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Abstract In this study, the (2+1)-dimensional combined potential Kadomtsev-Petviashvili with B-type Kadomtsev—Petviashvili
equation is investigated via two diverse techniques. Firstly, we retrieve the bilinear form of given equation by utilizing Hirota bilinear
method. Consequently, the lump waves and collisions among lumps and periodic waves, the collision between lump wave and single,
double-kink soliton solutions, the collision among lump, periodic, and single, double-kink soliton solutions as well as periodic wave
soliton solutions for the given model are constructed. Lastly, the polynomial-expansion method is implemented to acquire the exact
travelling wave solution to the equation. Moreover, 3D, contour and 2D graphs are used to demonstrate the physical nature of many
intriguing exact solutions. A wide range of nonlinear partial differential equations can be solved using the considered methods.

1 Introduction

Nonlinear evolution equations (NLEEs) are important in a variety of scientific and technological fields. Nonlinear wave structures
have aroused the interest of many academics in recent decades due to their multiple properties seen in various disciplines of
modern sciences. In the existence of solitary waves, nonlinear evolution models are employed to simulate the effect of surface
for deep water and weakly nonlinear dispersive long waves. As a result, exact solutions of corresponding models are essential
for studying dynamical structures and other features of physical phenomena in a variety of fields, including electromagnetism,
physical chemistry, geophysics, ionised physics, elastic medium, fluid motion, fluid mechanics, elastic medium, nuclear physics,
electrochemistry, optical fibres, energy physics, chemical mechanics, gravity, biostatistics, statistical and natural physics. Recently,
bilinear approaches are more frequently used by renowned researcher to deal with many interesting models. Consequently, various
forms of solitonic structures are elaborated in the form of lump solution [1], N-soliton solution [2], breather solution [3], bright
soliton solution [4], soliton solution [5], dark soliton solution [6], Multiple-soliton solution [7, 8] and interaction solutions [9, 10]. A
specific form of rational localized wave solution that decays algebraically to the background wave in space direction is known as the
lump wave solution. The lump wave solution was first discovered in the study of Kadomtsev-Petviashvili equation. Consequently,
finding lump-type wave solutions to nonlinear evolution equations and examining their dynamical behaviour have gained alot of
attention in the field of nonlinear wave theory. The study of explicit solutions for various soliton equations has played a significant
role in modern mathematics with implications in a variety of fields including mathematics, physics and other sciences. There are
several well-established approaches for obtaining the exact solutions to various nonlinear models in the literature [11-15].

Itis well acknowledged that the construction of exact solutions and the study of integrable properties for NLEEs play a significant
role in various nonlinear physical and mathematical events. Such models play a key role to study a wide range of dynamical wave
structures efficiently that occur in the real world and can be found in a variety of domains, including physics [16], applied mathematics
[17] and engineering sciences [18]. There are numerous methods for obtaining their exact solutions, such as exp-function method
[19, 20], Hirota bilinear method [21, 22], Lie group method [23, 24], Bdcklund transformation [25, 26], variable separation method
[27, 28], multiple exp-function method [29, 30], Darboux transformation [31, 32], extended tanh function method [33, 34], tanh
method [35, 36], homogeneous balance method [37, 38], inverse scattering method [39, 40], multiple exp-function algorithm [41,
42], homoclinic approach [43], ¢°-model expansion method [44], Lie symmetry analysis [43, 46].

This paper is organized as follows: The (2+1)-dimensional pKP-BKP model is described in Sect. 2. In Sect. 3, the bilinear form
for Eq. (4) is obtained. While Sect. 4 is devoted to the mathematical analysis of our considered model. The travelling wave solutions
are retrieved in Sect. 5. Moreover, Sect. 6 contains discussion and results. Lastly, Sect. 7 contains conclusions.

8 e-mail: kalimulhaq@must.edu.pk (corresponding author)

Published online: 01 October 2022 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1140/epjp/s13360-022-03301-6&domain=pdf
http://orcid.org/0000-0003-0300-6515
mailto:kalimulhaq@must.edu.pk

1100 Page 2 of 22 Eur. Phys. J. Plus (2022) 137:1100

(a)
15
1.0}
e
05+ \ /
. . L . )
_4 =9 2 4
(0

Fig. 1 3D, contour and 2D plots for |1 (x, y, )| with ap = 2, a3 = —1.5, ag = 04, a5 =05, ag =0.75, g =25, 11 =04, [, =05, m| =
—1.5, mp =045

2 The (2+1)-dimensional pKP-BKP model

The Kadomtsev-Petviashvili (KP) equation explains waves that are weakly dispersed [47, 48] with modest amplitudes propagating.
The KP equation is an dispersive integrable equation with many soliton solutions that can be expressed in the Lax form. The KP
hierarchy is a multi-dimensional structure with infinite dimensions with a variety of distinct formulations and symmetries. The
B-type KP (B-KP) equation, as part of the KP-category equations, have garnered a significant amount of recent research in fluid
dynamics and other areas [49, 50].

