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Abstract This paper is intended to examine thermomechanical interactions within a functionally graded unbounded non-
homogeneous solid with a spherical hole in a unified way using the Moore–Gibson–Thompson thermoelasticity (MGTE) model.
The material has an inhomogeneity with the distribution of material properties in the radial direction determined by a power-law
distribution. For the radial stress and temperature problems, the boundary conditions have been applied. The Laplace transform
integral has been applied to get the analytical expressions for the thermophysical fields. Tables and graphs are shown to compare the
accuracy of the suggested theory with the findings of previous models. The studied field variables have been numerically calculated
and carefully discussed due to the effects of heterogeneity and relaxation.

1 Introduction

Heterogeneous substances are those that have non-uniform physical properties. These materials are also known as non-homogeneous
materials because they contain a variety of mineral elements. These materials are of great importance in the design of future
intelligent mixtures due to their superior mechanical properties and have many wide applications in the fields of science, technology,
and engineering. Functionally gradient materials (FGMs) are an interesting and modern type of material with thermal and elastic
properties that vary gradually and continuously across surfaces, thus reducing thermal stress. As a result, they are really useful in
nuclear, aviation, and space technology. Geophysics, magnetic storage, plasma physics, and structural components, as well as the
measurement of thermal elasticity, are just a few of the areas in which they can be used.

Many attempts have been devoted to the production of resistant materials in extreme temperatures because they are needed
for many engineering purposes, such as thermal barrier coatings and engine components. FGMs, for example, were first used in
Japan in the late 1980s as one of these products. Their macroscopic material properties are often different, separating them from
laminated composite materials, which have major interlinear stresses that cause harm due to sudden shifts in physical properties
across layer interfaces. The advantageous constituent stages for the achievement of high efficacy combine FGMs and laminated
composite structures. References [1–11] and a recent book by Hetnarski and Eslami [12] are worth mentioning for some recent
studies on FGMs in thermoelastic models.

In order to solve the failure of the model that a mechanical reason has no influence on a region of temperature, Biot [13] developed
the theory of coupled thermoelasticity. This encouraged non-classical theories to be proposed, which meant replacing the equivalent
thermal conductivity equation and Fourier’s law with more general equations. Moreover, each generalization of thermal conductivity
leads to the formation of a generalized theory of thermal elasticity. As an example, Lord and Shulman [14] improved the Fourier
law of heat transfer. This model gives a hyperbolic type with a limited rate of thermal wave spread. The Lord–Shulman theory is
also known as the extended thermoelastic generalized model. Green and Lindsay [15] established the temperature-rate-dependent
thermoelasticity (TRDTE) model later with the implementation of two theoretical thermal relaxation factors, although the Fourier
law in this model remains unchanged. The theory is based on two theoretical parameters.

Green and Naghdi [16–18], which have been the focus of active research in recent decades, are making an alternative theoretical
development on this topic. Green and Naghdi made sufficient basic changes to the constitutive equations in this development and
suggested three different thermoelasticity models, marked as types I, II, and III, thermoelastic, covering a much more extensive
type of heat conduction problem. Chandrasekharaiah’s dual-phase delay (DPL) thermoelastic model [19] is also stated here. This
theoretical approach is based on another heat transfer equation called Tzou’s two-phase model [20]. In addition to the previous
models, a number of prevailing thermal elasticity models have been proposed that are based on these theories, which have been
generalized in many papers [21–25].
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The GN-II model proposed by Green and Naghdi was found to be able to resolve the obvious shortcoming of the infinite spread
of thermal waves in thermal elasticity in the classical model, while the results verified the corresponding results of the GN-III theory,
which showed that this theory leads to a deficiency like the conventional Fourier law. To address this shortcoming, Quintanilla [26,
27], Abouelregal et al. [28], and Aboueregal and Sedighi [29] have introduced a modification of the GN-III model with the addition
of a relaxation parameter. The generalized theory of thermal elasticity proposed by Quintanilla [26, 27] has been developed by
describing the equation of thermal conductivity using the Moore–Gibson–Thompson (MGT) equation.

In recent decades, the MGT equation has been progressively included in a broad range of papers focused on interpretation and
comprehension. Kaltenbacher et al. [30] considered the Moore–Gibson–Thompson equation, which can be derived, for example, as
a linearization of a model for wave propagation in viscous thermally relaxing fluids. This third order in the time equation exhibits
a range of dynamical behaviors for its solutions that are dependent on the physical parameters in the equation, even in the linear
version. Quintanilla is also analyzing the stability and well-being of the solutions in this theory [26]. Conti et al. [31] built a
thermoelastic model of the MGT type based on the temperature background, and an integral differential formula from the MGT
equation was considered. In the MGT thermoelastic model, Pellicer and Quintanilla [32] have greatly deepened their understanding
of the uniqueness and instability of some thermomechanical problems. The basis of the theory proposed by Quintanilla [26] was a
third-order differential equation developed in the field of fluid mechanics. Since its inception, the number of specialized studies in
the field of thermoelastic theory MGT has increased significantly [33–37].

