . To obtain the corresponding equations of motion, we
first vary the action with respect to the metric tensor sourced by the electromagnetic energy-momentum tensor [70]

Gμν � 4κα

[
kFμρF

ρ
ν Fk−1 − 1

4
gμνF

k
]
, (3)

where Gμν , as always, is the Einstein tensor. Second, varying the action with respect to the Maxwell potential Aμ we obtain the
generalized Maxwell equations [70–73], namely

∂μ(
√−gFμνFk−1) � 0. (4)

We start by considering a static, spherically symmetric solution taking the metric tensor as

ds2 � − f (r )dt2 + f (r )−1dr2 + r2d	2
D−2, (5)

where r is, as always, the radial coordinate, and with d	2
3 is the line element of the unit 3-dimensional sphere [74, 75]

d	2
3 � dθ2 + sin2 θdφ2 + sin2 θ sin2 φdψ2. (6)

Also, the electric field E(r) is found to be [70]

E(r ) � Frt � C

rβ
. (7)

Here, we have two constants: (i) C is a constant of integration, and (ii) is the exponent β, which is given by [70]

β � 1 +
3

2k − 1
, (8)

and the metric function f (r) is computed to be [70]

f (r ) � 1 − μ

r2 +
q

rβ
. (9)

Be aware and notice that the mass M and the electric charge Q of the BH are related to the two parameters μ, q , respectively. In
particular, in five dimensions, the parameters q and C are related via [70]

q � ακ
(−2C2)k (1 − 2k)2

3(k − 2)
. (10)
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In what follows, we will consider the case in which the exponent β is higher than 2. To guaranties real roots for the metric function
f (r), we take the constants μ and q such that [70]

μ > 0 and 0 < q < qmax, (11)

where the upper bound of the charge parameter corresponds to the extremal BHs. Such bound is then given by

qmax �
(

1 − 2k

k − 2

)(
2 − k

1 + k
μ

) k+1
2k−1

. (12)

Thus, when we take k � 1, the higher-dimensional version of the Reissner–Nordström BH [76] of Maxwell’s linear electrodynamics
is recovered. Also, the bound for the charge is qmax � μ2/4. In addition, setting q � 0, the corresponding higher-dimensional
version of the Schwarzschild black hole solution [77] is obtained. The thermodynamics of charged black holes with a nonlinear
electrodynamics source was studied in Ref. [78].

2.2 Wave equation for scalar perturbations

In what follows, we will summarize the main ingredients to understand the computation of the QN frequencies for scalar perturbations.
Let us start by considering the propagation of a test scalar field, � in a fixed gravitational background. Such field have the following
properties: (i) it is assumed to be real, (ii) it is massless, (iii) it is electrically neutral, and finally (iv) � is non-minimally coupled to
gravity. Thus, the corresponding action S[gμν,�] acquires the simplest form

S[gμν,�] ≡ 1

2

∫
d5x

√−g
[
∂μ�∂μ� + ξ R5�

2
]
. (13)

Notice that the parameter ξ control the strength of the non-minimal coupling, and R5 is the Ricci invariant at five dimensions. Now,
we take advantage of the well-known Klein–Gordon equation (see for instance [49, 79–81] and references therein)

1√−g
∂μ(

√−ggμν∂ν)� � ξ R5�. (14)

In order to decouple and subsequently resolve the Klein–Gordon equation, we take into consideration the symmetries of the metric
and propose as ansatz the following separation of variables:

�(t, r, θ, φ, ψ) � e−iωt y(r )

r3/2 Ỹl (	), (15)

where ω is the unknown frequency (which will be determined), while Ỹl (	) is the five-dimensional generalization of the spherical
harmonics, and they depend on the angular coordinates only [82]. After the implementation of the above-mentioned ansatz, it is
easy to obtain, for the radial part, the following equation

f (r )2y′′(r ) + f (r ) f ′(r )y′(r ) +

(
ω2 − f (r )

(
ξ R5 +

l(l + 2)

r2 +
3

2

f ′(r )

r
+

3

4

f (r )

r2

))
� 0, (16)

where the prime denotes derivative with respect to r. Now, changing variable to the well-known tortoise coordinate x, i.e.,

x ≡
∫

dr

f (r )
. (17)

We obtain the Schrödinger-like equation, namely

d2y

dx2 + [ω2 − V (x)] y � 0, (18)

Finally, the effective potential (for scalar perturbations) in five-dimensions is then given by [83]

