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Abstract In this paper, the N-soliton solutions of a (2+1)-dimensional Boussinesq-type equation are obtained by the Hirota’s
bilinear method, and one-, two-, three-soliton solutions and their clear images are given in detail. Then, one breath-wave solution
and two breath-wave solution are obtained by taking the complex conjugate of soliton solutions. The transformation mechanism of
the breath-waves is analyzed systematically. Through the multi-dimensional Riemann theta function and bilinear method, the quasi-
periodic wave solutions are obtained. Among these periodic waves, the high-dimensional complex three-periodic waves are firstly
presented, the one-periodic waves are often applied to one-dimensional models of periodic waves in shallow water, the two-periodic
waves and three-periodic waves are the generalization of one-periodic waves. The asymptotic behaviors of one-, two-, three-periodic
waves and the relations between periodic wave solutions and soliton wave solutions are strictly established and proved by a limiting
procedure. The characteristic line method is developed to analyze the dynamical characteristics of the quasi-periodic waves.

1 Introduction

Nonlinear science is a basic subject to study the commonness of nonlinear phenomena. As we all know, the research subjects of
nonlinear science are chaos, solitons and fractals. Among them, solitons represent unpredictable organized behaviors in nonlinear
science, which is the result of the balance between dispersion and nonlinearity in nonlinear dynamic systems. As a typical nonlinear
phenomenon, it frequently appears in nonlinear optics [1–4], electromagnetism [5–8], plasma physics, condensed matter physics
and biophysics [9–13].

The nonlinear Boussinesq equation plays an important role in marine research. The classical Boussinesq equation describes
the propagation of long waves in shallow water. In addition, the Boussinesq equation also simulates the large-scale atmospheric
and ocean currents leading to cold fronts and jets. The Boussinesq equation of surface gravity wave has been proved to be an
effective tool for simulating wave propagation in coastal and marine areas [14]. In the past decades, researchers have given the exact
analytical solutions [15], bright and dark soliton solutions [16], rogue wave solutions [17] and degenerate breather solutions [18] of
the Boussinesq equation.

Quasi-periodic wave solutions have always been a hot topic of research in the field of integrable systems [19–22]. Some scholars
have given the existence of quasi-periodic wave solutions of coupled Duffing-type equation [23], Vanderpol-Mathieu equation [24],
etc. [25, 26]. The quasi-periodic wave solutions of algebraic geometry are constructed in a unified way on the basis of finite gap
theory [27]. The quasi-periodic wave solutions of Kadomtsev-Petviashvili (KP) equation are obtained by Baker-Akhiezer functions
when seeking compatible solution [28]. The quasi-periodic wave solutions of Saweda-Kotera-Kadomtsev-Petviashvili equation
(SKKP) are gained by asymptotic analysis [29]. The quasi-periodic wave solutions have been also obtained via bilinear Bäcklund
transformation [30], the Riemann-Bäcklund method [31] and the Riemann theta function [32]. In addition, the quasi-periodic wave
solutions appear in many fields of science and technology [33, 34], including optics, electromagnetism, etc.

The Boussinesq equation is usually written in the form of utt +uxx − (u2)xx + 1
3uxxxx � 0, where the index x and t present partial

derivatives. By the transformation u → u + 1, (u + 1)t t + (u + 1)xx − ((u + 1)2)xx + 1
3 (u + 1)xxxx � 0, utt + uxx − (u2 + 2u + 1)xx +

1
3uxxxx � 0, we have got another widely used Boussinesq equation utt − uxx − (u2)xx + 1

3uxxxx � 0, this equation was introduced
by Boussinesq in 1871 [35, 36] to study the propagation of long waves in shallow water. In this paper, we devote to considering the
following (2+1)-dimensional Boussinesq-type equation

utt + c1uxx + c2uxy + c3
(
6u2

x + 6uuxx + uxxxx
) � 0, (1)

where u � u(x, y, t). Eq. (1) is integrable nonlinear partial differential equations in the sense of the theory of bilinear, the N-soliton
solutions of Eq. (1) are obtained in the following statement, and it is a generalization of classical (2+1)-dimensional Boussinesq
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equation [37–39]. When c3 � 1, Eq. (1) can be written into the form of another (2+1)-dimensional Boussinesq-type equation [40].
When c2 � 0, the above equation reduces to a generalized two dimensional Boussinesq equation [41, 42]. The lump and rogue
wave solutions of this generalized Boussinesq equation have been discussed in [40, 41]. However, there was no discussion about the
breath-wave transitions and quasi-periodic wave solutions, especially the high-dimensional Riemann theta function quasi-periodic
wave solutions. In this work, we shall investigate solitons, transformation mechanism of the breath-waves and quasi-periodic wave
solutions in detail.

The organization of this paper is as follows. In Sect. 2, we briefly introduce the Hirota’s bilinear method and derive the bilinear
form and N-soliton solutions of Eq. (1) and present the Riemann theta function and its properties. In Sect. 3, we obtain one and
two breath-wave solutions via taking the complex conjugate of soliton solutions and briefly introduce the breath-wave transitions.
In Sections 4,5,6, we apply the Hirota’s bilinear method and Riemann theta function to construct one-, two- and three-periodic
wave solutions of Eq. (1). We further apply the limiting method and characteristic line method to analyze the characteristics and
asymptotic behaviors of one-, two- and three-periodic wave solutions in detail. It is strictly proved that under a “small-amplitude”
limit, the periodic wave solutions tend to the known soliton solutions. Finally, some conclusions are given in the last section.

2 Bilinear form and the Riemann theta function

In this section, we briefly introduce the bilinear form of Eq. (1) and some brief conclusions of the Riemann theta function.

2.1 Bilinear form of Eq. (1)

The Hirota’s bilinear method [43–48] is an important tool for constructing exact solutions of many nonlinear equations. If a nonlinear
equation is transformed into a bilinear form by a dependent variable transformation, the multi-soliton solutions are often obtained.

By the dependent variable transformation

u � 2(ln f (x, y, t))xx ,

Eq. (1) can be transformed into a bilinear form
(
D2
t + c1D

2
x + c2Dx Dy + c3D

4
x

)
f (x, y, t) f (x, y, t) � 0, (2)

where the bilinear differential operators Dx , Dy and Dt are defined by

Dm
x Dn

y D
p
t f (x, y, t)g(x, y, t) � (∂x − ∂x ′)m(∂y − ∂y′)n(∂t − ∂t ′)p f (x, y, t)g(x ′, y′, t ′)|x ′�x,y′�y,t ′�t .

These operators have a great property when applying to exponential function, that is

Dm
x Dn

y D
p
t eτ1 eτ2 � (ε1 − ε2)m(η1 − η2)n(ω1 − ω2)peτ1+τ2 ,

where τ j � ε j x + η j y + ω j t + υ j ( j � 1, 2). Furthermore, we have

B(Dx , Dy, Dt )e
τ1 eτ2 � B(ε1 − ε2, η1 − η2, ω1 − ω2)eτ1+τ2 , (3)

where B(Dx , Dy, Dt ) is a polynomial about Dx , Dy and Dt . This property plays an important role in the subsequent construction
of periodic wave solutions.

The N-soliton solutions of Eq. (1) can be found by applying Hirota’s bilinear theory. It can be written in the form of

f � fN �
∑

μ�0,1

exp

⎛

⎝
N∑

j�1

μ jσ j+
N∑

j<s

μ jμs A js

⎞

⎠,

with phase variable σ j � k j x + l j y +
√

−c2k j l j − c3k j 4 − c1k j 2t + δ j , k j , l j and δ j are free constants,

eA js �
(
c2ksl j + c2k j ls + 4c3k

3
s k j + 4c3k

3
j ks − 6c3k

2
s k

2
j + 2c1ksk j

+2
√

−c3k4
s − c1k2

s − c2ksls ×
√

−c2k j l j − c3k4
j − c1k2

j

)/(
c2k j ls + c2ksl j + 4c3k

3
s k j

+6c3k
2
s k

2
j + 4c3k

3
j ks + 2c1ksk j + 2

√
−c3k4

s − c1k2
s − c2ksls

√
−c2k j l j − c3k4

j − c1k2
j

)
.

The mark
∑

μ�0,1 means summation over all possible combinations of μ j � 0, 1 ( j � 1...N ), the
∑N

j<s summation is over all
possible combinations of N elements in the specific condition j < s.