The (2 + 1)-dimensional integrable KP model may be expressed as [51]

Mt + 60ty )y + Pxxxx — Hyy = 0. (D
Substituting u = u, and using integration, the potential KP (pKP) equation

Pext + Opx fhxx + Mxxxx — Myy = 0. (@)
is obtained using Eq. (1). Moreover, the (2 + 1)-dimensional integrable B-KP equation may be expressed as

(ISM)SC + ls,ux,uxxx + Mxxxxx)x + 5[ﬂxxxy + 3(Mx/'4y)x] + e — 5I'Lyy =0. (3)

The N-soliton solutions and infinite dimensional Lie algebra structures for Eqs. (1) and (3) are studied recently using various Hirota
bilinear forms [52-54]. Consequently, a combined pKP-BKP equation is proposed, that can be expressed as [55]

23] (45M)25Mxx + 150y fhxxx + 1Sy fhxx + Mxxxxxx)
+ 02 (6pty fhyx + Mxxxx)

@ Springer



Eur. Phys. J. Plus (2022) 137:1100 Page 3 of 22 1100

-4 ) 2 4

(O]

Fig. 2 3D, contour and 2D plots for |£3(x, y, £)] with ag = 0.45, a5 = 0.55, ag = 0.75, =2.5, I = —0.4, I = 0.5, I3 = 0.6

+a3 (BMxMxy + 3Mxxlfvy - /«Lxxxy) toqlxx + A5y + Aoy = 0, @

where o;(i=1, 2,..., 6) are constants. If o] = a3 = a4 =0, a2 = a5 =1, ag = -1, then Eq. (4) represents the pKP Eq. (2), that admits
the weakly dispersive waves in a paraxial wave approximation and can alternatively be characterised as the evolution of lengthy
ion-acoustic waves of modest amplitude propagating in plasma physics. However, if 1 = a5 =1, 00 = a4 = 0, 3= 5, o = -5,
Eq. (4) illustrates the BKP Eq. (3), that is a significant physical model that owns the isospectral soliton and may be characterised
as waves in a particular form of nonuniform medium. Recently, a wide range of fresh analysis towards exact solutions to the given
model (4) have been published. The N-soliton solution were constructed in [56]. The resonant multi-soliton, M-breather, M-lump
and hybrid solutions were obtained in [57]. Lastly, the explicit solution and its soliton molecules were retrieved in [58].

3 Bilinear form of 4

The bilinear approach was first proposed by Hirota [59] in 1971 for constructing multiple solutions to integral nonlinear evolutionary
equations. The main idea behind this technique is to employ some dependent variable transformation to change the NLEE in a form
where the unknown function appears bilinearly. The bilinear approach is one of the most essential and extensively used methods for
solving nonlinear partial differential equations. This strategy is based on using suitable transformations to convert nonlinear models
into bilinear forms. Then, on the basis of the bilinear forms, N-soliton solutions, kink solutions, rational solutions, lump solutions,
breather solutions, periodic soliton solutions and other exact solutions can be derived. To acquire the bilinear form of Eq. (4), we
apply the transformation

w=2[InF]y. (&)
Consequently, we retrieve the bilinear form as
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Fig. 3 3D, contour and 2D plots for |ua(x, y, t)| with o] = 0.2, ap = 0.25, a3 =2.5, ag =04, a5 =0.5, g =0.75, no =0.7, ny = —1.5, np =

0.75, n3 = 0.25, wy = 1.755, w3 = —0.6

(1 DS + a2 D} + a3 DIDy + a4 D + a5 Dy D, +a6D§)F.F =0,

so that the function D fulfills

0 a\"/0 a\"
DI'D!(p.q) = <£ — W) (E — W) x p(x, t).q(x’, t’)|x =x',t=1.

As aresult, we get

o1 (FFxxxxxx - 6Fxexxxx + 15Fxxexxx - IOF)?XX)
+ 02 (FFyxxx — 4F, Fyxy +3F)
+a3(F Fyxxy — 3Fy Fexy + 3Fyy Fxy — Fyxi Fy)

+ay(FFo — F) +as(FFy = FxF) +ag( FFyy = F2) =0,

obviously if F meets Eq. (4), then u = 2[In F], produces the solution of specified model (4) instantly.