This paper focuses on the generalized theory of thermoelasticity, including the Moore–Gibson–Thompson heat equation (MGTE).
The modified MGTE theory of thermoelasticity is a new generalized formula of the Lord–Shulman (LS) theory and the Green–Naghdi
theory of thermoelasticity, which includes the energy dissipation of the third type (GN-III). The MGTE heat transfer model that
has been developed reduces special cases to those of the previous generalized thermoelastic models. The functionally classified
non-homogeneous thermoelastic sphere cavity is examined to verify the predictability of the current model. Except for the three
phase layers, the properties of composite materials differ considerably according to the power law in the cavity.

The basic equations are accurately solved by means of the Laplace transform method, and the Laplace inversion process is
employed to obtain the time field results numerically. The various influences on the distribution of analytical expressions of thermal
relaxation and heterogeneity indicators have been studied graphically and analytically. The findings acquired in this article were
as good as the published studies in the literature on methodology. We thought that the findings of this research would be useful in
attempting to understand the fundamental characteristics of this new heat transfer model.

2 Basic equations

The governing system of equations and the constitutive relationships in the context of the model of the MGTE of thermoelasticity
for an anisotropic medium can be expressed in the following manner [26, 29]:

The modified MGTE heat equation [26]: (
1 + τ0

∂

∂t

)
�q � −K �∇θ − K ∗ �∇ϑ (1)

The energy balance equation:

ρCe
∂θ

∂t
+ βi j T0

∂

∂t

( �∇ · �u
)

� −�∇ · �q + ρQ (2)

The stress–strain relations:

σi j � Ci jklekl − βi jθ. (3)

The relation between the displacement and strain:

ei j � 1

2

(
u j,i + ui, j

)
. (4)

The equation of motion:

σi j, j + Fi � ρüi (5)

In Eqs. (1)–(5), −→q denotes the heat flow, θ � T −T0 is the temperature change, T indicates the absolute temperature, T0 denotes
the environment temperature, K is the thermal conductivity, σi j is the stress tensor, ei j is the strain tensor, ui are the displacements,
CE is the specific heat, βi j � Ci jklαkl , Ci j are isothermal elastic constants, αkl is the thermal expansion tensor, Q is the heat
supply, ρ is the density, −→u is the displacement vector, and Fi are the body force components. Also, the scalar function ϑ called the
thermal displacement fulfills ϑ̇ � θ , and K ∗ > 0 is a material constant characteristic of Green and Naghdi theories called thermal
conductivity rate.
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By differentiating Eqs. (1) and (2) with respect to time and then removing −→q from Eqs. (1) and (2) and using ϑ̇ � θ , the modified
heat transfer MGTE equation can be obtained as:(

1 + τ0
∂

∂t

)[
∂

∂t

(
ρCE

∂θ

∂t

)
+ T0

∂2

∂t2

(
βi j ei j

) − ∂Q

∂t

]
� ∇.

(
K ∇ θ̇

)
+ ∇.

(
K ∗∇θ

)
. (6)

We make the assumption that the material constants satisfy ρ > 0, CE > 0, βi j > 0, K ∗ > 0, K > 0, and K − τ0K ∗ > 0.
In this new model, the system of fundamental equations is completely hyperbolic, and both the kinetic equations and the heat

transfer equation are hyperbolic. The problem of the propagation velocity of infinite heat waves found in the classical models is thus
solved.

3 Special cases

From the basic equations in the previous section, some previous thermoelastic theories can be deduced as distinct states as follows:

• The conventional thermoelastic theory (CTE) [13] when τ0 � 0 and K ∗ � 0. The heat equation will be in the form:

K∇2θ � ρCe
∂θ

∂t
+ T0

∂

∂t

(
βi j ei j

) − ρQ. (7)

• The Lord–Shulman theory (LS) [14] when τ0 > 0 and K ∗ � 0. The heat equation will be:

K∇2θ �
(

1 + τ0
∂

∂t

)(
ρCe

∂θ

∂t
+ T0

∂

∂t

(
βi j ei j

) − ρQ

)
. (8)

• The Green and Naghdi heat conduction equation (GN-II) [16] can be achieved if K ∗ > 0, τ0 � 0, and K � 0 as:

K ∗∇2θ � ∂

∂t

(
ρCE

∂θ

∂t

)
+ T0

∂2

∂t2

(
βi j ei j

) − ∂Q

∂t
(9)

• The Green and Naghdi third-type model (GN-III) [17] can be obtained when τ0 � 0 as:

K∇2θ̇ + K ∗∇2θ � ∂

∂t

(
ρCE

∂θ

∂t

)
+ T0

∂2

∂t2

(
βi j ei j

) − ∂Q

∂t
. (10)

4 Application

In this section, as an application of the novel theory, we will study the problem of an infinitely flexible, heterogeneous, orthotropic
thermal solid with a spherical hole of radius a to validate the accuracy of the suggested model. We assume that the interactions are
spherically symmetric and use spherical polar coordinates (r, ϑ, ϕ) with the cavity origin at the center. Hence, all the interactions
considered are therefore dependent on the distance r and time t only. The analysis will display only the radial displacement component
ur � u(r, t).