Therefore, the one-soliton solution of Eq. (1) has the form of

u1 � 2
(
ln(1 + eσ )

)
xx , (4)
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Fig. 1 (Color online) One-soliton wave Eq. (4) with parameters c1 � −10, c2 � 10, c3 � −20, k � 0.15, l � −0.1, δ � −0.1. a Three-dimensional
stereogram of one-soliton wave when t � 0. b Vertical view of (a). c The wave moves along the x-axis(−65 ≤ x ≤ 65)(red) when y � 0, t � 0,

y-axis(−65 ≤ y ≤ 65)(blue) when x � 0, t � 0, t-axis(−65 ≤ t ≤ 65)(green) when x � 0, y � 0

Fig. 2 (Color online) Two-soliton wave Eq. (5) with parameters c1 � −10, c2 � 1, c3 � −20, k1 � −0.8, l1 � 0.5, k2 � 0.8, l2 � 0.5, δ1 � 0, δ2 � 0.

a Three-dimensional stereogram of two-soliton wave when t � 0. b Vertical view of (a). c The wave moves along the x-axis(−35 ≤ x ≤ 35)(red) when
y � 0, t � 0, y-axis(−35 ≤ y ≤ 35)(blue) when x � 0, t � 0, t-axis(−35 ≤ t ≤ 35)(green) when x � 0, y � 0

where phase variable σ � kx + ly +
√

−c2kl − c3k4 − c1k2t + δ, k, l and δ are free constants (Fig. 1).
While the two-soliton solution has the form of

u2 � 2
(

ln(1 + eœ1 + eœ2 + eσ1+σ2+A12 )
)

xx
, (5)

(Fig. 2) with phase variable σ j � k j x + l j y +
√

−c2k j l j − c3k j 4 − c1k j 2t + δ j ( j � 1, 2), eA12 � eA js ( j � 1, s � 2).
Based on the above analysis, the three-soliton solution has the form of

u3 � 2
(
ln

(
1 + eσ1 + eσ2 + eσ3 + eσ1 + σ2 + A12 + eσ2 + σ3 + A23 + eσ1 + σ3 + A13 + eσ1 + σ2 + σ3 + A12 + A23 + A13

))
xx , (6)

(Fig. 3) with phase variable σ j ( j � 1, 2, 3), eA12 � eA js ( j � 1, s � 2), eA23 � eA js ( j � 2, s � 3), eA13 � eA js ( j � 1, s � 3).
In order to construct the multi-periodic wave solutions, we consider

u � u0 + 2(ln ϕ(τ ))xx , (7)

where u0 is a constant solution of Eq. (1), and phase variable τ has the form of τ � (τ1, τ2, ..., τN )T , τ j � ε j x +η j y +ω j t +υ j ( j �
1, 2, ..., N ). By substituting Eq. (7) into Eq. (1) and integrating about variable x, we obtain the following bilinear form

B(Dx , Dy, Dt )ϕ(τ )ϕ(τ ) � (
D2
t + c1D

2
x + c2Dx Dy + c3D

4
x + 6u0D

2
x + c

)
ϕ(τ )ϕ(τ ) � 0, (8)

where c is an integration constant.
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Fig. 3 (Color online) Three-soliton wave Eq. (6) with parameters c1 � −10, c2 � 1, c3 � −20, k1 � −0.8, l1 � 0.5, k2 � 0.8, l2 � 0.5, k3 � 0.6, l3 �
0.9, δ1 � 0, δ2 � 0, δ3 � 0. a Three-dimensional stereogram of three-soliton wave when t � 0. b Vertical view of (a). c The wave moves along the
x-axis(−40 ≤ x ≤ 15)(red) when y � 0, t � 0, y-axis(−40 ≤ y ≤ 15)(blue) when x � 0, t � 0, t-axis(−40 ≤ t ≤ 15)(green) when x � 0, y � 0

2.2 Riemann theta function and its periodicity

Definition 1. The multi-dimensional Riemann theta function of genus N is defined as the form of

ϕ(τ ) � ϕ(τ, a) �
∑

n∈ZN

e−π〈an,n〉+2π i〈τ,n〉, (9)

where the integer value vector n � (n1, n2, ..., nN )T ∈ ZN , and complex phase variable τ � (τ1, τ2, ..., τN )T ∈ CN . Furthermore,
for two vectors h � (h1, h2, ..., hN )T and p � (p1, p2, ..., pN )T , their inner product is defined by < h, p >� h1 p1 + h2 p2 + · · · +
hN pN . The a � (ai j ) is a positive definite and real-valued symmetric N × N matrix.

Proposition 1 Let e j be the jth column of N × N identity matrix IN , a j be the jth column of positive matrix a, a j j be the element
in row j, column j. Then the theta function ϕ(τ ) has the following periodic properties:

(1) ϕ(τ + e j , a) � ϕ(τ, a),
(2) ϕ(τ + ia j , a) � e−2π iτ j+πa j j ϕ(τ, a),
(3)

(
ln ϕ(τ + e j , a)

)
τ j τ j

� (ln ϕ(τ, a))τ j τ j , j � 1, ..., N ,

(4) (lnϕ(τ + ia j , a))τ j τ j � (ln ϕ(τ, a))τ j τ j , j � 1, ..., N .

3 Breath-wave solutions and their transitions

3.1 The one-breath-wave solution of Eq. (1)

In this section, we obtain the one breath-wave solution of Eq. (1) by taking complex conjugate about real parameters of two-soliton
solution(5), that is, letting

k1 � a1 + b1i, k2 � a1 − b1i, l1 � p1 + q1i, l2 � p1 − q1i, δ1 � ln
α1

2
+ β1 + γ1i, δ2 � ln

α1

2
+ β1 − γ1i, (10)

where a1, b1, p1, q1 	� 0, α1 > 0, β1 and γ1 are arbitrary real constants. By letting f2 � (1 + eœ1 + eœ2 + eœ1+œ2+A12 ) in Eq. (5),
and substituting Eq. (10) into f2, we obtain the following expression of the one breath-wave solution

f2 ∼ 2
√

α2 cosh(θ1 +
1

2
ln α2) + α1 cos(�1), (11)

where

θ1 �a1x + p1y + h1t + β1, �1 � b1x + q1y + d1t + γ1, α2 � α2
1G1

4
,

G1 �
−2c1(a2

1 + b2
1) + 2c2(a1 p1 + b1q1) + 2c3(a4

1 − 7b4
1 − 6a2

1b
2
1) + 2

√
�2

3 + �2
4

−2c1(a2
1 + b2

1) + 2c2(a1 p1 + b1q1) + 2c3(7a4
1 − b4

1 + 6a2
1b

2
1) + 2

√
�2

3 + �2
4

,
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Fig. 4 (Color online) a One
breath-wave of Eq. (1) with
parameters
c1 � c2 � c3 � 1, a1 �
0.3, b1 � 1.5, p1 � 0.5, q1 �
−2, α1 � 2, β1 � 0, γ1 � 0. This
figure is three-dimensional
stereogram of one breath-wave
when t � 0. b the corresponding
contour figure of (a), the red line
(1.5x − 2y � 0) and the green line
(0.3x + 0.5y + 1.153310513 � 0)
are two characteristic lines of one
breath wave

�3 � − c1(a2
1 − b2

1) − c2(a1 p1 − b1q1) − c3(a4
1 − 6a2

1b
2
1 + b4

1),

�4 � − c1(2a1b1) − c2(b1 p1 + a1q1) − c3(4a3
1b1 − 4a1b

3
1),

√
�3 + �4i �h1 + d1i,

√
�3 − �4i � h1 − d1i.

Then, by substituting Eq. (11) into Eq. (5), we obtain the one breath-wave solution of Eq. (1) as follows,

u2 � 2(2
√

α2 cosh(θ1 + 1
2 ln α2)a1

2 − α1 cos(�1)b1
2)

2
√

α2 cosh(θ1 + 1
2 ln α2) + α1 cos(�1)

− 2(2
√

α2 sinh(θ1 + 1
2 ln α2)a1 − α1sin(�1)b1)

2

(2
√

α2 cosh(θ1 + 1
2 ln α2) − α1 cos(�1))

2 . (12)

Based on the work of the transitions of the breath-waves for the (2+1)-dimensional Ito equation [49], one breath-wave solution
(12) of Eq. (1) has the following characteristics.

(1) It can be seen from expression (12) that the one breath-wave solution includes a hyperbolic function (cosh, sinh) and a
trigonometric function (sin, cos), in which the hyperbolic function controls the local properties of one breath-wave, and the
periodic properties are dominated by trigonometric function, so one breath-wave can be regarded as the combination of soliton
and periodic wave.

(2) It is obviously noticed that the wave velocity of soliton along x-axis is vsx � − a1h1
a1

2+p1
2 , and the wave velocity of soliton along

y-axis is vsy � − p1h1
a1

2+p1
2 , the velocity of periodic wave along x-axis is v

p
x � − b1d1

b1
2+q1

2 , the velocity of periodic wave along

y-axis is v
p
y � − q1d1

b1
2+q1

2 ,

(3) From Eq. (12), the one breath-wave has two characteristic lines: θ1 + 1
2 ln α2 � a1x + p1y + h1t + β1 + 1

2 ln α2 � 0, �1 �
b1x + q1y + d1t + γ1 � 0.

(i) If one has the following relation of

∣∣∣∣
a1 p1

b1 q1

∣∣∣∣ 	� 0, the two characteristic lines are not parallel, as shown in Fig. (4).