V (r ) � f (r )

(
ξ R5 +

l(l + 2)

r2 +
3

2

f ′(r )

r
+

3

4

f (r )

r2

)
. (19)

As always, the prime denotes differentiation with respect to the radial coordinate, and l ≥ 0 is the angular degree. As benchmarks,
we will take three concrete values for the exponent k in Fig. 1. Note that depending on the value of k, the potential can be a potential
well, left panel, or a potential barrier, central and right panel. As we will see, in the next section, the first type of potential leads to
unstable modes, while that the second one leads to stable modes.
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Fig. 1 Effective potential for scalar perturbations against the radial coordinate for μ � 2 and l � 5. Left panel Assuming k � 0.75 and q � 1.39 we plot
three curves: (i) short-dashed blue line for ξ � 5, (ii) dashed red line for ξ � 15 and (iii) long-dashed green line for ξ � 50. Middle panel Assuming k � 1.5
and q � 1.27 we plot three curves: (i) short-dashed blue line for ξ � 5, (ii) dashed red line for ξ � 15 and (iii) long-dashed green line for ξ � 50. Right
panel Assuming k � 1.75 and q � 1 we plot three curves: (i) short-dashed blue line for ξ � 5, (ii) dashed red line for ξ � 50 and (iii) long-dashed green
line for ξ � 100

Fig. 2 Quasinormal modes (real and imaginary parts) against the non-minimal coupling ξ . The first row corresponds to the sixth table where the numerical
values used are as follows: q � 0.1, μ � 2, l � 5 and k � 1.75 for several values of the non-minimal coupling parameter ξ . The second row corresponds
to seventh table where the numerical values used are as follows: q ≈ 1.39, μ � 2, l � 5 and k � 0.75 for several values of the non-minimal coupling
parameter ξ . The color codes is as follows: (i) n � 0 (short-dashed blue line) (ii) n � 1 (dashes red line) (iii) n � 2 (long-dashed green line) (iv) n � 3
(dot-dashed cyan line) (v) n � 4 (dotted orange line)

3 Quasinormal frequencies

3.1 Stable modes

In what follows, we will compute the corresponding QNFs for μ � 2, l � 5, considering small and large values of the charge for
three different values of the exponent k, and varying the non-minimal coupling constant ξ . Be aware and notice we have an allowed
range for q, ranging from zero to qmax. Given that the WKB method is well-known, we take advantage of such a fact to avoid the
inclusion of unnecessary details. We then show that QN spectra may be computed via the following expression

ω2
n � V0 + (−2V ′′

0 )1/2�(n) − iν(−2V ′′
0 )1/2[1 + 	(n)], (20)
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Fig. 3 Quasinormal modes (real and imaginary parts) against the non-minimal coupling ξ . The first row corresponds to the eighth table where the numerical
values used are as follows: q � 0.1, μ � 2, l � 5 and k � 1.5 for several values of the non-minimal coupling parameter ξ . The second row corresponds to
ninth table where the numerical values used are as follows: q � 1.27, μ � 2, l � 5 and k � 1.5 for several values of the non-minimal coupling parameter
ξ . The color code is as above

where (i) V ′′
0 is the second derivative of the potential evaluated at the maximum, (ii) ν � n + 1/2, V0 is the maximum of the effective

potential barrier, (iii) n � 0, 1, 2 . . . is the overtone number, while the functions �(n),	(n) are complex expressions of ν (and
derivatives of the potential evaluated at the maximum), and they can be consulted in [35, 40]. At this level, it should be mentioned
that the third-order approximation was first constructed by Iyer and Will in Ref. [32] and subsequently generalized. Thus, to perform
our computations, we have used the Wolfram Mathematica [84] code utilizing WKB method at any order from one to six [85]. In
particular, notice that we will use the sixth-order approximation. Also, it should be mentioned that, for a concrete angular degree
l, we have considered values n < l only, see e.g. Tables 9 to 14 of the present manuscript (Appendix). For higher order WKB
corrections (and recipes for simple, quick, efficient and accurate computations) see [86–88]. In particular, we should mention that
as the WKB series converges only asymptotically, there is no mathematically strict criterium for evaluation of an error according to
[87]. However, the sixth/seventh order usually produce the best results. In that direction, taking into account the Padé approximations
we can have a higher accuracy of the WKB approach; however, this analysis will be performed in a future study.