In spherical coordinates, the thermal stresses for an orthotropic solid will be [38, 39]:

σrr � C11err + C12
(
eϑϑ + eϕϕ

) − β11θ, (11)

σϕϕ � σϑϑ � C12err + C22eϑϑ + C23eϕϕ − β22θ, (12)

with

β11 � α1C11 + 2α2C12, β22 � α1C12 + α2C22 + α2C23. (13)

where the parameters α1 and α2 are the coefficients of thermal expansion. The equation of motion can be written as:

∂σrr

∂r
+

2

r

(
σrr − σϕϕ

) � ρ
∂2u

∂t2 . (14)

The non-vanishing strains are given by

err � ∂u

∂r
, eϑϑ � eϕϕ � u

r
, erϑ � erϕ � eϑϕ � 0. (15)

The thermal stresses may be expressed as:

σrr � C11
∂u

∂r
+ C12

2u

r
− β11θ, (16)

σϕϕ � C12
∂u

∂r
+ (C22 + C23)

u

r
− β22θ. (17)
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The MGTE heat Eq. (6) can be expressed as:(
1 + τ0

∂

∂t

)[
ρCe

∂2θ

∂t2 + T0
∂2

∂t2

(
β11

∂u

∂r
+ β22

2u

r

)]
� ∇.

(
K∇ θ̇

)
+ ∇.

(
K ∗∇θ

)
. (18)

The heterogeneity of the material is considered by taking into account that thermal conductivity, elastic coefficients, and density
are entered into some laws of power with the variance of the radial distance r . Assume that the physical properties of the FGMs of
the cavity are different in the radial direction and are defined as [38, 39]

Ci j � ci j r
ξ , ρ � ρor

ξ , K � K0r
ξ , K ∗ � K ∗

0 r
ξ . (19)

The parameter ξ is the heterogeneity index that governs the distribution of component materials through disk geometry. For an
orthotropic homogeneous thermal medium, ξ � 0 and ρo, K0, K ∗

0 , and ci j are nonzero constants.
By using the above quantities, the governing equations will be in the following forms:

σrr � r ξ

[
c11

∂u

∂r
+ c12

2u

r
− β1θ

]
, (20)

σϕϕ � r ξ

[
c12

∂u

∂r
+ (c22 + c23)

u

r
− β2θ

]
, (21)

c11
∂2u

∂r2 + c11
ξ + 2

r

∂u

∂r
+ 2[c12(ξ + 1) − (c22 + c23)]

u

r2 ,−β1
∂θ

∂r
− [β1(ξ + 2) − 2β2]

θ

r
� ρ0

∂2u

∂t2 , (22)

(
1 + τ0

∂

∂t

)[
ρ0Ce

∂2θ

∂t2 + T0
∂2

∂t2

(
β1

∂u

∂r
+ β2

2u

r

)]
� K0

∂

∂t

(
∂2θ

∂r2 +
ξ + 2

r

∂θ

∂r

)
+ K ∗

0

(
∂2θ

∂r2 +
ξ + 2

r

∂θ

∂r

)
, (23)

where

β1 � α1c11 + 2α2c12, β2 � α1c12 + α2(c22 + c23) (24)

To simplify the problem, we present the following dimensionless variables and symbols:

R � r

a
,U � C11

β1aT0
u,

{
τ, τq

} � v

a
{t, τ0},� � θ

T0
, τi j � σi j,

β1T0
, v �

√
C11

ρ
. (25)

In light of Eq. (25), the non-dimensional forms of Eqs. (20)–(23) can be simplified as follows:

τrr � Rξ

[
∂U

∂R
+ λ1

2U

R
− �

]
, (26)

τϕϕ � Rξ

[
λ1

∂U

∂R
+ λ2

U

R
− β�

]
, (27)

(
1 + τq

∂

∂t

)[
∂2�

∂τ 2 + ε
∂2

∂τ 2

(
∂U

∂R
+ β

2U

R

)]
� K1

∂

∂τ

(
∂2�

∂R2 +
ξ + 2

R

∂�

∂R

)
+ K2

(
∂2�

∂R2 +
ξ + 2

R

∂�

∂R

)
, (28)

∂2U

∂R2 +
ξ + 2

R

∂U

∂R
− m

U

R2 − ∂2u

∂τ 2 � ∂�

∂R
+ h

�

R
, (29)

where

λ1 � c12

c11
, λ2 � c22 + c23

c11
, β � β2

β1
, K1 � K0

avρ0Ce
, K2 � K ∗

0

v2ρ0Ce
,

ε � T0β
2
1

c11ρ0Ce
,m � 2[λ2 − λ1(ξ + 1)], h � (ξ + 2) − 2β.

(30)

To determine the boundary conditions of the problem, we shall consider the surface of the spherical socket to be free of traction
but subject to thermal shock. As a result, the thermophysical boundary conditions at the cavity’s internal surface are described as:

τrr (R, τ ) � 0 at R � 1, t > 0,

�(R, τ ) � �1H(τ ), at R � 1, t > 0,
(31)

where �1 is the positive constant and H(t) is the Heaviside function.
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5 Transformed solution

The Laplace transform method is applied to Eqs. (26) to (29), under the following initial conditions:

U (R, τ ) � 0,
∂U (R, τ )

∂R
� 0,

∂2U (R, τ )

∂τ 2 � 0, atτ � 0,

�(R, τ ) � 0,
∂�(R, τ )

∂R
� 0,

∂2�(R, τ )

∂τ 2 � 0 at τ � 0.