(ii) If one has the following relation of

∣∣∣∣
a1 p1

b1 q1

∣∣∣∣ � 0, that is the two characteristic lines are parallel, as shown in Fig. (5).

Based on this special condition, the one breath-wave can be transformed into a series of nonlinear waves including quasi-
anti-dark soliton, M-shaped soliton, oscillation M-shaped soliton, multi-peak soliton, quasi-sine wave, quasi-periodic
W-shaped wave, quasi-periodic anti-dark soliton wave and quasi-periodic wave. In Fig. 5a and b, quasi-anti-dark soliton
( b1
a1

< 0.4) has only one characteristic line and is symmetrical about extreme line. In Fig. 5c and d, M-shaped soliton

(0.4 ≤ b1
a1

≤ 1) has two peaks, one valley, three characteristic lines and is asymmetrical about extreme line. With the

value of b1
a1

increasing, the one breath-wave becomes a asymmetrical oscillation M-shaped soliton
(

1 < b1
a1

≤ 2.5
)

, and

the number of characteristic lines also increases, if the value of b1
a1

increases continuously, the oscillation becomes acute,

and the one breath-wave becomes a asymmetrical multi-peak soliton
({

2.5 < b1
a1

< 50
})

, as shown in Fig. 5e–h. When

the value of b1
a1

becomes very large, the one breath-wave transforms quasi-sine wave ( b1
a1

≥ 50), quasi-periodic W-shaped

wave
(
b1
a1

≈1000
)

, quasi-periodic anti-dark soliton wave
(
b1
a1

≈1000
)

and quasi-periodic wave
(
b1
a1

≥ 1500
)

. Their locality

123



  914 Page 6 of 30 Eur. Phys. J. Plus         (2022) 137:914 

Fig. 5 (Color online) One breath-wave transformation of Eq. (1) with parameters c1 � c2 � c3 � 1. a a1 � 1, b1 � 0.01, p1 � 2, q1 � 0.02, α1 �
2, β1 � 0, γ1 � 0. This figure is three-dimensional stereogram of one breath-wave transformation when t � 0. b The wave moves along the x-axis
when y � 0, t � 0. c a1 � 0.2, b1 � 0.2, p1 � 0.2, q1 � 0.2, α1 � 2, β1 � 0, γ1 � 0. d The wave moves along the x-axis when y � 0, t � 0.

e a1 � 0.2, b1 � 0.5, p1 � 0.4, q1 � 1, α1 � 2, β1 � 0, γ1 � 0. f The wave moves along the x-axis when y � 0, t � 0. g a1 � 0.2, b1 � 2, p1 �
0.4, q1 � 4, α1 � 2, β1 � 0, γ1 � 0. h The wave moves along the x-axis when y � 0, t � 0

almost disappears and the periodicity becomes more and more obvious, as shown in Fig. 6. Finally, the distribution of
diverse transformed nonlinear waves is given in Fig. 7(a).

3.2 The two breath-wave solution of Eq. (1)

In this section, the two breath-wave solution of Eq. (1) is obtained by a similar method as one. The four-soliton solution has the
form of

f4 �1 + eσ1 + eσ2 + eσ3 + eσ4 + eσ1 + σ2 + A12 + eσ1 + σ3 + A13

+ eσ1 + σ4 + A14 + eσ2 + σ3 + A23 + eσ2 + σ4 + A24 + eσ3 + σ4 + A34

+ eσ1 + σ2 + σ3 + A12 + A23 + A13 + eσ1 + σ2 + σ4 + A12 + A24 + A14

+ eσ1 + σ3 + σ4 + A13 + A34 + A14 + eσ2 + σ3 + σ4 + A23 + A34 + A24

+ eσ1 + σ2 + σ3 + σ3 + A12 + A23 + A13 + A23 + A34 + A24 . (13)

By letting

k3 � a2 + b2i, k4 � a2 − b2i, l3 � p2 + q2i, l4 � p2 − q2i, δ3 � ln
α3

2
+ β2 + γ2i, δ4 � ln

α3

2
+ β2 − γ2i, (14)

where a2, b2, p2, q2 	� 0, α3 > 0, β2 and γ2 are arbitrary real constants and substituting (14) into f4, we obtain the another
expression of

f4 �1 + α1e
θ1 cos(�1) +

α2
1G1e2θ1

4
+ α3e

θ2 cos(�2) +
α2

3G2e2θ2

4

+
α2

1α2
3G1G2

16
e2θ1+2θ2

(
H2

3R + H2
3I

)(
H2

4R + H2
4I

)

+
α1α3

2
eθ1+θ2(H3R cos(�1 + �2) − H3I sin(�1 + �2))

123
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Fig. 6 (Color online) One breath-wave transformation of Eq. (1) with parameters c1 � c2 � c3 � 1. a a1 � 0.04, b1 � 2, p1 � 0.05, q1 � 2.5, α1 �
2, β1 � 0, γ1 � 0. This figure is three-dimensional stereogram of one breath-wave transformation when t � 0. b The wave moves along the x-axis when
y � 0, t � 0. c a1 � 0.001, b1 � 1, p1 � 0.002, q1 � 2, α1 � 0.6, β1 � 0, γ1 � 0. d The wave moves along the x-axis when y � 0, t � 0.

e a1 � 0.001, b1 � 1, p1 � 0.0015, q1 � 1.5, α1 � 0.6, β1 � 0, γ1 � 0. f The wave moves along the x-axis when y � 0, t � 0. g a1 � 0.0015, b1 �
1.5, p1 � 0.002, q1 � 3, α1 � 0.6, β1 � 0, γ1 � 0. h The wave moves along the x-axis when y � 0, t � 0

Fig. 7 (Color online) a The distributions of diverse transformed nonlinear waves, in which ”QAN” represents quasi-anti-dark soliton, ”MS”(M-shaped
soliton), ”OM”(oscillation M-shaped soliton), ”QPW”(quasi-periodic W-shaped soliton”, ”QPAN”(quasi-periodic anti-dark soliton), ”QP”(quasi-periodic
wave), ”MP”(multi-peak soliton) and ”QSW”(quasi-sine wave). b Two breath-wave of Eq. (1) with parameters c1 � c2 � c3 � 1, a1 � 0.3, b1 �
1.5, p1 � 0.5, q1 � −2, a2 � 0.5, b2 � 2, p2 � 0.5, q2 � −3, α1 � 2, β1 � 0, γ1 � 0, α3 � 2, β2 � 0, γ2 � 0. This figure is three-dimensional
stereogram of two breath-wave when t � 0. c the corresponding contour figure of (b), the red lines (1.5x − 2y � 0, 0.3x + 0.5y � 0) and the green lines
(0.5x + 0.5y � 0, 2x − 3y � 0) are two sets of characteristic lines of two breath-wave

+
α1α3

2
eθ1+θ2 (H4R cos(�1 − �2) − H4I sin(�1 − �2))

+
α2

1α3G1

4
e2θ1+θ2((H3RH4R + H3I H4I ) cos(�2) − (H3I H4R − H3RH4I ) sin((�2))
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Fig. 8 (Color online) a Two
breath-wave of Eq. (1) with
parameters c1 � c2 � c3 �
1, a1 � 0.3, b1 � 1.5, p1 �
0.5, q1 � −2, a2 � 0.4, b2 �
2, p2 � 2

3 , q2 � − 8
3 , α1 �

0.7, β1 � 5, γ1 � −5, α3 �
2, β2 � 0, γ2 � 0. This figure is
three-dimensional stereogram of
two breath-wave when t � 0.

b the corresponding contour figure
of (a), the red lines
(0.3x + 0.5y + 5 �
0, 1.5x − 2y − 5 � 0) and the
green lines
(0.4x + 0.6666666667y �
0, 2x − 8

3 y � 0) are two sets of
characteristic lines of two-breath
wave

+
α1α

2
3G2

4
eθ1+2θ2((H3RH4R − H3I H4I ) cos(�1) − (H3I H4R + H3RH4I ) sin(�1)), (15)

where

θ2 � a2x + p2y + h2t + β2, �2 � b2x + q2y + d2t + γ2,

G2 �
−2c1(a2

2 + b2
2) + 2c2(a2 p2 + b2q2) + 2c3(a4

2 − 7b4
2 − 6a2

2b
2
2) + 2

√
�2

5 + �2
6

−2c1(a2
2 + b2

2) + 2c2(a2 p2 + b2q2) + 2c3(7a4
2 − b4

2 + 6a2
2b

2
2) + 2

√
�2

5 + �2
6

,

H3R � Re(eA13 ), H3I � Im(eA13 ), H4R � Re(eA14 ), H4I � Im(eA14 ),

�5 � −c1(a2
2 − b2

2) − c2(a2 p2 − b2q2) − c3(a4
2 − 6a2

2b
2
2 + b4

2),

�6 � −c1(2a2b2) − c2(b2 p2 + a2q2) − c3(4a3
2b2 − 4a2b

3
2),

√
�5 + �6i

� h2 + d2i,
√

�5 − �6i � h2 − d2i.