Our main numerical results are summarized in Figs. 2, 3 and 4 as well as in the corresponding Tables 9, 10, 11, 12, 13, and 14.
We then show the corresponding QNMs by plotting the real and imaginary parts against the non-minimal coupling ξ , for different
values of the parameters involved. We also show that, for a given set of parameters, when we increase the overtone number the real
and imaginary part, in general, decreases.

To summarize, we can say that the spectrum obtained exhibits the following properties: (i) the real part of the frequencies, Re(ωn),
is always positive while the imaginary part, Im(ωn), always is negative. In light of the above-mentioned, all modes are found to be
stable, (ii) the real part decreases with n (except in rare cases), (iii) the absolute value of the imaginary part increases with n (except
in rare cases).

Now, in order to visualize the effect of the angular number l on the QNFs, we show in Tables 1 and 2 the QNFs for k � 0.75,
and k � 1.50, respectively, and different values of ξ , and l. Here, we consider the family of the complex modes. We can observe
that the longest-lived modes are the ones with higher angular number for massless scalar field, according with other spacetimes,
see [57–60]. Also, we show in Table 1 the QNFs via the WKB and the pseudospectral Chebyshev methods in order to check both
methods.

Let us briefly explain how the pseudospectral Chebyshev method works. First, in Eq. (16), we make the change of variable
z � 1−rH/r , and the variable y now is a function of z. Then, we incorporate the boundary conditions; we impose the wave to be purely
ingoing at the horizon (z � 0), and purely outgoing at spatial infinity (z � 1); therefore, we define y(z) � z−iω/ f ′(rH )eiωrH /(1−z)χ(z),
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Fig. 4 Quasinormal modes (real and imaginary parts) against the non-minimal coupling ξ . First row corresponds to the tenth table where the numerical
values used are q � 0.1, μ � 2, l � 5 and k � 1.75 for several values of the non-minimal coupling parameter ξ . The second row corresponds to the eleventh
table where the numerical values used are q � 1, μ � 2, l � 5 and k � 1.75 for several values of the non-minimal coupling parameter ξ . The color codes
is as above

where χ satisfies the appropriate boundary conditions to the eigenvalue problem under consideration. Then, the result can be expanded
in a complete basis of functions, namely {φi (z)} : χ(z) � ∑∞

i�0 ciφi (z), where ci are the coefficients of the expansion, and we
choose the Chebyshev polynomials as the complete basis, which are defined by Tj (x) � cos( j cos−1 x), where j corresponds to the
grade of the polynomial. The sum must be truncated until some N value; therefore, the function χ(z) can be approximated by N in
such a way that χ(z) ≈ ∑N

i�0 ci Ti (x). Given that, by construction 0 ≤ z ≤ 1, the connection between the variable x and z is then
x � 2z−1. The interval [0, 1] is, therefore, discretized at the Chebyshev collocation points z j by using the so-called Gauss–Lobatto
grid, where z j � 1

2 [1 − cos( jπ
N )], with j � 0, 1, . . . , N . To finish, the differential equation is evaluated at each collocation point.

Therefore, a system of N + 1 algebraic equations is obtained, and it corresponds to a generalized eigenvalue problem which is solved
numerically to obtain the QNMs spectrum, by employing the built-in Eigensystem [ ] procedure in Wolfram’s Mathematica [84].

For the pseudospectral method, we use a value of N in the interval [95–105] for the majority of the cases which depends on the
convergence of ω to the desired accuracy. We will use an accuracy of eight or nine decimal places for the majority of the cases. In
addition, to ensure the accuracy of the results, the code was executed for several increasing values of N stopping when the value of
the QNF was unaltered. We can observe a less difference of the QNFs obtained via both methods when l increases. As we mentioned,
in Table 2, we show that the QNFs for k � 1.5, in this case, are not possible to find QNFs that converge by using pseudospectral
Chebyshev methods, which limit our analysis. So, we can give a deeper analysis, as we will see in the following for k < 1, but for
k > 1, as we have shown, we have obtained only complex frequencies, leaving outside possible QNFs, as the purely imaginary, that
generally appear by using the pseudospectral Chebyshev method, as in other spacetimes.