(32)

Then, the transformed equations can be expressed as:

τ rr � Rξ

[
dU

dR
+ λ1

2U

R
− �

]
(33)

τϕϕ � Rξ

[
λ1

dU

dR
+ λ2

U

R
− β�

]
, (34)

[
s2� + εs2

(
dU

dR
+

ξ + 2

R
U

)]
� λ3

(
d2�

dR2 +
ξ + 2

R

d�

dR

)
, (35)

d2U

dR2 +
ξ + 2

R

dU

dR
− ξ + 2

R

U

R
− s2U � d�

dR
(36)

where we assume that β � (ξ + 2)/2, m � (ξ + 2), and λ3 � K1s+K2
1+τq s

.
We are now going to introduce a new function ψ described by the relation:

U � d�

dR
(37)

Then, Eqs. (35) and (36) can be rewritten in the form:

(
D1D2 − s2)� � � (38)

εs2D1D2� � λ3
(
D1D2 − s2)� (39)

where

D1 � d

dR
+

ξ + 2

R
, D2 � d

dR
. (40)

From Eqs. (38), and (39), we can obtain: (
D1D2 − m2

1

)(
D1D2 − m2

2

)
� � 0, (41)

where m2
1 and m2

2 satisfy the equation:

m4 −
[

2s2 +
εs2

λ3

]
m2 + s4 � 0. (42)

A new dependent function � is presented to convert Eq. (41) into a modified Bessel equation:

� � R−ν�, ν � (ξ + 1)/2. (43)

Then, Eq. (41) can be rewritten in the following form:(
d2

dR2 +
1

R

d

dR
−

(
ν2

R2 + m2
1

))(
d2

dR2 +
1

R

d

dr
−

(
ν2

R2 + m2
1

))
� � 0. (44)

The general solution to the function � can be found in the form:

� � Rν
2∑

i�1

[Ai Kν(mi R) + Bi Iν(mi R)], (45)

where the functions Iν(·) and Kν(·) denote the modified Bessel functions of the first and second kinds, respectively. The parameters
Ai , Bi (i � 1, 2) are integral coefficients. For the solution to be continuous everywhere within the spherical cavity of the body and
for the uniformity condition, we take the parameters Bi � 0.
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It follows from Eqs. (37) and (45) that

U � −Rν
2∑

i�1

Aimi Kν−1(mi R). (46)

The expression of the temperature � may be achieved by substituting Eq. (45) into Eq. (38) as:

� � Rν
2∑

i�1

Ai

[(
m2

i − s2)Kν−2(mi R) − 2s2(ν − 1) + m2
i (ν + 3)

mi R
Kν−1(mi R)

]
. (47)

Substituting the functions Uand � into Eqs. (33) and (34), we obtain the stress components as:

τ rr � R2ν
2∑

i�1

Ai

mi

[
mis

2Kν−2(mi R) +
m2

i (ν + 2 + 2λ1) + 2s2(ν − 1)

mi R
Kν+1(mi R)

]
, (48)

τϕϕ � R2ν
2∑

i�1

Ai

mi

((
miβs

2 + m3
i (λ1 − β)

)
Kν−2(mi R) +

m2
i (ν + 3) − m2

i (λ1 + λ2) + 2βs2(ν − 1)

mi R
Kν+1(mi R)

)
, (49)

The boundary conditions (31) after performing the Laplace transform method are as follows:

τ rr (R, s) � 0 at R � 1,

�(R, s) � �1
s , at R � 1.

(50)

When the solutions in Eqs. (47) and (48) are substituted in terms of the aforementioned boundary conditions, we get:

2∑
i�1

Ai

mi

[
mis

2Kν−2(mi ) +
m2

i (ν + 2 + 2λ1) + 2s2(ν − 1)

mi
Kν+1(mi )

]
� 0, (51)

2∑
i�1

Ai

[(
m2

i − s2)Kν−2(mi ) − 2s2(ν − 1) + m2
i (ν + 3)

mi
Kν−1(mi )

]
� �1

s
. (52)

We can obtain the integration constants Ai , (i � 1, 2) by solving Eqs. (51) and (52).
Once the integration constants have been determined, we have the solutions for all areas studied in the field of Laplace transform.

An accurate, effective, and well-proven numerical technique based on the expansion of the Fourier series [40] will be used to find
Laplace’s inverse transformations. The following methodology can be used to represent any function in the Laplace domain in the
time domain:

g(R, τ ) � eωτ

τ

(
1

2
g(R, ω) + Re

k∑
n�1

g

(
R, ω +

inπ

τ

)
(−1)n

)
, (53)

where k represents a finite number of terms and the value of ω satisfies the relation ωτ ∼� 4.7 for faster convergence [40].