It is different from the one breath-wave solution, in Figs. 7, 8, the two breath-wave solution has two sets of characteristic lines:
θ1 � a1x + p1y + h1t +β1 � 0, �1 � b1x +q1y +d1t +γ1 � 0 and θ2 � a2x + p2y + h2t +β2 � 0, �2 � b2x +q2y +d2t +γ2 � 0.

(1) If two breather waves have
∣∣∣∣
a1 p1

a2 p2

∣∣∣∣ � 0,

∣∣∣∣
b1 q1

b2 q2

∣∣∣∣ � 0,

∣∣∣∣
a1 p1

b1 q1

∣∣∣∣ 	� 0,

∣∣∣∣
a2 p2

b2 q2

∣∣∣∣ 	� 0,

the two breather waves are parallel, as shown in Fig. 8.
(2) If two breather waves have

∣∣∣∣
a1 p1

a2 p2

∣∣∣∣ 	� 0,

∣∣∣∣
b1 q1

b2 q2

∣∣∣∣ 	� 0,

the waves are not parallel.

(i) If
∣∣∣∣
a1 p1

b1 q1

∣∣∣∣ 	� 0,

∣∣∣∣
a2 p2

b2 q2

∣∣∣∣ 	� 0,

the two breather waves collide, as shown in Fig. 7. Then, in Figs. 9, 10, 11, 12, 13, 14, and 15, the transformation mechanism
of two breath-wave is discussed in detail as follows.

(ii) If
∣∣∣∣
a1 p1

b1 q1

∣∣∣∣ � 0,

∣∣∣∣
a2 p2

b2 q2

∣∣∣∣ 	� 0,

one of the breather waves can be transformed into a series of nonlinear waves including quasi-anti-dark soliton, M-shaped
soliton and quasi-periodic wave. In Fig. 9, the two breather waves are transformed into one breather wave and quasi-anti-dark
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Fig. 9 (Color online) a Two breath-wave transformation of Eq. (1) with parameters c1 � c2 � c3 � 1, a1 � 2.3, b1 � 0.23, p1 � 2.3, q1 � 0.23, a2 �
0.3, b2 � 1.5, p2 � 0.5, q2 � −2, α1 � 2, β1 � 0, γ1 � 0, α3 � 2, β2 � 0, γ2 � 0. This figure is three-dimensional stereogram of two breath-wave
transformation when t � 0. b Vertical view of (a). c The corresponding contour figure of (a), the red line (2.3x + 2.3y � 0) is characteristic line of
quasi-anti-dark soliton, the green lines (0.3x + 0.5y � 0, 1.5x − 2y � 0) are two characteristic lines of one breath wave

Fig. 10 (Color online) a Two breath-wave transformation of Eq. (1) with parameters c1 � c2 � c3 � 1, a1 � 0.2, b1 � 0.3, p1 � −0.2, q1 � −0.3, a2 �
0.3, b2 � 1.5, p2 � 0.5, q2 � −2, α1 � 2, β1 � 0, γ1 � 0, α3 � 2, β2 � 0, γ2 � 0. This figure is three-dimensional stereogram of two breath-wave
transformation when t � 0. b Vertical view of (a). c The wave moves along the x-axis when y � −20, t � 0(green), x-axis when y � 20, t � 0(red)

soliton
(∣∣∣ a1

b1

∣∣∣ �
∣∣∣ p1
q1

∣∣∣ � 10
)

. In Fig. 10, the two breather waves are transformed into one breather wave and M-shaped soliton
(∣∣∣ a1

b1

∣∣∣ �
∣∣∣ p1
q1

∣∣∣ ≈ 1
)

. In Fig. 11a and b, the two breather waves are transformed into one breather wave and quasi-periodic wave
(∣∣∣ a1

b1

∣∣∣ �
∣∣∣ p1
q1

∣∣∣ ≤ 0.01
)

.

(iii) If
∣∣∣∣
a1 p1

b1 q1

∣∣∣∣ � 0,

∣∣∣∣
a2 p2

b2 q2

∣∣∣∣ � 0,

the two breather waves can be transformed into a series of nonlinear waves. In Fig. 12, the two breather waves are transformed

into two nonparallel quasi-anti-dark solitons
(∣∣∣ a1

b1

∣∣∣ �
∣∣∣ p1
q1

∣∣∣ �
∣∣∣ a2
b2

∣∣∣ �
∣∣∣ p2
q2

∣∣∣ � 10
)

. In Fig. 13, the two breather waves are trans-

formed into quasi-anti-dark soliton
(∣∣∣ a2

b2

∣∣∣ �
∣∣∣ p2
q2

∣∣∣ ≈ 10
)

and M-shaped soliton
(∣∣∣ a1

b1

∣∣∣ �
∣∣∣ p1
q1

∣∣∣ � 1
)

. In Fig. 14, the two breather

waves are transformed into two nonparallel M-shaped solitons
(∣∣∣ a1

b1

∣∣∣ �
∣∣∣ p1
q1

∣∣∣ �
∣∣∣ a2
b2

∣∣∣ �
∣∣∣ p2
q2

∣∣∣ � 1
)

. In Fig. 15, the two breather
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Fig. 11 (Color online) a Two breath-wave transformation of Eq. (1) with parameters c1 � c2 � c3 � 1, a1 � 0.01, b1 � 1, p1 � −0.01, q1 � −1, a2 �
0.3, b2 � 1.5, p2 � 0.5, q2 � −2, α1 � 2, β1 � 0, γ1 � 0, α3 � 2, β2 � 0, γ2 � 0. This figure is three-dimensional stereogram of two breath-wave
transformation when t � 0. b Vertical view of (a). c Two breath-wave transformation of Eq. (1) with parameters c1 � c2 � c3 � 1, a1 � 0.01, b1 �
1, p1 � −0.01, q1 � −1, a2 � 0.01, b2 � 1.5, p2 � −0.01, q2 � 1.5, α1 � 2, β1 � 0, γ1 � 0, α3 � 2, β2 � 0, γ2 � 0. This figure is three-dimensional
stereogram of two breath-wave transformation when t � 0

Fig. 12 (Color online) a Two breath-wave transformation of Eq. (1) with parameters c1 � c2 � c3 � 1, a1 � 2.3, b1 � 0.23, p1 � 2.3, q1 � 0.23, a2 �
2.3, b2 � 0.23, p2 � −2.3, q2 � −0.23, α1 � 2, β1 � 0, γ1 � 0, α3 � 0.6, β2 � 0, γ2 � 0. This figure is three-dimensional stereogram of two
breath-wave transformation when t � 0. b Vertical view of (a). c The corresponding contour figure of (a), the red line (2.3x + 2.3y � 0) and the green line
(2.3x − 2.3y � 0) are characteristic lines of two quasi-anti-dark solitons

waves are transformed into quasi-periodic wave
(∣∣∣ a2

b2

∣∣∣ �
∣∣∣ p2
q2

∣∣∣ ≤ 0.01
)

and M-shaped soliton
(∣∣∣ a1

b1

∣∣∣ �
∣∣∣ p1
q1

∣∣∣ � 1
)

. In Fig. 11c,

the two breather waves are transformed into bright and dark solitons
(∣∣∣ a1

b1

∣∣∣ �
∣∣∣ p1
q1

∣∣∣ ≤ 0.01
)

,
(∣∣∣ a2

b2

∣∣∣ �
∣∣∣ p2
q2

∣∣∣ ≤ 0.01
)

. Based on

the above analysis, as the radio of a j and b j , p j and q j decreases, the periodicity of the two breather waves becomes obvious,
the locality almost disappears.