3.2 Unstable modes

As was already mentioned, the existence of a potential well is possible, see left panel Fig. 1, which depends on the value of the
parameter k, and there are bound states for massless scalar fields which allows to accumulate the energy to trigger the instability.
However, the potential well has to be deep enough in order to guarantee the stability of those bound states, due to the zero point
energy of quantum systems [89]. Thus, as in Refs. [90, 91], we can view the existence of a negative potential well as a necessary but
not sufficient condition for the instability. A potential well exists in the vicinity of the event horizon in our system when V ′

e f f (rH ) < 0
as in Ref. [92], which yields

−2ξr2
H f ′′(rH ) + 3(1 − 4ξ )rH f ′(rH ) + 2l(l + 2) + 12ξ < 0, (21)
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Table 1 QNFs for scalar
perturbations via the WKB and
the pseudospectral Chebyshev
methods for q � 0.1, μ � 2, and
k � 0.75 for several values of the
non-minimal coupling parameter,
ξ , and the angular degree l

l ξ � 0.1 ξ � 5 ξ � 50

0 0.377443–0.269536 I 0.347908–0.266779 I 0.286247–0.459588 I

0 (WKB) 0.384833–0.259599 I 0.345895–0.217895 I 0.284643–0.356436 I

1 0.718764–0.255032 I 0.706724–0.257024 I 0.632025–0.313644 I

1 (WKB) 0.717699–0.257415 I 0.704157–0.25834 I 0.644719–0.3147 I

5 2.126587–0.249752 I 2.123992–0.250408 I 2.101789–0.256645 I

5 (WKB) 2.12659–0.249749 I 2.12399–0.250399 I 2.10179–0.256661 I

20 7.431488–0.249136 I 7.430828–0.249194 I 7.424795–0.249734 I

20 (WKB) 7.43149–0.249136 I 7.43083–0.249194 I 7.4248–0.249734 I

Table 2 QNFs for scalar
perturbations for q � 0.1, μ � 2,
and k � 1.5 for several values of
the non-minimal coupling
parameter, ξ , and the angular
degree, l, using the WKB method

l ξ � 0.1 ξ � 5 ξ � 50

0 0.392846–0.259043 I 0.398241–0.259198 I 0.432526–0.270273 I

1 0.730638–0.261403 I 0.732645–0.261827 I 0.751854–0.265274 I

5 2.16401–0.253957 I 2.1647–0.253996 I 2.17103–0.254357 I

20 7.56188–0.253307 I 7.56207–0.25331 I 7.56387–0.253338 I

Table 3 Fundamental QNFs for massless scalar perturbations for μ � 2, ξ � 50, k � 0.75 and l � 5, for several values of q

q 0 0.1 0.2 0.3 0.4 0.5

ω 2.12502086–0.25070686
I

2.10178921–0.25664532
I

2.08151163–0.26301349
I

2.06374377–0.26907083
I

2.04784247–0.27451745
I

− 0.171610883 I

q 0.55 0.6 0.7 0.8 0.9 1

ω − 0.01043062933 I 0.13903435 I 0.41237443 I 0.66263041 I 0.89911396 I 1.12875673 I

Here, we have used the pseudospectral Chebyshev method

Table 4 Fundamental QNFs for massless scalar perturbations for μ � 2, ξ � 50, q � 1 and l � 5, for several values of k

k 0.55 0.6 0.62 0.64 0.65 0.67

ω 2.12517781–0.25067652 I 2.12438790–0.26526377 I − 0.20138421 I 0.18315691 I 0.33864551 I 0.59293385 I

k 0.7 0.72 0.75 0.77 0.8 0.82

ω 0.86635211 I 0.99504189 I 1.12875673 I 1.18669872 I 1.23665588 I 1.24921455 I

Here, we have used the pseudospectral Chebyshev method

and unstable modes would appear for a deep enough potential well. When the above condition is not satisfied for some set of
parameters, the potential well disappears and the background becomes stable under scalar perturbations because the perturbation
can be easily absorbed by the black hole.

In order to consider more complicated potentials. In Tables 3, 4 and 5, we consider a potential where the condition (21) is not
violated, and we can observe that a transition from stable and oscillatory QNFs to purely imaginary and unstable QNFs, when rH
decreases. However, in Table 6, the condition (21) is violated, for small values of ξ < 10, and rH is constant. The QNFs are oscillatory
and stable. While that for ξ > 10, the condition (21) is not violated, and there is a transition from oscillatory and stable QNFs to
purely imaginary and unstable QNFs, when the value of the parameter ξ increases. With the data summarized in Tables 3, 4, 5 and
6, we present the parametric region of instability from the numeric point of view and with Eq. (21) we characterized the necessary
condition for the existence of a potential well.