6 Results and Discussion

In this section, the numerical results of the theoretical solutions obtained in the previous section are found numerically using the
algorithm (53) to study and investigate the proposed model. Using the Mathematica programming language, the numerical code has
been developed. For the purpose of numerical calculations, the following values will be taken into account:

c11 � 5.974 × 1010 N

m2 , c12 � 2.624 × 1010 N

m2 ,�1 � 0.5, ρ0 � 1470
kg

m3 ,

c23 � 2.17 × 1010 N
m2 , c33 � 6.17 × 1010 N

m2 , K ∗
0 � 200 W

s m K , ε � 0.0202,

CE � 140
J

kgK
, T0 � 298K, β1 � β2 � 2.68 × 106 N

m2K
, K0 � 386,

CE � 140 J
kgK , T0 � 298K, β1 � β2 � 2.68 × 106 N

m2K
, K0 � 386 W

m K .
Some numerical calculations were made for a single value of time t , that is, t � 0.12 if not stated otherwise. The profiles of

the thermodynamic temperature �, displacement U , and thermal stresses τrr and τϕϕ with various locations of R are determined
numerically. It is helpful to summarize the data in tabular form in this section in order to demonstrate the comparison between the
various thermoelasticity models. Our findings will also be tabulated in tabular form to assist other investigators in evaluating and
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Fig. 1 The variation of the
temperature � for heterogeneity
index ξ

Fig. 2 The variation of the
displacement U for heterogeneity
index ξ

validating their findings. A thermoelastic medium comparative study has been carried out, and time and heterogeneity index effects
have been analyzed.

Theoretical research in the field of functionally graded (FG) structures has become essential for continuum mechanics as a result
of the widespread use of high-temperature substances in industrial technology and the use of biology and geology in materials
science. The spread of heat waves in elastic materials is important in a variety of fields, including seismic analysis, soil mechanics,
nuclear reactors, high-energy particle accelerators, and more. It was illustrated that governed gradients with mechanical properties
provide the possibility of designing contact deformation and damage-resistant surfaces, which cannot be done in conventional
uniform materials.

The purpose of this report was to explain the effect of the non-homogeneity index of the FG material on the thermophysical
fields. Figures 1, 2, 3, 4 and Tables 1, 2, 3, 4 present variants of the dimensional, thermodynamic temperature, and thermal stresses
in the radial direction of the FG spherical hole. The figures and tables display the numerical results in detail for various situations.
Computation has been done for a wide range of non-homogeneity index ξ values, via ξ � 1, 2, 3, 4. We can also compare and
contrast homogeneous and non-homogeneous cases. In addition, ξ � 0 leads to a homogeneous case. In this case, the study and
discussion will take place in the context of the modified MGTE theory.

The temperature variation � versus radius variable R for various non-homogeneity indices is presented in Fig. 1 and Table 1.
Table 1 illustrates that the temperature change � at the cavity surface (R � 1) is greater, satisfying the conditions for the thermal
limit, and then declines with a progressive increase in R-radius. In all cases, the temperature values tend to be zero, with the radius
increasing asymptotically. The non-homogeneity parameter has a noticeable impact on temperature behavior. The increase in the
classified parameter reduces thermal wave speed and temporary minimum temperature. In addition, the case for homogeneous
materials is caused by ξ � 0. In Fig. 1, the rate of temperature decline � was observed to be faster for ξ � 4 than for ξ � 1, 2, 3.

For various values of the parameter ξ , Fig. 2 and Table 2 give the variance of the observation displacement U with distance R.
The displacement U appears to take negative values and increases gradually until it reaches a peak value in a certain location close
to the surface of the cavity and then decreases rapidly inside the medium with a greater distance R. It has been discovered that FGM
has a significant impact on displacement variation. By increasing the parameters of the graded index, the values of the displacement
increase. Furthermore, its magnitude decreases as R increases, which is physically possible.
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Fig. 3 The variation of the radial
stress τrr for heterogeneity index
ξ

Fig. 4 The variation of the hoop
stress τϕϕ for heterogeneity index
ξ

Table 1 The variation of the
temperature � for heterogeneity
index ξ

R ξ � 0 ξ � 1 ξ � 2 ξ � 3 ξ � 4

1.0 0.50914 0.50914 0.50914 0.50914 0.50914

1.1 0.055157 0.041441 0.0334843 0.02697 0.01339

1.2 0.033037 0.031169 0.0124836 0.00847 0.002497

1.3 0.022505 0.024011 0.0050618 0.002937 0.000539

1.4 0.015658 0.018689 0.0021873 0.001099 0.00013

1.5 0.011092 0.014676 0.0009983 0.000439 3.46E-05

1.6 0.007981 0.011614 0.0004777 0.000185 1E-05

1.7 0.005821 0.009253 0.0002383 8.23E-05 3.11E-06

1.8 0.004296 0.007415 0.0001233 3.82E-05 1.03E-06

1.9 0.003205 0.005974 6.591E-05 1.84E-05 3.63E-07

2.0 0.002413 0.004835 3.627E-05 9.19E-06 1.35E-07

Figures 3 and 4 show the radial and hoop stresses τrr and τϕϕ with the same constant value as the graded parameter to show the
effect of the non-homogeneous material index ξ . In addition, they show the difference between homogenous and non-homogenous
materials in the two cases. In the bounding plane R � 1, the radial stress τrr disappears, and the mechanical boundary condition is
met. The radial stress τrr increases with the graded material index ξ . The values of the stress increase with R to reach their minimum
point at R � 1.1 with different values of the graded material index. It then declines slightly to zero at the medium points. Figure 4
depicts the hoop stresses τϕϕ distribution of the FGM unbounded solid with a spherical hole versus the radial direction R for various
values of ξ . It can be shown that the stress τϕϕ rises sharply within a narrow range of radial direction at first, then steadily increases
to its maximum value, and then decreases as R increases. The stress τϕϕ decreases with the increase in graded material index ξ . The
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Table 2 The variation of the
displacement U for heterogeneity
index ξ