4 One-periodic waves and asymptotic properties

In this section, one-periodic wave solution of Eq. (1) is obtained via bilinear method and Riemann theta function. When N � 1, the
theta function degenerates the following Fourier series

ϕ(τ, a) �
+∞∑

n�−∞
e2π inτ−πn2a, (16)

with phase variable τ � εx + ηy + ωt + υ, and the first-order matrix a > 0.
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Fig. 13 (Color online) a Two breath-wave transformation of Eq. (1) with parameters c1 � c2 � c3 � 1, a1 � 1.2, b1 � 0.1, p1 � 1.2, q1 � 0.1, a2 �
0.2, b2 � 0.2, p2 � −0.2, q2 � −0.2, α1 � 2, β1 � 0, γ1 � 0, α3 � 2, β2 � 0, γ2 � 0. This figure is three-dimensional stereogram of two breath-wave
transformation when t � 0. b Vertical view of (a). c The wave moves along the x-axis when y � −20, t � 0 (green), x-axis when y � 20, t � 0(red)

Fig. 14 (Color online) a Two breath-wave transformation of Eq. (1) with parameters c1 � c2 � c3 � 1, a1 � 0.2, b1 � 0.2, p1 � 0.2, q1 � 0.2, a2 �
0.2, b2 � 0.2, p2 � −0.2, q2 � −0.2, α1 � 0.9, β1 � 0, γ1 � 0, α3 � 2, β2 � 0, γ2 � 0. This figure is three-dimensional stereogram of two breath-wave
transformation when t � 0. b Vertical view of (a). c The wave moves along the x-axis when y � −30, t � 0(green), x-axis when y � 30, t � 0(red)

4.1 Construction of one-periodic waves

In order to obtain one-periodic wave solution, we take Eq. (16) into Eq. (8), and gain the following relation through Eq. (3):

B(Dx , Dy, Dt )ϕ(τ, a)ϕ(τ, a) �
+∞∑

n�−∞

+∞∑

m�−∞
B(Dx , Dy, Dt )e

2π inτ−πn2ae2π imτ−πm2a

�
+∞∑

n�−∞

+∞∑

m�−∞
B(2π i(n − m)ε, 2π i(n − m)η, 2π i(n − m)ω)e2π i(n+m)τ−π (n2+m2)a

m�m′−n�
+∞∑

m′�−∞

{
+∞∑

n�−∞
B(2π i(2n − m′)ε, 2π i(2n − m′)η, 2π i(2n − m′)ω)e−π [n2+(n−m′)2]a

}

× e2π im′τ �
+∞∑

m′�−∞

__
B(m′)e2π im′τ , (17)
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Fig. 15 (Color online) a Two
breath-wave transformation of Eq.
(1) with parameters
c1 � c2 � c3 � 1, a1 �
0.01, b1 � −1.01, p1 �
0.01, q1 � −1.01, a2 � 0.2, b2 �
0.2, p2 � −0.2, q2 � −0.2, α1 �
2, β1 � 0, γ1 � 0, α3 � 2, β2 �
0, γ2 � 0. This figure is
three-dimensional stereogram of
two breath-wave transformation
when t � 0. b Vertical view of (a)

where

__
B(m′) �

+∞∑

n�−∞
B(2π i(2n − m′)ε, 2π i(2n − m′)η, 2π i(2n − m′)ω)e−π [n2+(n−m′)2]a . (18)

Letting the summation index n � n′ + 1, Eq. (18) have the following form of

__
B(m′) �

+∞∑

n′�−∞
B(2π i(2n′ − (m′ − 2))ε, 2π i(2n′ − (m′ − 2))η, 2π i(2n′ − (m′ − 2))ω)

× e−πa[n′2+(n′−(m′−2))2] × e−2π (m′−1)a � __
B(m′ − 2)e−2π (m′−1)a � ...

�
⎧
⎨

⎩

__
B(0)e− πam′2

2 , m′ is even,
__
B(1)e− πa(m′2−1)

2 , m′ is odd,

which shows that
__
B(m′),m′ ∈ Z is entirely determined by two formulas

__
B(0) and

__
B(1), that is, if the following two equations are

satisfied
__
B(0) � __

B(1) � 0, (19)

then
__
B(m′) � 0, (m′ ∈ Z ), so B(Dx , Dy, Dt )ϕ(τ, a)ϕ(τ, a) � 0. According to Eq. (18), Eq. (19) has the following form of

__
B(0) �

+∞∑

n�−∞
B(2π i(2n − 0)ε, 2π i(2n − 0)η, 2π i(2n − 0)ω)e−2n2πa

�
+∞∑

n�−∞
(−16π2n2ω2−16π2n2ε2c1 − 16π2n2εηc2 + 256π4n4ε4c3 − 96π2n2ε2u0 + c)e−2n2πa � 0,

__
B(1) �

+∞∑

n�−∞
B(2π i(2n − 1)ε, 2π i(2n − 1)η, 2π i(2n − 1)ω)e−(2n2−2n+1)πa

�
+∞∑

n�−∞
(−4π2(2n − 1)2ω2−4π2(2n − 1)2ε2c1 − 4π2(2n − 1)2εηc2 + 16π4(2n − 1)4ε4c3

− 24π2(2n − 1)2ε2u0 + c)e−(2n2−2n+1)πa � 0. (20)

By introducing the marks as

ψ � e−πa, a11 � −
+∞∑

n�−∞
16π2n2ψ2n2

, a12 �
+∞∑

n�−∞
ψ2n2

,
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a21 � −
+∞∑

n�−∞
4π2(2n − 1)2ψ2n2−2n+1, a22 �

+∞∑

n�−∞
ψ2n2−2n+1,

b1 �
+∞∑

n�−∞
(16π2n2ε2c1 + 16π2n2εηc2 − 256π4n4ε4c3 + 96π2n2ε2u0)ψ2n2

,

b2 �
+∞∑

n�−∞
(4π2(2n − 1)2ε2c1 + 4π2(2n − 1)2εηc2 − 16π4(2n − 1)4ε4c3 + 24π2(2n − 1)2ε2u0)ψ2n2−2n+1, (21)

Eq. (19) can be written as the form of a system of linear equations about frequency ω and integration constant c, that is
(
a11 a12

a21 a22

)(
ω2

c

)
�

(
b1

b2

)
. (22)

Then solve Eq. (22), we get the frequency and integration constant, that is

ω2 � b1a22 − b2a12

a11a22 − a12a21
, c � b2a11 − b1a21

a11a22 − a12a21
,

so we obtain the one-periodic wave solution of Eq. (1)

u � u0 + 2(ln ϕ(τ, a))xx , (23)

where the theta function ϕ(τ, a) is given by Eq. (16), the other parameters c1, c2, c3,a, ε, η, u0 and υ are free, the three parameters
a, ε and η play a major role in one-periodic waves.

4.2 Characteristics of one-periodic waves

(1) It is bounded for all complex variables (x, y, t).
(2) It has two fundamental periods 1 and ia about the phase variable τ.

(3) Equation (17) can be written as the following form of

B(Dx , Dy, Dt )ϕ(τ, a)ϕ(τ, a) �
+∞∑

n�−∞

+∞∑

m�−∞
B(Dx , Dy, Dt )e

2π inτ−πn2ae2π imτ−πm2a

�
+∞∑

m′�−∞

__
B(m′)e2π im′τ �

+∞∑

m′�−∞

__
B(m′)cos(m′τ ). (24)

It can be seen from expression (24) that the one-periodic wave solution has one characteristic line: τ � εx + ηy + ωt + υ � 0,

the propagation direction of wave is completely determined by τ, and vx
vy

� ε
η
, where vx and vy are the propagation velocity

along the x-axis and y-axis, respectively. In Fig. 16a, the points (x, y) (εx + ηy � 2kπ, k � 0, 1, 2, ...) are the peak points of
one-periodic waves, and the points (x, y) (εx + ηy � 2kπ + π, k � 0, 1, 2, ...) are the trough points of one-periodic waves.

4.3 Asymptotic properties of one-periodic waves

In what follows, we further analyze asymptotic properties of the one-periodic wave solution by solving Eq. (22) and taking a limit
condition. In order to solve Eq. (22), one makes

(
a11 a12

a21 a22

)
� M0 + M1ψ + M2ψ

2 + · · · ,
(
b1

b2

)
� N0 + N1ψ + N2ψ

2 + · · · ,
(

ω2

c

)
� X0 + X1ψ + X2ψ

2 + · · · ,

then taking u0 � 0 and expanding ai j , b j (i, j � 1, 2) into the sum of ψ

a11 � −32π2(ψ2 + 4ψ8 + 9ψ18 + · · ·), a12 � 1 + 2ψ2 + 2ψ8 + 2ψ18 + · · · ,
a21 � −8π2(ψ + 9ψ5 + 25ψ13 + · · ·), a22 � 2ψ + 2ψ5 + 2ψ13 + 2ψ25 + · · · ,
b1 � (32π2ε2c1 + 32π2εηc2 − 512π4ε4c3)ψ2 + (32π2ε2c1 + 32π2εηc2 − 2048π4ε4c3)4ψ8 + · · · ,
b2 � (8π2ε2c1 + 8π2εηc2 − 32π4ε4c3)ψ + (8π2ε2c1 + 8π2εηc2 − 288π4ε4c3)9ψ5 + · · · ,

we have

M0 �
(

0 1
0 0

)
, M1 �

(
0 0

−8π2 2

)
, M2 �

(−32π2 2
0 0

)
, M3 � M4 � 0, M5 �

(
0 0

−72π2 2

)
, · · · ,
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Fig. 16 (Color online) A one-periodic wave of Eq. (1) with parameters c1 � 1, c2 � 2, c3 � 3, a � 2, ε � 0.5, η � 2. This figure can be regarded as a
superposition of a series of soliton waves. a Three-dimensional stereogram of one-periodic wave when t � 0. b Vertical view of plot (a). c The wave moves
along the x-axis when y � 0, t � 0. d The wave moves along the y-axis when x � 0, t � 0. e The wave moves along t-axis when x � 0, y � 0

N0 � 0, N1 �
(

0
8π2ε2c1 + 8π2εηc2 − 32π4ε4c3

)
, N2 �

(
32π2ε2c1 + 32π2εηc2 − 512π4ε4c3

0

)
,

N3 � N4 � 0, N5 �
(

0
72π2ε2c1 + 72π2εηc2 − 2592π4ε4c3

)
, . . . .