Furthermore, if we consider l � 0, 10, 11, and fixed values of μ, q, l, ξ, κ in order to observe the behavior of the modes near the
threshold of instability, in Fig. 5 we show the associated potential. For these values, Eq. (21) yields that the slope of the potential
vanishes for l ≈ 10.78, but l must be an integer number. So, for l ≤ 10 there is a potential well outside the event horizon and for
l > 10 there is a potential barrier. In Table 7, we show the QNFs. Here, it is possible to observe the appearing of unstable modes
for small values of l (l < 10), where there is a potential well. Then, a stable and purely imaginary mode near the threshold of
instability for l � 10, where there is a potential well, but one could to say that the potential does not allow bound states; then, the
scalar field cannot accumulate the energy to trigger the instability. Finally, for l > 10 the modes are stable and complex where there
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Table 5 Fundamental QNFs for massless scalar perturbations for q � 1, k � 0.75, ξ � 50 and l � 5, for several values of μ

μ 2.2 2.4 2.6 2.8 3 3.2

ω 0.43342701 I − 0.07195799 I 1.79618206–0.24073196
I

1.74305536–0.22779439
I

1.69324593–0.21687689
I

1.64662973–0.20758148
I

Here, we have used the pseudospectral Chebyshev method

Table 6 Fundamental QNFs for massless scalar perturbations for μ � 2, q � 1, k � 0.75 and l � 5, for several values of ξ

ξ 10 15 20 25 30 35

ω 2.09163108–0.25829400 I 2.07174879–0.26594160 I − 0.02654658 I 0.23692838 I 0.45959635 I 0.65381000 I

Here, we have used the pseudospectral Chebyshev method

Fig. 5 Effective potential V (r) as
a function of r, with μ � 2, q � 1,
l � 0, 10, 11, ξ � 50, and
κ � 0.75. Top panel for
rH < r < 6, bottom panel for
rH < r < 1.35

Table 7 Fundamental QNFs for massless scalar perturbations using the pseudospectral Chebyshev method for q � 1.00, μ � 2, ξ � 50, and k � 0.75, for
several values of l

l 0 9 10 11 20

ω 1.75679814 I 0.0852972116 I − 0.231851685 I 4.16523558–0.26181366 I 7.41598416–0.24738691 I

Here, rH ≈ 1.325, and r− � 1

is a potential barrier. Therefore, for the case showed in Table 7, as for some values of multipoles l the QNFs are unstable; then, the
propagation of the scalar field is unstable.

On the other hand, we can observe that the potential well depends on the size of the black hole, and the parameters ξ and k as
well. We summarize our results in Fig. 6, where we show colored regions where the condition (21) over the plane (k, ξ ) is satisfied.
In this figure, we can see that the area of the region decreases when the event horizon increases (left panel), as well as, when l
increases (right panel).

It is worth mentioning that for charged spacetimes, the propagation of uncharged scalar fields is described by the existence of
two distinct families of modes, one of them are the complex ones associated with the photon sphere, and the other family consists of
purely imaginary frequencies which appear when the inner and outer horizon get close, near extremal modes, such transition from
complex to purely imaginary dominant modes, as the charge increases, has been found in various charged spacetimes. Also, when
the scalar field is charged, the QNMs become complex [93–106]. Here, we can observe a transition from a dominance of stable
modes, see Table 1, to unstable modes at the near extremal limit that depend on l, see Table 8, for low values of l. For higher values
of l the stables modes are dominant.
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Fig. 6 We show the parameters space for condition (21). Left panel for different values of the event horizon rH , with q � 0.1, and l � 0. Right panel for
different values of l, with q � 0.1, and rH � 1.5

Table 8 Fundamental QNFs for massless scalar perturbations using the pseudospectral Chebyshev method for q � 1.39, μ � 2, ξ � 50, and k � 0.75, for
several values of l

l 0 1 5 20

ω 0.190553109 I 0.156785407 I 0.1278929823 I 1.93954264–0.30711773 I

Here, rH ≈ 1.210, and r− ≈ 1.180

4 Conclusions

In summary, in this work, we computed the quasinormal spectrum for scalar perturbations of five-dimensional charged black holes
in the Einstein–Power–Maxwell nonlinear electrodynamics. The test field that perturbs the gravitational background is taken to be
a real, massless, electrically neutral canonical scalar field, and we have adopted the popular and widely used WKB semi-analytical
method, which has been of utility for determine the stable QNFs and the pseudospectral Chebyshev method, when the WKB method
does not allow to obtain the QNFs, and which has been of utility for obtain unstable QNFs.