R ξ � 0 ξ � 1 ξ � 2 ξ � 3 ξ � 4

1.0 − 0.16577 − 0.14838 − 0.12655 − 0.09439 − 0.07662

1.1 0.005587 0.011132 0.01474 0.015015 0.013099

1.2 0.003493 0.005401 0.005419 0.003562 0.002305

1.3 0.002256 0.002818 0.002234 0.001010 0.000506

1.4 0.001494 0.001552 0.001004 0.000328 0.000131

1.5 0.001008 0.000891 0.000482 0.000118 3.88E-05

1.6 0.000690 0.000529 0.000244 4.64E-05 1.28E-05

1.7 0.000478 0.000323 0.000129 1.95E-05 4.57E-06

1.8 0.000335 0.000201 7.10E-05 8.69E-06 1.76E-06

1.9 0.000236 0.000128 4.01E-05 4.06E-06 7.18E-07

2.0 0.000168 8.25E-05 2.33E-05 1.98E-06 3.09E-07

Table 3 The variation of the radial
stress τrr for heterogeneity index
ξ

R ξ � 0 ξ � 1 ξ � 2 ξ � 3 ξ � 4

1.0 0 0 0 0 0

1.1 − 0.02685 − 0.03983 − 0.053 − 0.06594 − 0.07846

1.2 − 0.01772 − 0.0276 − 0.03798 − 0.04824 − 0.05801

1.3 − 0.01195 − 0.01947 − 0.0277 − 0.036 − 0.04393

1.4 − 0.00819 − 0.01392 − 0.02045 − 0.02722 − 0.03377

1.5 − 0.00569 − 0.01005 − 0.01523 − 0.02076 − 0.02622

1.6 − 0.00399 − 0.00731 − 0.01142 − 0.01593 − 0.02049

1.7 − 0.00282 − 0.00535 − 0.0086 − 0.01228 − 0.01608

1.8 − 0.00201 − 0.00394 − 0.0065 − 0.00949 − 0.01266

1.9 − 0.00144 − 0.00291 − 0.00493 − 0.00735 − 0.00999

2.0 − 0.00104 − 0.00216 − 0.00374 − 0.00571 − 0.00789

Table 4 The variation of the hoop
stress τϕϕ for heterogeneity index
ξ

R ξ � 0 ξ � 1 ξ � 2 ξ � 3 ξ � 4

1.0 − 0.77836 − 0.77666 − 0.77453 − 0.77237 − 0.77047

1.1 − 0.03233 − 0.05801 − 0.07893 − 0.09498 − 0.10775

1.2 − 0.02585 − 0.04890 − 0.06804 − 0.08233 − 0.09309

1.3 − 0.02100 − 0.04163 − 0.05924 − 0.07222 − 0.08160

1.4 − 0.01715 − 0.03558 − 0.05182 − 0.06376 − 0.07213

1.5 − 0.01408 − 0.03051 − 0.04549 − 0.05656 − 0.06419

1.6 − 0.01161 − 0.02623 − 0.04004 − 0.05038 − 0.05742

1.7 − 0.00961 − 0.02260 − 0.03533 − 0.04501 − 0.05159

1.8 − 0.00798 − 0.01951 − 0.03123 − 0.04032 − 0.04651

1.9 − 0.00665 − 0.01687 − 0.02765 − 0.03618 − 0.04204

2.0 − 0.00555 − 0.01461 − 0.02451 − 0.03252 − 0.03809

material scaling concept for engineers and technicians is an effective tool for designing new materials for some special applications
such as aerospace, automotive, biomedicine, nuclear power, and gas turbine engines.

The thermoelastic MGTE model is a widespread form of both the Lord–Shulman (LS) model and the thermoelastic theory of
Green–Naghdi (GN). Thermophysical field quantities vary according to the radial distance variable R for the classical model (CTE),
the generalized LS, GN-II, GN-III models, and the introduced model MGTE, as shown in Figs. 5, 6, 7, and 8 and Tables 5, 6, 7, and
8. Here, the parameter ξ � 2 is considered for the non-homogeneity index.