Therefore, one has

X0 �
(−ε2c1 − εηc2 + 4π2ε4c3

0

)
, X1 � X3 � 0, X2 �

(−96π2ε4c3

−384π4ε4c3

)
, X4 �

(−288π2ε4c3

−2304π4ε4c3

)
. (25)

Interestingly, the relation of the one-soliton wave solution and one-periodic wave solution is given as follows.

Theorem 1 If one-periodic wave solution Eq. (23) satisfies the condition of

u0 � 0, ε � k

2π i
, η � l

2π i
, υ � δ + πa

2π i
, (26)

where k, l and δ are given by Eq. (4), we have the following asymptotic properties:

c → 0, τ → σ + πa

2π i
, ϕ(τ, a) → 1 + eœ, ψ → 0.

Proof By applying Eq. (25), we obtain

ω2 � (−ε2c1 − εηc2 + 4π2ε4c3) − 96π2ε4c3ψ
2 − 288π2ε4c3ψ

4 + o(ψ4),
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c � −384π4ε4c3ψ
2 − 2304π4ε4c3)ψ4 + o(ψ4),

and by using condition (26), we have

c → 0, 2π iω →
√

−4π2(−ε2c1 − εηc2 + 4π2ε4c3) �
√

−c2kl − c3k4 − c1k2, ψ → 0.

Then expanding the theta function

ϕ(τ, a) � 1 + ψ(e2π iτ + e−2π iτ ) + ψ4(e4π iτ + e−4π iτ ) + · · · ,
by applying condition (26), we have

ϕ(τ, a) � 1 + eτ ′
+ ψ2(e−τ ′

+ e2τ ′
) + ψ6(e−2τ ′

+ e3τ ′
) + ... → 1 + eτ ′

, ψ → 0. (27)

where

τ ′ � 2π iτ − πa → kx + ly +
√

−c2kl − c3k4 − c1k2t + δ � σ, ψ → 0. (28)

What is more, τ → σ+πa
2π i , finally, combining Eq. (27) and Eq. (28), we obtain

ϕ(τ, a) → 1 + eσ , ψ → 0.

Therefore, one-periodic wave solution tends to one-soliton solution under the condition of ψ → 0. �

5 Two-periodic waves and asymptotic properties

In this section, two-periodic wave solution of Eq. (1) is similar to the one-periodic wave solution. When N � 2, the theta function
degenerates the following Fourier series

ϕ(τ, a) � ϕ(τ1, τ2, a) �
+∞∑

n�−∞
e2π i<τ,n>−π<an,n>, (29)

with phase variable τ1 � ε1x + η1y + ω1t + υ1, τ2 � ε2x + η2y + ω2t + υ2, where n � (n1, n2)T ∈ Z2, τ � (τ1, τ2)T ∈ C2, and a is

a positive definite and real-valued symmetric 2 × 2 matrix, that is a �
(
a11 a12

a21 a22

)
, where a11 > 0, a22 > 0 and a11a22 − a12

2 > 0.

5.1 Construction of two-periodic waves

In order to obtain two-periodic wave solution, we take Eq. (29) into Eq. (8) and finally gain the following relation through Eq. (3):

B(Dx , Dy, Dt )ϕ(τ1, τ2, a)ϕ(τ1, τ2, a) �
+∞∑

n�−∞

+∞∑

m�−∞
B(Dx , Dy, Dt )e

2π i<τ,n>−π<an,n>e2π i<τ,m>−π<am,m>

�
+∞∑

n�−∞

+∞∑

m�−∞
B(2π i < n − m, ε >, 2π i < n − m, η >, 2π i < n − m, ω >)e2π i<τ,n+m>−π (<an,n>+<am,m>)

m�m′−n�
+∞∑

m′�−∞

{
+∞∑

n�−∞
B(2π i < 2n − m′, ε >, 2π i < 2n − m′, η >, 2π i < 2n − m′, ω >)

× e−π [<a(n−m′),n−m′>+<an,n>]

}

× e2π i<τ,m′> �
+∞∑

m′�−∞

__
B(m′

1,m
′
2)e2π i<τ,m′> (m, n ∈ Z2), (30)

where

__
B(m1

′,m2
′) �

+∞∑

n�−∞
B(2π i < 2n − m′, ε >, 2π i < 2n − m′, η >, 2π i < 2n − m′, ω >)e−π [<a(n−m′),n−m′>+<an,n>]. (31)

Letting the summation index n j � n j
′ + δ jl , where δ jl �

{
0, l 	� j
1, l � j

, Eq. (31) has the form of

__
B(m1

′,m2
′) �

+∞∑

n�−∞
B(2π i

2∑

j�1

[2n j
′ − (m j

′ − 2δ jl )]ε j , 2π i
2∑

j�1

[2n j
′ − (m j

′ − 2δ jl )]η j , 2π i
2∑

j�1

[2n j
′ − (m j

′ − 2δ jl )]ω j )
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× e
−π

2∑

j,k�1
(n j

′+δ jl )a jk (nk ′+δkl )−π
2∑

j,k�1
[(m j

′−2δ jl−n j
′)+δ jl ]a jk [(mk

′−2δkl−nk ′)+δkl ]

�
{ __
B(m1

′ − 2,m2
′)e2πa11−2π (a11m1

′+a12m2
′), l � 1,

__
B(m1

′,m2
′ − 2)e2πa22−2π (a12m1

′+a22m2
′), l � 2,

which shows that
__
B(m1

′,m2
′) (m1

′ ∈ Z2,m2
′ ∈ Z2) is entirely determined by four formulas

__
B(0, 0),

__
B(0, 1),

__
B(1, 0),

__
B(1, 1).

That is, if the following four equations are satisfied
__
B(0, 0) � __

B(0, 1) � __
B(1, 0) � __

B(1, 1) � 0, (32)

then
__
B(m1

′,m2
′) � 0 (m1

′ ∈ Z2,m2
′ ∈ Z2), so B(Dx , Dy, Dt )ϕ(τ1, τ2, a)ϕ(τ1, τ2, a) � 0. Then introducing the marks as

M � (a jl )4×5, b � (b1, b2, b3, b4)T , a j1 �
∑

n1,n2∈Z2

−4π2(2n1 − s j1 )
2
v j (n), a j2 �

∑

n1,n2∈Z2

−4π2(2n2 − s j2 )
2
v j (n),

a j3 �
∑

n1,n2∈Z2

−24π2 < 2n − s j , ε>2v j (n), a j4 �
∑

n1,n2∈Z2

v j (n), a j5 �
∑

n1,n2∈Z2

−8π2(2n1 − s j1 )(2n2 − s j2 )v j (n),

b j �
∑

n1,n2∈Z2

(4π2c1 < 2n − s j , ε>2 + 4π2c2 < 2n − s j , ε >< 2n − s j , η > −16π4c3 < 2n − s j , ε>4)v j (n),

v j (n) � ψ1
n1

2+(n1−s j1 )
2

ψ2
n2

2+(n2−s j2 )
2

ψ3
n1n2+(n1−s j1 )(n2−s j2 ), ψ1 � e−πa11 , ψ2 � e−πa22 , ψ3 � e−2πa12 ,

s1 � (0, 0), s2 � (0, 1), s3 � (1, 0), s4 � (1, 1), s j � (s j1 , s j2 ),

Eq. (32) can be written as the form of a system of linear equations about frequency ω1, ω2, constant u0 and integration constant
c, that is

M(ω1
2, ω2

2, u0, c, ω1ω2) � b, (33)

so we obtain the two-periodic wave solution of Eq. (1)

u � u0 + 2(ln ϕ(τ1, τ2, a))xx , (34)

where the theta function ϕ(τ1, τ2, a) is given by Eq. (29), u0 is determined by formula (33), the other parameters
c1, c2, c3,a11, a12, a22, ε1, η1, ε2, η2, υ1 and υ2 are free, the seven parameters a11, a22, a12, ε1, η1, ε2 and η2 play a major role
in two-periodic waves. Figures 17, 18, 19, and 20 systematically show the dynamic characteristics of two-periodic waves.

5.2 Characteristics of two-periodic waves

(1) It is bounded for all complex variables (x, y, t).
(2) It is obvious that two-periodic waves are the generalization of the one-periodic waves, but there are two phase variables τ1

and τ2, it has two independent periods in two independent horizontal directions, respectively, and it can be regarded as the
superposition of a periodic wave propagating along the x-axis and y-axis, respectively.