4 Mathematical analysis

In this section, several significant forms are employed to extract the analytical solutions of Eq. (4).
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Fig. 4 3D, contour and 2D plots for |ug(x, y, 1) with a1 = 0.15, o = 0.2, a3 = 0.4, ay = 0.3, a5 = 0.5, ag = 0.85, Iy = 0.1, I3 = 0.4, mg =
0.5, m; =025, m3 =0.35, w; = 0.5

4.1 Lump wave solutions

In this portion, we examine the operator F' given by
F=§+§+g. 7
where
& =lhx+by+lt, & =mix +myy+mst,

while/;, m;’s, g are the constants to be determined. Using Eq. (7) into Eq. (6), we have a system of equations with several parameters.
We get the following findings by resolving them utilizing a computational programme such as Mathematica.

Case 1:

0[611m% — 0[61%11 — 0[41% — m%omll — 2aglymimy
I3 = > ,

as(If +mf)

aél%ml — a4l%m1 — 2apl1lamy — a4m? — a6m%m1

- as(If +m) ’

m3

here Iy, > my, my, g are free parameters. Hence utilizing all the above known values, Eq. (7) gives

2

aglim? — agl?l] — asl’ — m2aul; — 2o6lam ma)t

F=g+ (61 2 6lnl1 412 ;41 6l2m] 2) +hx+by
as(If +m7)
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Fig. 5 3D, contour and 2D plots for |ug(x, y, t)| with ap = 0.55, a3 = 0.5, ag = 0.45, a5 =0.5, ag =0.75, ng =0.15, n; =0.75, np = —0.65

2
(oed%ml — a4l%m1 —2a6l1lomy — a4m? — a6m%m1)t
+ o (12 3 +mix+myy| .
547 +m1

Utilizing the above result together with Eq. (5), we gain 1 (x, y, 1).

Case 2:

206lomy agl% - a4m% - a6m%

h=05=———"— m3= ,
osmi osmg

where [, m1, my, g are free parameters. Hence utilizing all the above known values, Eq. (7) gives

2
2aelamat \ 2 t(aﬁl% —ogm? — a6m%)
F=g+|hy— + +mix +mpy | . 8)
asm asm
Utilizing Eq. (8) together with Eq. (5), we obtain the solution
2_ 2_ 2
4m (—t(a(’lz Z:le agm)) +mx +m2y>
Ma(x, y, 1) = )

2

3 .
t(ad%—mm%—aﬁmz) 2a6lomot 2
g+ g tmix+may| + lgy—ots—m1

Case 3:

i(20(4l% +aslsl) + 20‘615)

my =ily, mp =ily, my=—

3

asly
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Fig. 6 3D, contour and 2D plots for |1o(x, y, 1)| with g = 0.45, a5 = 0.5, ag = 0.85, lp = 0.15, [{ = 0.3, I =0.35, my =04, mp =0.25, m3 =

0.35, w; = 0.5, wy = 0.6

where 1, [, [3, g are free parameters. Hence utilizing all the above known values, Eq. (7) gives

2
it (2a4l? + asl3ly +2a6l3
F:g+(l3t+l1x+lzy)2+<— (2al + aslsly 62)+i11x+i12y> )
asly
Utilizing Eq. (10) together with Eq. (5), we retrieve the solution
: 2 2
2y (It +1ix + Lay) +2il; (—W vilix+ ilzy>

n3(x, y, 1) =

it(2u4P+asl3l+2a6l?
4 [ = HEatFasihiteact;)
8 asly

2
+ilix + ilgy) + (I3t + hx + hy)?
4.2 Collision among lump wave and strip soliton
In this fragment, we use the operator
F =wy+ a)lf,-'lz + a)2§22 +w3e,
where

E =lo+lLix+Dhy+I3t, & =mo+mix +myy +mat,
& =ng+n1x +nyy +nst,

10)

(an

12)
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(c)

Fig. 7 3D, contour and 2D plots for |u12(x, y, )| with ap = 0.55, a3 = 0.5, ag = 0.45, a5 = 0.5, g = 0.75, ng = 0.15, n; = 0.95, np = —0.95

while /;, m;, n;’s are the constants to be determined. These substitutions for &;, &, and &3 will be applicable throughout this paper.
Using Eq. (12) into Eq. (6), we have a system of equations with several parameters. We get the following findings by resolving them
utilizing a computational programme such as Mathematica. Case 1:

6 4 3

oiny +ozny +a3nang 2

2
+o4ny +aen;
, w1 =0, wp =0,

n3 =
osng

here ng, n1, na, wg, w3 are free parameters. Hence utilizing all the above known values, Eq. (12) gives

4 2 2
l‘(otll’l(l5 +oaon; + a3n2n% +ogny + Ol6n2)

F =wy+ w3 exp(no— +nyx +n2y). (13)

osny
Utilizing Eq. (13) together with Eq. (5), we acquire the solution

6 4 3 2 2
t\any+ayn;+aznyny+oqny+oen
2(7110)3 exp(no — ( Ll 1 1 L 2) +nix +n2y>>

os5ny

pa(x, y, 1) = (14)
t(otln?+a2n%+o{3n2n?+a4n%+a6n%)

w3 exp(no — @i +n1x +n2y> + wo

Case 2:

—asll o) — a3 w) — aglym?ws + aglim2wr — 2aglamimaws
2 1 1 2

l =
3 os (llza)l + m%wz) ’

—Ot4l%m1a)1 + asl%mlwl — 2a6l1lymywy — Ot4m%a)2 — aﬁm%mlwz

"= o5 (llza)l +m%w2) ’
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Fig. 8 3D, contour and 2D plots for | 13(x, y, )| with ag = 0.45, a5 = 0.5, ag = 0.75, lnp = 0.5, [} = —=2.75, I, = 2.55, my = 0.5, my = 1.25, m3 =
1.55, w1 =0.5

3(112a)1 + m%w2)2((le%a)1 +azbhljwr + Olzm%wz + a3m1m2w2)
a)o = — k)
2
aswiwy(lamy — lym3)

w3 =0,

while lo, l1, o, mg, m1, ma, w1, wy are free parameters.
Utilizing all the above determined parameters in Eq. (12) and with the aid of Eq. (5), we have us(x, y, 1).
Case 3:

azasls axmy
=0, b=—-—=,m=— , wo =0,
2ap 06 o3
ag‘agl%a)l
w) = , W3 = Os

n 4a§a6m1 ((160[%"11 + a§a4m1 + a§a5m3)

where lo, I3, mo, m1, m3, w; are free parameters.
Hence utilizing all the above known values, Eq. (12) gives

2
2 412 armyy
asaslzy )2 a5a3l3a)1<m3t+m1x— ] +m0) s

I
F=w1<l3t+—+l

20006 4a%a6m1 (oeax%ml + a§a4m1 + a§a5m3) '

Utilizing Eq. (15) together with Eq. (5), we gain ue(x, y, ).
Case 4:

@ Springer
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(c)

Fig. 9 3D, contour and 2D plots for |i15(x, y, )| with ap = 0.55, a3 = 0.5, a4 = 0.45, a5 = 0.5, o = 0.75, ng = 0.15, ny = 1.95, n3 = 0.95

i (—204lymy — aslzmy — aslims3)

) = , wp =0,
o fag /M1 2a4limy + aslzmy + aslims
P j 2aalym + aslzmy + asl
wy = — 1 21, 03 = 0. my = _i/miN2o4lim +aslzmy +as ms
my \/Z/Ol_ﬁ«/n

where lo, I1, I3, mo, m1, m3, @ are free parameters.
Hence utilizing all the above known values, Eq. (12) gives

V2. JogJmiN2oalim + aslzm) + asling

lzwl _i4/m1y\/2a411m1+a5l3m|+a511m3
1 NeNCTN

2
my

) 2
i/I1y(=204limy — aslzsm; — aslim3)
=w +l3t+1Lx + 1y

2
+m3t +mix +m0>

(16)

Utilizing Eq. (16) together with Eq. (5), we gain u7(x, y, t).

@ Springer
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Fig. 10 3D, contour and 2D plots for | 16(x, y, )| with o1 = 1.2, ap =2, a3 = —1.5, ag = 0.4, a5 =0.5, ag =0.75, mg = 0.5, ng = —0.85, n| =
0.225, np = 0.8, wp =0.75, w3 =0.65

4.3 Collision between lump wave and double stripes soliton

In this subsection, we review the operator F stated as
F = wy + w162 + w2€3 + w3 cosh(&3). (17)

Using Eq. (17) into Eq. (6), we have a system of equations with several parameters. We get the following findings by resolving them
utilizing a computational programme such as Mathematica.
Case 1:
4a2n‘1‘ + 4a3n2n? + a4n% + aGn%

n3 = ,wp=0, w1 =0, w, =0,
os5n]

where ng, n1, na, 3 are free parameters.
Hence utilizing all the above known values, Eq. (17) gives