Figure 5 and Table 5 show the thermodynamic temperature � variation compared with R for different thermoelasticity models.
The maximum temperature values for the GN-III models are observed. For all models, the temperature magnitude approaches zero
asymptotically, with R growing. Moreover, as illustrated in Fig. 5 and Table 5, the thermal wave speed of both CTE and GN-III is
greater than that of the LS, GN-II, and MGTE models. The variation in the displacement U in the FG hollow sphere is described
in Fig. 6 and Table 6. There are very clear differences between the CTE, LS, GN-II, GN-III, and MGTE models. The thermal
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Fig. 5 The temperature � for
different models of
thermoelasticity

Fig. 6 The displacement U for
different models of
thermoelasticity

Fig. 7 The radial thermal stress
τrr for different models of
thermoelasticity

parameters τq , K0, and K ∗
0 all have a significant impact on the displacement distribution. The difference between the results in CTE,

LS, GN-II, GN-III, and MGTE is very clear. All five models have been found to yield nearly the same number of results. This also
ensures that our numerical results are checked properly.

Table 7 and Fig. 7 illustrate the changes in the radial stress τrr over the radial cavity direction R. In comparison with those based
on different models, we demonstrate the validity of radial stress τrr according to the MGTE model. The table shows that the pressure
τrr vanishes to satisfy the physical boundary condition on the surface of the cavity. In addition, the highest point for CTE and CN-III
models is the amplitude of the radial thermal stress τrr . In addition, the magnitude of thermal stress decreases slightly as we move
away from the cavity surface in all five models. In addition, for the GN-III model, the radial stress τrr profile is bigger than the
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Fig. 8 The variation of the hoop
stress τϕϕ for different models of
thermoelasticity

Table 5 The variation of the
temperature � for different
models of thermoelasticity

R CTE LS GN-II GN-III MGTE

1.0 0.5035914 0.5035914 0.5035914 0.5035914 0.5035914

1.1 0.176532 0.0475944 0.0348478 0.219216 0.0099032

1.2 0.0755568 0.0349325 0.0268172 0.0909881 0.0081571

1.3 0.058138 0.0265408 0.0209852 0.0665647 0.0068085

1.4 0.0487149 0.0203734 0.016594 0.054645 0.0057472

1.5 0.0412602 0.0157773 0.0132398 0.0456591 0.0048984

1.6 0.0350657 0.0123114 0.0106459 0.0383225 0.00421

1.7 0.0298777 0.0096711 0.0086184 0.0322516 0.002645

1.8 0.0255162 0.0076418 0.007019 0.0272053 0.0031763

1.9 0.0218381 0.0060698 0.0057468 0.0229974 0.0027839

2.0 0.0187275 0.0048438 0.0047275 0.0194788 0.0024525

Table 6 The displacement U for
different models of
thermoelasticity

R CTE LS GN-II GN-III MGTE

1.0 − 0.232655 − 0.127566 − 0.0828299 − 0.305301 − 0.0485819

1.1 0.0168928 0.0059602 0.0031146 0.0288585 0.0015273

1.2 0.0083267 0.0034268 0.0018786 0.0124536 0.0009462

1.3 0.0043039 0.0020797 0.0011999 0.0055802 0.0006223

1.4 0.0023053 0.0013143 0.0008002 0.0025851 0.0004283

1.5 0.0012692 0.0008569 0.0005519 0.0012287 0.0003054

1.6 0.0007141 0.0005728 0.0003909 0.000596 0.0002241

1.7 0.0004089 0.0003906 0.000283 0.0002939 0.0001683

1.8 0.0002376 0.0002708 0.0002086 0.0001469 0.0001288

1.9 0.0001397 0.0001904 0.0001561 7.427E-05 0.0001003

2.0 8.301E-05 0.0001355 0.0001183 3.792E-05 7.912E-05

thermoelastic LS and GN-III designs, which is again larger than the MGTE model. Finally, it is worth noting that the relaxation
parameter plays an important role in the progression of radial thermal stress.

Table 8 and Fig. 8 show the influences of various thermoelasticity values on the hoop stress distribution τϕϕ of the medium for
various thermoelasticity models when ξ � 2. The values for the distribution of hoop stress τϕϕ across the cavity range are given in
Table 4. For various thermoelectrical models, the same behavior occurs. The table shows that the size of the hoop stress τϕϕ rises
and then achieves zero values, with the R gap for the different models increasing. Furthermore, it has been noticed that relaxation
time has a significant impact on the hoop stress τϕϕ . Depending on the values of thermal parameters, the thermal waves reach a
constant state.
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Table 7 The radial thermal stress
τrr for different models of
thermoelasticity