(3) It has 2N fundamental periods {e j , j � 1, 2, ..., N } and {ia j , j � 1, 2, ..., N } in (τ1, τ2). Its velocity of the propagation has
the form of

dx

dt
� ω2ε1 − ω1ε2

ε1η2 − ε2η1
,

dy

dt
� ω1η2 − ω2η1

ε1η2 − ε2η1
.

(4) Eq. (30) can be written as the form of

B(Dx , Dy, Dt )ϕ(τ1, τ2, a)ϕ(τ1, τ2, a) �
+∞∑

m′�−∞

__
B(m1

′,m2
′)e2π i<τ,m′> �

+∞∑

m′�−∞

__
B(m1

′,m2
′) cos(τ1m1

′) cos(τ2m2
′).

According to the above formula, two-periodic wave has two characteristic lines: τ1 � ε1x + η1y + ω1t + υ1 � 0 and τ2 �
ε2x + η2y + ω2t + υ2 � 0.

(i) If we give the following relations of

∣∣∣∣
ε1 η1

ε2 η2

∣∣∣∣ 	� 0, that is the two characteristic lines are not parallel. In one case, the included

angle of the characteristic line is a general angle, that is ε1
η1

	� ε2
η2

, as shown in Fig. 17, and in the other case, the included angle

is a right angle, that is ε1
η1

� − η2
ε2

, as shown in Fig. 20. What they have in common is the collision of phase variables τ1 and
τ2 makes the two-periodic waves appear honeycomb, and these hill-shaped bulges propagate periodically along the x-axis and
y-axis, the points (x, y) (ε1x + η1y � 2kπ, ε2x + η2y � 2kπ, k � 0, 1, 2, ...) are the peak points of two-periodic waves, the
points (x, y) (ε1x + η1y � 2kπ + π, ε2x + η2y � 2kπ + π, k � 0, 1, 2, ...) are the trough points of two-periodic waves. The
different is that Fig. 17 has two strict periods along x-axis and y-axis, whereas Fig. 20 has one period along x-axis and y-axis.
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Fig. 17 (Color online) A two-periodic wave of Eq. (1) with parameters c1 � c2 � c3 � 1, ε1 � 0.5, η1 � 1, ε2 � 0.3, η2 � −0.25, a11 � 1, a12 �
0.3, a22 � 1. a Three-dimensional stereogram of two-periodic wave when t � 0. b Vertical view of plot a. c The wave moves along the x-axis when
y � 0, t � 0. d The wave moves along the y-axis when x � 0, t � 0. e The wave moves along t-axis when x � 0, y � 0

(ii) If we give the following relations of

∣∣∣∣
ε1 η1

ε2 η2

∣∣∣∣ � 0, that is the two characteristic lines are parallel. In one case ε1
η1

� ε2
η2

� k,

where k is a constant, k 	� 1, as shown in Fig. 18, and in the other case ε1
η1

� ε2
η2

� 1, as shown in Fig. 19. What they have in
common is the parallel of phase variables τ1, τ2 makes the periodic wave fluctuate in parallel and propagate periodically along
the x-axis and y-axis. The different is that Fig. 19 has two strict periods along x-axis and y-axis, whereas Fig. 18 has one period
along x-axis and y-axis.

5.3 Asymptotic properties of two-periodic waves

In what follows, we further analyze asymptotic properties of the two-periodic wave solution by solving Eq. (33) and taking a limit
condition. The expansion of matrix M has the following form of

M �

⎛

⎜⎜
⎝

0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟
⎠ +

⎛

⎜⎜
⎝

0 0 0 0 0
0 0 0 0 0

−8π2 0 −48π2ε1
2 2 0

0 0 0 0 0

⎞

⎟⎟
⎠ψ1 +

⎛

⎜⎜
⎝

0 0 0 0 0
0 −8π2 −48π2ε2

2 2 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟
⎠ψ2

+

⎛

⎜⎜
⎝

−32π2 0 −192π2ε1
2 2 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟
⎠ψ1

2 +

⎛

⎜⎜
⎝

0 −32π2 −192π2ε2
2 2 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟
⎠ψ2

2

+

⎛

⎜⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−8π2 −8π2 −48π2[(ε1 − ε2)2 + (ε1 + ε2)2ψ3] 2(1 + ψ3) −16π2(ψ3 − 1)

⎞

⎟⎟
⎠ψ1ψ2 + o(ψ1

iψ2
j ), (35)
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Fig. 18 (Color online) A two-periodic wave of Eq. (1) with parameters c1 � 1, c2 � 2, c3 � 3, ε1 � 0.5, η1 � 0.3, ε2 � 0.5, η2 � 0.3, a11 � 1, a12 �
0.3, a22 � 1. a Three-dimensional stereogram of two-periodic wave when t � 0. b Vertical view of plot (a). c The wave moves along the x-axis when
y � 0, t � 0. d The wave moves along the y-axis when x � 0, t � 0. e The wave moves along t-axis when x � 0, y � 0

where i + j ≥ 2. and

b �

⎛

⎜⎜
⎝

0
0

�1

0

⎞

⎟⎟
⎠ψ1 +

⎛

⎜⎜
⎝

0
�2

0
0

⎞

⎟⎟
⎠ψ2 +

⎛

⎜⎜
⎝

�3

0
0
0

⎞

⎟⎟
⎠ψ1

2 +

⎛

⎜⎜
⎝

�4

0
0
0

⎞

⎟⎟
⎠ψ2

2 +

⎛

⎜⎜
⎝

0
0
0

�5

⎞

⎟⎟
⎠ψ1ψ2,

�1 � 8π2ε1
2c1 + 8π2ε1η1c2 − 32π4ε1

4c3, �2 � 8π2ε2
2c1 + 8π2ε2η2c2 − 32π4ε2

4c3,

�3 � 32π2ε1
2c1 + 32π2ε1η1c2 − 512π4ε1

4c3, �4 � 8π2ε2
2c1 + 8π2ε2η2c2 − 32π4ε2

4c3,

�5 � 8π2c1[(ε1 − ε2)2 + (ε1 + ε2)2ψ3] + 8π2c2[(ε1 − ε2)(η1 − η2) + (ε1 + ε2)(η1 + η2)ψ3

− 32π4c3[(ε1 − ε2)4 + (ε1 + ε2)4ψ3]. (36)

Then, we assume that the solution of M(ω1
2, ω2

2, u0, c, ω1ω2) � b has the following form of

⎛

⎜⎜⎜⎜
⎝

ω1
2

ω2
2

u0

c
ω1ω2

⎞

⎟⎟⎟⎟
⎠

�

⎛

⎜⎜⎜⎜
⎝

ω1
2(0)

ω2
2(0)

u(0)
0

c(0)

ω1ω2
(0)

⎞

⎟⎟⎟⎟
⎠

+

⎛

⎜⎜⎜⎜
⎝

ω1
2(1)

ω2
2(1)

u(1)
0

c(1)

ω1ω2
(1)

⎞

⎟⎟⎟⎟
⎠

ψ1 +

⎛

⎜⎜⎜⎜
⎝

ω1
2(2)

ω2
2(2)

u(2)
0

c(2)

ω1ω2
(2)

⎞

⎟⎟⎟⎟
⎠

ψ2 +

⎛

⎜⎜⎜⎜
⎝

ω1
2(11)

ω2
2(11)

u(11)
0

c(11)

ω1ω2
(11)

⎞

⎟⎟⎟⎟
⎠

ψ1
2
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Fig. 19 (Color online) A two-periodic wave of Eq. (1) with parameters c1 � c2 � c3 � 1, ε1 � 0.5, η1 � 0.5, ε2 � 0.3, η2 � 0.3, a11 � 1, a12 �
0.3, a22 � 1. a Three-dimensional stereogram of two-periodic wave when t � 0. b Vertical view of plot (a). c The wave moves along the x-axis when
y � 0, t � 0. d The wave moves along the y-axis when x � 0, t � 0. e The wave moves along t-axis when x � 0, y � 0

+

⎛

⎜
⎜⎜⎜
⎝

ω1
2(22)

ω2
2(22)

u(22)
0

c(22)

ω1ω2
(22)

⎞

⎟⎟⎟⎟
⎠

ψ2
2 +

⎛

⎜
⎜⎜⎜
⎝

ω1
2(12)

ω2
2(12)

u(12)
0

c(12)

ω1ω2
(12)

⎞

⎟⎟⎟⎟
⎠

ψ1ψ2 + o(ψ1
iψ2

j ), i + j ≥ 2. (37)

Interestingly, the relation of the two-soliton wave solution and two-periodic wave solution is given as follows.