3 2 2)

t(4052n‘1l +4aznany + oauni + aegn;

F=w3cosh(— +n1x +n2y+n0). (18)

osng
Utilizing Eq. (18) together with Eq. (5), we retrieve the solution

t(4a2n‘1‘ + 4a3n2n? + oz4n% + am%)

+nix+nyy+ngp|.
os5nq

pg(x, y, 1) = 2n1tanh(—

Case 2:

@ Springer
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Fig. 11 3D, contour and 2D plots for |;¢17(x, v, )] with @] = 0.45, ap = 0.25, a3 = 0.25, ay = 0.3, a5 = 0.4, ag = 0.35, mg = 0.125, my =
0.35, my = 0.25, ng = 0.125, wy = 0.55, w3 = 0.75

lhm lz(2cx4m% +asm3my + 2a6m§) I%a)l
h=—1=- s 0 =———5, wp=w3 =0,
mp Qsmima m

2

where lo, [o, mo, my, ma, m3, ; are free parameters.
Hence utilizing all the above known values, Eq. (17) gives

2
Irt (20[4111% +asmamy + 2a6m§) lomx
asnimy m

l%wl (mat +mx +moy + mo)?

19
m (19)
Utilizing Eq. (19) together with Eq. (5), we gain uo(x, y, t).
Case 3:
—Pasw; — agl?w) + agmio 206l
I3 = 147 ahad 622,m1=0,m3=—w,wo=0,w3=0,
asljwy asly

where lo, I1, [2, mo, ma, w1, wy are free parameters.
Hence utilizing all the above parameters, Eq. (17) gives

t(—l%omwl - ad%wl + aém%wz)
F = w

2
+11x +lzy +lo)
asliwy

@ Springer
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(o)

Fig. 12 3D, contour and 2D plots for [ 1g(x, y, )] with ) = 0.15, ay = 0.25, a3 = 0.5, as = 0.4, a5 = 0.5, ag = 0.55, lp = 0.25, I} = —0.75, I =
0.35, w; = 0.5, wy = 0.85

( 2ae6lomot
+aop| ——=—=

2
+moy + m0> . (20)
06511

Utilizing Eq. (20) together with Eq. (5), we have po(x, y, 1).
Case 4:

160218 + dag(—daon? — aun? — asnang) — dazn’
31 1 1 1
ny =

2a6 ’
wy)=0, w1 =0, wr =0,

where ng, n1, n3, wsz are free parameters.
Utilizing all the above determined parameters in Eq. (17) and with the aid of Eq. (5), we gain p11(x, y, ?).

4.4 Collision between lump and periodic waves
In this portion, we examine the operator F specified by

F = wo + 016} + w2&5 + w3 cos(&3). 1)

Using Eq. (21) into Eq. (6), we have a system of equations with several parameters. We get the following findings by resolving them
utilizing a computational programme such as Mathematica.
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Fig. 13 3D, contour and 2D plots for |p19(x, y, t)| with a1 = 0.2, ap = 0.25, a3 = 0.5, a4 = 0.4, a5 = 0.5, ag = 0.55, l[p = 0.5, [} =0.65, mg =
0.5, m; =0.75, my; =035, w1 =1, w3 =1

Case 1:

4012;1‘1t + 4a3n2n% — a4n% — ot6n%

n3 = , w0 =0, w1 =0, @ =0,
as5nq

where ng, n1, na, 3 are free parameters.
Hence utilizing all the above known values, Eq. (21) gives

4 3 2 2
t(dopn’ +4aznony — aany — aen
F = w3 cos ( 1 L ! 2)
asng

+npx +n2y+no). (22)

Utilizing Eq. (22) together with Eq. (5), we obtain the solution

t(4012n‘11 + 4a3n2n% — ot4n% — (xm%)
u12(x, y,t) = —2nj tan +nix +nyy+ng|.
asni
Case 2:
—20{41121111 — ()l5112m3 — 20{6[%1’)11 lhm llza)l
3= s my=——, Wy =———>, 0 =3 =0,

aslim

where lo, I1, I, mg, m1, m3, wy are free parameters.
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Fig. 14 3D, contour and 2D plots for |21 (x, y, t)| with a = 0.7, b = 0.5, ¢ = 0.5, a1 = 0.6, ap = 1.2, a3 = 0.5, oy = 045, a5 = 0.55, ag =
0.75, Co =0.5, & = 1.6