Also, two different types of potentials, were described, one of them is a potential well, where we showed that it is a necessary
condition, but it is not enough to have unstable modes. Also, we showed the regions in the parameters space (ξ, k), where there is
a potential well, and the area of the regions on the (ξ, k) plane decreases when the event horizon increases and when l increases.
The other potential corresponds to a potential barrier, where the QNFs are complex and the modes are stable. Also, for the complex
modes, we showed that the longest-lived modes are the ones with higher angular number.

It could be interesting to consider other method that allow to obtain the QNFs for k > 1 in order to perform a deeper analysis
of the stable modes, by distinguishing the family of modes, and the propagation of massive scalar field, we hope to address it, in
a forthcoming work. Probably, in this case, one could distinguish the family of modes, their dominance, and also to find a critical
mass where beyond this values the longest-lived modes are the ones with smaller angular number. Also, it would be interesting to
study the quasinormal spectra for other types of fields such as Dirac or electromagnetic fields and gravitational perturbations.
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Table 9 QNFs for scalar
perturbations via the WKB
method for q � 0.1, μ � 2, l � 5
and k � 0.75 for several values of
the non-minimal coupling
parameter ξ

n ξ � 0.1 ξ � 0.5 ξ � 0.9

0 2.12659–0.249749 I 2.12638–0.249801 I 2.12616–0.249854 I

1 2.08323–0.754668 I 2.08295–0.754819 I 2.08267–0.754971 I

2 1.99865–1.27612 I 1.99823–1.27635 I 1.9978–1.27658 I

3 1.87772–1.82536 I 1.87708–1.82563 I 1.87643–1.82593 I

4 1.72787–2.4128 I 1.72693–2.41309 I 1.72596–2.41342 I

n ξ � 5 ξ � 20 ξ � 100

0 2.12399–0.250399 I 2.11627–0.252445 I 2.08033–0.263545 I

1 2.0798–0.756553 I 2.06959–0.762663 I 2.02484–0.797258 I

2 1.99348–1.27906 I 1.97808–1.28931 I 1.9161–1.35156 I

3 1.86981–1.82914 I 1.8462–1.84408 I 1.76043–1.94076 I

4 1.71609–2.41729 I 1.68111–2.43839 I 1.56805–2.57681 I

Table 10 QNFs for scalar
perturbations via the WKB
method for q ≈ 1.39, μ � 2,
l � 5 and k � 0.75 for several
values of the non-minimal
coupling parameter ξ

n ξ � 0.1 ξ � 0.5 ξ � 0.9

0 2.14733–0.2339 I 2.14397–0.23532 I 2.14067–0.236719 I

1 2.09943–0.70572 I 2.09571–0.71009 I 2.09209–0.714405 I

2 2.0035–1.19032 I 1.99916–1.19799 I 1.99495–1.20563 I

3 1.86014–1.69827 I 1.85516–1.70986 I 1.85022–1.72163 I

4 1.67177–2.24214 I 1.66652–2.25841 I 1.66105–2.27566 I

n ξ � 5 ξ � 15 ξ � 50

0 2.11065–0.249681 I 2.05538–0.272132 I 1.93953–0.307151 I

1 2.06059–0.75416 I 2.00273–0.8233 I 1.86192–0.937341 I

2 1.96171–1.27461 I 1.90129–1.39425 I 1.71218–1.61458 I

3 1.8177–1.82274 I 1.75914–1.99365 I 1.50113–2.36576 I

4 1.6352–2.40979 I 1.58606–2.62226 I 1.23978–3.21111 I

Table 11 QNFs for scalar
perturbations via the WKB
method for q � 0.1, μ � 2, l � 5
and k � 1.5 for several values of
the non-minimal coupling
parameter ξ