R CTE LS GN-II GN-III MGTE

1.0 0 0 0 0 0

1.1 − 0.0643996 − 0.0307859 − 0.0185261 − 0.0712179 − 0.0126388

1.2 − 0.038963 − 0.0224193 − 0.014434 − 0.0473525 − 0.0101693

1.3 − 0.0239833 − 0.0166338 − 0.0114702 − 0.0249695 − 0.0083524

1.4 − 0.014948 − 0.0125089 − 0.0092466 − 0.013328 − 0.0069636

1.5 − 0.0094046 − 0.0095033 − 0.0075354 − 0.0071797 − 0.0058723

1.6 − 0.0059605 − 0.0072774 − 0.0061934 − 0.0038955 − 0.0049964

1.7 − 0.0037999 − 0.0056085 − 0.0051251 − 0.0021257 − 0.0042818

1.8 − 0.0024342 − 0.0043449 − 0.0042649 − 0.0011654 − 0.0036911

1.9 − 0.0015656 − 0.0033806 − 0.0035656 − 0.0006414 − 0.0031975

2.0 − 0.0010103 − 0.00264 − 0.0029927 − 0.0003542 − 0.0027815

Table 8 The hoop stress τϕϕ for
different models of
thermoelasticity

R CTE LS GN-II GN-III MGTE

1.0 − 0.784896 − 0.772477 − 0.775711 − 0.8500569 − 0.773825

1.1 − 0.1207522 − 0.0872191 − 0.0584293 − 0.150888 − 0.0117255

1.2 − 0.0594166 − 0.0235388 − 0.0323295 − 0.0448969 − 0.0271417

1.3 − 0.0463577 − 0.0204745 − 0.02741 − 0.0189182 − 0.023363

1.4 − 0.0363321 − 0.0178935 − 0.0233439 − 0.0404948 − 0.0202036

1.5 − 0.0285732 − 0.0157009 − 0.0199572 − 0.0034499 − 0.0175404

1.6 − 0.022538 − 0.0138248 − 0.0171181 − 0.0014872 − 0.0152799

1.7 − 0.0178235 − 0.0122096 − 0.014725 − 0.0006442 − 0.01335

1.8 − 0.0141272 − 0.0108116 − 0.0126982 − 0.0002801 − 0.011694

1.9 − 0.0112198 − 0.009596 − 0.0109746 − 0.0001222 − 0.0102667

2.0 − 0.0089266 − 0.0085348 − 0.0095037 − 5.347E-05 − 0.009032

In all the demonstrated figures and tables, too, the phenomenon of limited diffusion speeds was observed. Data show that, because
of the applied thermal shock at the medium’s free stress boundary, all the presented models have notable differences near the medium
boundary, and the variations decrease with distance.

In this last case, we will study the change in the behavior of different fields with the change in distance and time together, which
is different from the previous cases, in which the study was conducted with the change in the radius of the spherical cavity only.
Figures 9, 10, 11, 12 (3D plot) show a comparison with the R directions r of different distances (1 ≤ R ≤ 2) and time dimensionless
(0.1 ≤ τ ≤ 0.2), when the gradient coefficient is consistent ξ � 2, as compared to temperature �, displacement U , and thermal
pressures τrr and τϕϕ . In addition, Figures 9, 10, 11, 12 are shown to indicate at different times the type of differences in field
quantities in accordance with the MGTE model. It is clear that the thermophysical fields are affected by the respective time instance.
In the non-homogeneous case, Fig. 9 indicates that the temperature difference when ξ � 2 is graded, with different values in the
non-dimensional instantaneous time τ or with different values of the radius R.

It is observed that the temperature is very sensitive to changing time τ as it increases with increasing τ while decreasing with
increasing distance R. The decrease in heat waves agrees with the physical aspects and underscores the importance of the proposed
new model. Moreover, the increase with time is near the surface of the spherical cavity as a result of the influence of thermal shock.
It is also expected that, with the passage of time, the temperature will decrease again with time, leading to the disappearance of the
thermal shock effect. Figure 10 displays the behavior of the radial displacement U with different values of instantaneous time τ

along with the radial direction R of the spherical cavity.
We notice that the displacement values increase with increasing time, while in the direction of the radius they increase until they

reach their maximum values and then gradually decrease until they disappear. Figures 11 and 12 in the 3D show the variations and
behavior of radial and ring thermal stresses τrr and τϕϕ with the change in distance R and time τ . We notice from the presented
figures that the effect of time on thermal stresses is very prominent. We also notice that the stresses τrr and τϕϕ decrease over time.

7 Conclusions

The main objective of this paper is to present a new generalized mathematical model (MGTE) for the theory of coupling thermoe-
lasticity based on the Moore–Gibson–Thomson equation, which includes relaxation time in the heat flux vector. With the values of
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Fig. 9 The temperature � with
time τ and distance R

Fig. 10 The displacement U with
time τ and distance R

the specified thermal parameters, the developed model is reduced to many theories in thermoelasticity. To the knowledge and belief
of the author, the generalized MGTE thermoelastic model has not been found in very little published literature to date.

Analysis of thermal and mechanical waves and propagation behavior on an unbounded body with a spherical hole consisting
of a functionally graded material in the radial variant has been studied as an application to this model. A graphical contrast of
thermophysical fields was shown with a graded index of heterogeneous materials and compared with materials in a homogeneous
state. In all tables and figures, the occurrence of finite propagation speeds has been confirmed. The thermal wave is expected to
spread at a limited speed. This is expected. All the tables demonstrate that the MGTE model actually yields consistent results.

In the end, the impact of the non-homogeneous index literature on the field variables and the fractional order is very apparent.
The findings provided in the article have been useful for materials scientists, designers of different materials, and investigators who
are working to develop theories concerning the theory of elasticity and thermoelasticity.
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Fig. 11 The radial stress τrr with
time τ and distance R

Fig. 12 The hoop stress τϕϕ with
time τ and distance R
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