Hence utilizing all the above parameters, Eq. (21) gives

t(=2a4lPm — asl?ms — 2a6l2m
FIU)I(( 4tpmi stpms3 6tn 1)

2
+hx+hy+lp
aslim

2
lfa)l (lzrl"—lly +m3t +mix + mo)

2
my

(23)

Utilizing Eq. (23) together with Eq. (5), we retrieve the solution w13(x, y, t).
Case 3:

—l%o%lla)l — 054113&)1 — a4llm%a)2 + oc6llm%a)2 — 206lamimowy

l =
3 o5 (l%wl + m%wz) ’

—ot4lfm1w1 + oegl%mlwl —2apl1lomyw; — omm?wz — a6m%m1a)2
m3 =
2 2 ’
()t5(l1 wi +mla)2)

wy =0, w3 =0,

where lo, I1, [2, mo, my, ma, w1, @ are free parameters.
Utilizing all the above determined parameters in Eq. (21) and with the aid of Eq. (5), we gain p14(x, y, ?).
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(c)

Fig. 15 3D, contour and 2D plots for |u23(x, y, #)| with a = 0.75, b = 0.55, ¢ = 0.65, @1 = 0.5, ap = 1.12, 3 =045, ag = 0.5, a5 = 0.65, ag =
0.5, & = 1.56

Case 4:

4a3n? - \/16a§n? + 4a6(4a2n? — omn% - a5n3n1)

na

2a6 ’
wy)=0, w1 =0, w =0,

where ng, n1, n3, w3z are free parameters.
Utilizing all the above determined parameters in Eq. (21) and with the aid of Eq. (5), we have u5(x, y, 1).

4.5 Collision among lump wave and double stripes soliton

Here, we get the operator F of the form
F = wo + w1 £} + o) cosh(&) + w3 cos(&3). (24)

Using Eq. (24) into Eq. (6), we have a system of equations with several parameters. We get the following findings by resolving them
utilizing a computational programme such as Mathematica.

Case 1:
—160[111‘15 + 405211‘11 + 4a3n2n? — a4n% — a6n% . .
n3 = , mp =1iny, mp =1ny,
asng
i(16a1n? — 40[2n‘1t — 4a3n2n% + a4n% + a(,n%)
m3 = — , 0o =w; =0,
asni

@ Springer



Eur. Phys. J. Plus (2022) 137:1100 Page 17 of 22 1100

i, or
1 n n n n B n n n 1 n n n 1 n n X

’ -4 -2 r 2 4
(0

Fig. 16 3D, contour and 2D plots for |u3(x, y,#)| with a = 0.75, b = 0.55, ¢ = 0.55, @1 = 0.56, ap = 1.12, a3 = 0.65, M = 045, ag =
0.455, a5 =0.55, a6 =0.75, §g = 1.6, C; =0.5

where ng, ni, n2, wy, w3z are free parameters.
Utilizing all the above determined parameters in Eq. (24) and with the aid of Eq. (5), we gain p16(x, y, ?).
Case 2:

—16a1m? — 4012m‘11 — 4a3m2m% — a4m% — a6m% ) )
m3 = , N =1my, ny =1imy,
osmi
i(16a1m? + 40[2m‘11 + 4oz3m2m? + a4m% + oz6m%)
n3 = — , wp =w; =0,

o5my

where mg, my, ma, ng, ny, na2, w2, w3 are free parameters.
Utilizing all the above determined parameters in Eq. (24) and with the aid of Eq. (5), we retrieve the solution p17(x, y, ?).

4.6 Periodic wave soliton
Lastly, we get the operator F as
F =wy+ w1e 8 + wyed + w3 cos(&r). (25)

Using Eq. (25) into Eq. (6), we have a system of equations with several parameters. We get the following findings by resolving them
utilizing a computational programme such as Mathematica.
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Case 1:

—16010 — darl? — dazhl? — aul? — agl?
13: 14 201 3628y 407 62,603:&)0:0,
asly

where lo, [1, [, w1, w, are free parameters.
Hence utilizing all the above known values, Eq. (25) gives

t(160118 + 4ol + daslol} + aal} + agl3)

F = wy exp( —hix —hy —lp)
asly
t(—=16011 — dapl} — dazlhl3 — agl? — al?
+wzexp< ( 1 21 321 nad 62)+11x+lzy+l() .
asly
Utilizing the above result together with Eq. (5), we gain u1g(x, y, t).
Case 2:
Limy (ce3my (12 + m?) + agma) —
12:1 1(3 1(1 12) 62) X,C()QZO,(UOZO,
aemy
m% (a4 + 16a1m‘1‘ — 4a2m% — 4a3m2m1) + aGm%
mi3 = — ,
3 osmi
1
I3 = 73(3a3l%m1)( - 3(0{% + 2a1(x6)lfm?
asaeh
— ZZ%m%((ot_% — 100{1a6)m? + 2a006m + 3a3a6m2)
+1im (a%m? + (xﬁm% (—014 + 10011111‘11 — 2a3m2m1) — aém%)
+ X (20ma — azmy})),
where