n ξ � 0.1 ξ � 0.5 ξ � 0.9

0 2.16401–0.253957 I 2.16407–0.25396 I 2.16412–0.253964 I

1 2.12032–0.76746 I 2.12038–0.767469 I 2.12043–0.767479 I

2 2.03517–1.29800 I 2.03524–1.29801 I 2.03528–1.29803 I

3 1.91361–1.85716 I 1.91372–1.85714 I 1.91374–1.85720 I

4 1.76335–2.45565 I 1.76352–2.45553 I 1.76348–2.45569 I

n ξ � 1 ξ � 10 ξ � 100

0 2.16414–0.253964 I 2.1654–0.254036 I 2.17806–0.254764 I

1 2.12045–0.767481 I 2.12173–0.767695 I 2.13454–0.76986 I

2 2.03531–1.29803 I 2.03661–1.29839 I 2.04974–1.30192 I

3 1.91377–1.85719 I 1.91512–1.85767 I 1.92874–1.86242 I

4 1.76355–2.45562 I 1.76494–2.45625 I 1.77924–2.46192 I
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Table 12 QNFs for scalar
perturbations via the WKB
method for q � 1.27, μ � 2,
l � 5 and k � 1.5 for several
values of the non-minimal
coupling parameter ξ

n ξ � 0.1 ξ � 0.5 ξ � 0.9

0 3.21532–0.27333 I 3.22127–0.273044 I 3.20562–0.274672 I

1 2.98958–0.87490 I 3.02224–0.866361 I 2.76589–0.948612 I

2 1.94728–2.20243 I 2.1039–2.04232 I 1.24019–3.48308 I

3 0.986473–5.93414 I 1.08297–5.42664 I 0.678619–8.77654 I

4 0.627977–11.5661 I 0.688916–10.6304 I 0.452687–16.6763 I

n ξ � 5 ξ � 15 ξ � 50

0 3.30853–0.267911 I 3.48324–0.26023 I 3.59523–0.277533 I

1 3.57635–0.736656 I 4.46767–0.604084 I 1.45626–2.0183 I

2 4.92945–0.87228 I 8.25419–0.536388 I 0.49512–9.38322 I

3 8.56712–0.676706 I 16.3517–0.369498 I 0.27506–20.7987 I

4 15.1886–0.460721 I 29.8935–0.250227 I 0.13932–38.8091 I

Table 13 QNFs for scalar
perturbations via the WKB
method for q � 0.1, μ � 2, l � 5
and k � 1.75 for several values of
the non-minimal coupling
parameter ξ

n ξ � 0.1 ξ � 0.5 ξ � 0.9

0 2.17307–0.255753 I 2.17311–0.255756 I 2.17315–0.255758 I

1 2.12878–0.772917 I 2.12882–0.772925 I 2.12887–0.772933 I

2 2.04244–1.30734 I 2.04248–1.30736 I 2.04253–1.30737 I

3 1.91917–1.87077 I 1.9192–1.87080 I 1.91926–1.87081 I

4 1.76672–2.47407 I 1.76673–2.47415 I 1.7668–2.47414 I

n ξ � 1 ξ � 10 ξ � 100

0 2.17317–0.255759 I 2.17416–0.255818 I 2.18415–0.256415 I

1 2.12888–0.772934 I 2.12989–0.773112 I 2.14000–0.774892 I

2 2.04255–1.30737 I 2.04358–1.30766 I 2.05395–1.31058 I

3 1.91928–1.87080 I 1.92035–1.8712 I 1.93113–1.87516 I

4 1.76685–2.47410 I 1.76797–2.4746 I 1.77933–2.47939 I

Table 14 QNFs for scalar
perturbations via the WKB
method for q � 1, μ � 2, l � 5
and k � 1.75 for several values of
the non-minimal coupling
parameter ξ

n ξ � 0.1 ξ � 0.5 ξ � 0.9

0 2.90347–0.325681 I 2.90478–0.325728 I 2.90598–0.325787 I

1 2.85124–0.984032 I 2.85415–0.983627 I 2.85565–0.983695 I

2 2.74539–1.66617 I 2.75648–1.66055 I 2.7596–1.65964 I

3 2.58331–2.39865 I 2.61962–2.36711 I 2.62801–2.36083 I

4 2.36511–3.22449 I 2.45482–3.10935 I 2.47515–3.08515 I

n ξ � 5 ξ � 50 ξ � 100

0 2.91816–0.326413 I 3.05059–0.333757 I 3.19694–0.342039 I

1 2.86902–0.985207 I 3.00056–1.00782 I 3.14697–1.03296 I

2 2.7783–1.6591 I 2.90186–1.70253 I 3.04435–1.7477 I

3 2.66229–2.34635 I 2.75761–2.43481 I 2.88291–2.51526 I

4 2.54342–3.02458 I 2.57361–3.22566 I 2.65751–3.38674 I
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