X = \/m?(llz + m%)z((a% + 5a1a6)l%m1 + 36 (—5a1m? +aomq + a3m2)),

where [y, [1, mg, m1, ma, w1, w3 are free parameters.
Utilizing all the above determined parameters in Eq. (25) and with the aid of Eq. (5), we get the solution p19(x, y, ).

5 Travelling-wave solutions for Eq. (4)

In this section, we employ the polynomial-expansion method to find some new exact travelling wave solutions for Eq. (4). Conse-
quently, we use the transformation stated as

wx,y, t) = Qmn), n=ax+by — ct, (26)
where a, b are constants and c is the velocity of the wave. Substituting Eq. (26) into Eq. (4), we have
a1a°Q0 () + 1501 (P Q' () + QP Q" ()
+4501a* Q' (1) Q" () + (aaa® — asac +ash?) Q" ()
+(atar — dPa3b) QW () + (602> + 603a°b) Q2 ()R () = 0, (27)
through integration, we retrieve the result
a1a®QO () + 1501a° (P Q' () + 1510 Q' (n)?

+ (014612 — asac + asbz)Q’(n) + (a4a2 — a3a3b)9(3)(n)

+ (3ana® +3a3a’b) Q2 (n)* = 0, (28)
Utilizing the specified method, we suppose the solution for Eq. (28) given by
m m
Q=&+ &om) +) gi¢m . (29)
j=1 j=1
while ¢(n) satisfies
¢'() = p)* + Rp(n) + Q, (30)
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here &, &;’s, £;’s, R, Q are constants and m is a positive integer. As a result, we retrieve the following exact solutions:
(H)when R =0,0 =0,

1
o) =——; (31)
n
(2)ywhen R #0, Q =0,
R
_ _ 2
o) =~y (32)
here Cy is the constant of integration;
B)when R =0, Q #0,
If Q > 0, then
p(n) =~Q tan(@n),
p(n) = —v/—Q cot(@n>,
If 0 <0, then
d() = —/ —Qtanh(v —Qﬂ>,
#(n) = v/—Qcoth («/—Qn);
4)when R #0, Q #0,
Kkl — Clipe®1—,k2)n
0D = = (33)
where
1 1
P 2 _ _ I 2 _ _
;q_4( R2 — 40 72) x2_4( R2 —4Q R)
here C; is the constant of integration.
Comparing Q(S)(n) with Q’(n)9(3)(77) in Eq. (28) we have m = 1. As a result, Eq. (29) can be expressed as
Q) = &0+ E101) + . (34)
()

Utilizing Eq. (34) together with Eq. (30) into Eq. (28) and balancing the coefficients of ¢(n) to zero, we have a set of equa-
tions involving several parameters. We get the following findings by resolving them utilizing a computational programme such as
Mathematica. Set 1:

3asa® +3aza?b+ Z

30a%w;
where
— \/6Oa1a4 (—a2a4 +asac — O[sz) + (3a2a3 + 3a3a2b)2,
Set 2:
—4a§a2 +25a a4a? — dapazab + 2401%192 + 25a1a6b2
c= ,
25aaa5
—aay — 3a3b ¢ 0=0. ¢ 4
= ’ 1 = =V, 1 = —4aa
V3432 Ja
Set 3:
aay + 3a3b aay + 3a3b
R = O7 =, = —4 s = —
< 80a3a; 51 4 & 20a%a
—40{%:12 + 250 10ua? — dapozab + 240{%1)2 + 2501 aph?
a 25a0 a5
Set 4: —40[%612 +25a104a? — danazab + 2401%192 + 2501 agh?
c= ,

25aa a5
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G=0. R = iv/—20a1a3Q + aza + 3azb
’ V54372 Jar
Hence utilizing all the above determined results, we construct the travelling-wave solutions for Eq. (4) as
Type 1:  When R = 0 and Q = 0, we get the solution
(3a2a3 +3a3ab + Z)(—ax — by +ct)
30a%a;

s El = —4a.

wa0(x, y, 1) =& +

’

where

7 = \/60a1a4(—a2a4 +asac — C(ébz) + (30{203 + 3a3a2b)2.
Type 2:  When R # 0 and Q = 0, we obtain the solution
4»\/ —aoly) — 30{3b

_ ny/—aap—3a3b ’
NENGNCTY (Coe V3 e —1>

m21(x, y, 1) =& +

where
(—40¢§a2 +25a104a? — danazab + 2405%!72 + 25a1a6b2)t

25aa a5

n=ax+by—
Type 3:  When R = 0 and Q > 0, we attain the solution

aap+3azb
n 3o
a Hl

(aan + 3a3b) cot VI

ua(x, y, t) =& + —
V502 [ 4eatSest

a’oq
aay+3a3b
“Bar
aar+3a3b avag
a tan
aday 4./5
- 9
NG

where
(—4aja® + 250 asa® — danaszab + 24a3b + 2501 a6b?)t

25a0c1(x5

n=ax+by—

Type4: When R =0 and Q < 0, we retrieve the solution

7aa2+3o(3b
3
a- le

(aap + 3a3b) coth w5

n23(x, y, 1) =& — —

V5a2a, /_%

1
n _mx2+3a3h
a.l— aax+3a3b tanh “30‘1
Y aday 45
+ )
NG
where
) (—4aZa® + 250 a4a® — dorazab + 24a3b® + 250 bt
n=ax+by— = .

25(10(10[5
Type 5:  When R = 0 and Q < 0, we have

| —C Kze(Kl —Kk2)n

K
M24(x, y, 1) = & — 4a(

1 — Cyewi—x2)n
where
1 —2001a3Q + ara + 3a3b i/ =2001a3Q + ara + 3azb
ki =—|.- —40—
4 5a3% V5032 ey
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1 —20a1a3Q + ana + 3a3b 40 i\/—20a1a3Q+a2a+3a3b
Ky =—-|—,/— — — ,
2T Sa3a; N NG
(—40[%&12 +25a 04a? — danazab + 2405%172 + 25a1a6b2)z
n=ax+by— - .
25aa a5

6 Discussion and results

The graphical description of the (2+1)-dimensional pKP-BKP equation are demonstrated in this section. Using a specified range
of values, various forms of v-shaped, singular bell-shaped, periodic and bright solitons are displayed. Figure 1 depicts the profiles
of |ui(x, y, t)] which exhibits a v-shaped soliton solution using constants ay = 2, a3 = —1.5, a4 = 0.4, as = 0.5, g =
0.75, g =25, 11 =04, b =0.5, m; = —1.5, mp = 0.45. Moreover, Figs. 2,3,4,5,6 represent the v-shaped soliton solutions
for various constant values. Figure 7 represents the behaviour of solution |u3(x, y, #)| which illustrates the singular bell shaped
solution using parameters a4 = 0.45, a5 = 0.55, ag = 0.75, = 2.5, [} = —0.4, I, = 0.5, I3 = 0.6. Consequently, Figs.
8,9,10,11 demonstrate the singular bell shaped solutions for specified parameters. Singularities may exist almost anywhere and
they are surprisingly abundant in the mathematics used by physicists to understand the universe. Figure 12 depicts the behaviour
of solution |u12(x, y, t)| which describes the periodic solitary waves solution utilizing constants ay = 0.55, a3 = 0.5, g4 =
0.45, as = 0.5, ag = 0.75, ng = 0.15, n1 = 0.95, n, = —0.95. Moreover, Figure 13 display the periodic solitary waves solutions
for various constant values. Figure 14 represents the profiles of |i16(x, ¥, t)| which illustrates the bright soliton solution utilizing
parameters o] = 1.2, ap = 2, a3 = —1.5, a4 = 0.4, a5 = 0.5, a¢ = 0.75, mg = 0.5, ngp = —0.85, n; = 0.225, ny =
0.8, wy = 0.75, w3 = 0.65. Also, Figs. 15, 16 demonstrate the bright soliton solution for specified parameters. Lastly, we have
illustrated 3D, contour and 2D graphs of various retrieved solutions to have a better understanding of the behaviour of solutions.

7 Conclusion

In this manuscript, the (2+1)-dimensional pKP-BKP equation is investigated utilizing the Hirota bilinear method and the polynomial-
expansion method. Consequently, we have generated a variety of fascinating exact solutions to the considered equation using various
types of functions. Additionally, using Mathematica 11.0, we were able to generate numerous graphical representations of the
specified solutions utilizing various parameters. Lastly, we assert that the methodologies under consideration are applicable to a
wide range of NLEEs in mathematical physics.
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