Theorem 2 If two-periodic wave solution Eq. (34) satisfies the following condition of

ε j � k j
2π i

, η j � l j
2π i

, υ j � δ j + πa j j

2π i
, a12 � A12

−2π
, ( j � 1, 2) (38)

where k j , l j and δ j ( j � 1, 2) are given by Eq. (5), we have the following asymptotic properties:

u0 → 0, c → 0, τ j → σ j + πa j j

2π i
( j � 1, 2), ϕ(τ1, τ2, a) → 1 + eσ1 + eσ2 + eσ1+σ2+A12 , ψ1, ψ2 → 0.

Proof By substituting Eq. (35-37) into Eq. (33), we obtain the following relations of

c(0) � c(1) � c(2) � c(12) � 0, ω
2(0)
1 + 6ε1u

(0)
0 � −ε2

1c1 − ε1η1c2 + 4π2ε2
1c3,

ω
2(0)
2 + 6ε2u

(0)
0 � −ε2

2c1 − ε2η2c2 + 4π2ε2
2c3, ω

2(1)
1 + 6ε1u

(1)
0 � 0, ω

2(1)
2 + 6ε2u

(1)
0 � 0,

c(11) − 32π2ω
2(0)
1 − 192π2ε2

1u
(0)
0 � 32π2ε2

1c1 + 32π2ε1η1c2 − 512π4ε4
1c3,
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Fig. 20 (Color online) A two-periodic wave of Eq. (1) with parameters c1 � c2 � c3 � 1, ε1 � 0.5, η1 � 0.5, ε2 � 0.5, η2 � −0.5, a11 � 1, a12 �
0.3, a22 � 1. a Three-dimensional stereogram of two-periodic wave when t � 0. b Vertical view of plot (a). c The wave moves along the x-axis when
y � 0, t � 0. d The wave moves along the y-axis when x � 0, t � 0. e The wave moves along t-axis when x � 0, y � 0

c(22) − 32π2ω
2(0)
2 − 192π2ε2

2u
(0)
0 � 32π2ε2

2c1 + 32π2ε2η2c2 − 512π4ε4
2c3. (39)

�

By using condition(38), and taking u(0)
0 � 0, Eq. (39) has the following form of

c � −384π4ε1
4c3ψ1

2 − 384π4ε2
4c3ψ2

2 + o(ψ1
2ψ2

2),

2π iω1 �
√

−4π2ω1 �
√

−4π2(−ε1
2c1 − ε1η1c2 + 4π2ε1

2c3),

2π iω2 �
√

−4π2ω2 �
√

−4π2(−ε2
2c1 − ε2η2c2 + 4π2ε2

2c3),

and using condition(38), we have

u0 → 0, c → 0, 2π iω1 →
√

−k1
2c1 − k1l1c2 − k1

2c3, 2π iω2 →
√

−k2
2c1 − k2l2c2 − k2

2c3, ψ1, ψ2 → 0.

By expanding the theta function

ϕ(τ1, τ2, a) � 1 + (e2π iτ1 + e−2π iτ1 )e−πa11 + (e2π iτ2 + e−2π iτ2 )e−πa22 +
(
e2π i(τ1+τ2) + e−2π i(τ1+τ2))e−π (a11+2a12+a22) + · · · ,

and applying condition(38), one has

ϕ(τ1, τ2, a) � 1 + eτ1
′
+ eτ2

′
+ eτ1

′+τ2
′−2πa12 + ψ1

2e−τ1
′
+ ψ2

2e−τ2
′
+ ψ1

2ψ2
2e−τ1

′−τ2
′−2πa12 + · · ·

→1 + eτ1
′
+ eτ2

′
+ eτ1

′+τ2
′+A12 , ψ1, ψ2 → 0, (40)
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where

τ1
′ � 2π iτ1 − πa11 → k1x + l1y +

√
−c2k1l1 − c3k1

4 − c1k1
2t + δ1 � σ1,

τ2
′ � 2π iτ2 − πa22 → k2x + l2y +

√
−c2k2l2 − c3k2

4 − c1k2
2t + δ2 � σ2, ψ1, ψ2 → 0. (41)

Combining Eqs. (40) and (41), we obtain

ϕ(τ1, τ2, a) → 1 + eσ1 + eσ2 + eσ1+σ2+A12 , ψ1, ψ2 → 0.

Therefore, two-periodic wave solution tends to two-soliton solution under the condition of ψ1, ψ2 → 0.

6 Three-periodic waves and asymptotic properties

In this section, three-periodic wave solution of Eq. (1) is more complex than the two-periodic wave solution. When N � 3, the theta
function degenerates the following Fourier series

ϕ(τ, a) � ϕ(τ1, τ2, τ3, a) �
+∞∑

n�−∞
e2π i<τ,n>−π<an,n>, (42)

with phase variable τ1 � ε1x +η1y +ω1t +υ1, τ2 � ε2x +η2y +ω2t +υ2 and τ3 � ε3x +η3y +ω3t +υ3, where n � (n1, n2, n3)T ∈

Z3, τ � (τ1, τ2, τ3)T ∈ C3, and a is a positive definite and real-valued symmetric 3 × 3 matrix, that is, a �
⎛

⎝
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞

⎠.

6.1 Construction of three-periodic waves

The structure of three-periodic waves is similar to that of two-periodic waves, where

B(m1
′,m2

′,m3
′) �

⎧
⎨

⎩

B(m1
′ − 2,m2

′,m3
′)e2π (1−m1

′)a11−2π (a12m2
′+a13m3

′), l � 1,

B(m1
′,m2

′ − 2,m3
′)e2π (1−m2

′)a22−2π (a21m1
′+a23m3

′), l � 2,

B(m1
′,m2

′,m3
′ − 2)e2π (1−m3

′)a33−2π (a31m1
′+a32m2

′), l � 3,

which shows that
__
B(m1

′,m2
′,m3

′) (m1
′ ∈ Z3,m2

′ ∈ Z3,m3
′ ∈ Z3) is entirely determined by eight formulas

__
B(0, 0, 0),

__
B(1, 0, 0),__

B(0, 1, 0),
__
B(0, 0, 1),

__
B(1, 1, 0),

__
B(1, 0, 1),

__
B(0, 1, 1),

__
B(1, 1, 1), that is, if the following eight equations are satisfied

__
B(0, 0, 0) � __

B(1, 0, 0) � __
B(0, 1, 0) � __

B(0, 0, 1) � __
B(1, 1, 0) � __

B(1, 0, 1) � __
B(0, 1, 1) � __

B(1, 1, 1) � 0 (43)

then
__
B(m1

′,m2
′,m3

′) � 0 (m1
′ ∈ Z3, m2

′ ∈ Z3, m3
′ ∈ Z3), B(Dx , Dy, Dt )ϕ(τ1, τ2, τ3, a)ϕ(τ1, τ2, τ3, a) � 0.

Then introducing the marks as

M � (a jl )8×11, b � (b1, b2, b3, b4, b5, b6, b7, b8)T ,

a j1 �
∑

n1,n2,n3∈Z3

−4π2(2n1 − s j1 )
2
v j (n),

a j2 �
∑

n1,n2,n3∈Z3

−4π2(2n2 − s j2 )
2
v j (n),

a j3 �
∑

n1,n2,n3∈Z3

−4π2(2n3 − s j3 )
2
v j (n),

a j4 �
∑

n1,n2,n3∈Z3

−4π2c2 < 2n − s j , ε > (2n1 − s j1 )v j (n),

a j5 �
∑

n1,n2,n3∈Z3

−4π2c2 < 2n − s j , ε > (2n2 − s j2 )v j (n),

a j6 �
∑

n1,n2,n3∈Z3

−4π2c2 < 2n − s j , ε > (2n3 − s j3 )v j (n),

123



  914 Page 22 of 30 Eur. Phys. J. Plus         (2022) 137:914 

a j7 �
∑

n1,n2,n3∈Z3

−24π2 < 2n − s j , ε>2v j (n),

a j8 �
∑

n1,n2,n3∈Z3

v j (n),

a j9 �
∑

n1,n2,n3∈Z3

−8π2(2n1 − s j1 )(2n2 − s j2 )v j (n),

a j10 �
∑

n1,n2,n3∈Z3

−8π2(2n1 − s j1 )(2n3 − s j3 )v j (n),

a j11 �
∑

n1,n2,n3∈Z3

−8π2(2n2 − s j2 )(2n3 − s j3 )v j (n),

b j �
∑

n1,n2,n3∈Z3

(4π2c1 < 2n − s j , ε>2 − 16π4c3 < 2n − s j , ε>4)v j (n),

v j (n) � ψ1
n1

2+(n1−s j1 )
2

× ψ2
n2

2+(n2−s j2 )
2

× ψ3
n3

2+(n3−s j3 )
2

× ψ12
n1n2+(n1−s j1 )(n2−s j2 )

× ψ13
n1n3+(n1−s j1 )(n3−s j3 ) × ψ12

n2n3+(n2−s j2 )(n3−s j3 ),

ψ1 � e−πa11 , ψ2 � e−πa22 , ψ3 � e−πa33 , ψ12 � e−2πa12 , ψ13 � e−2πa13 , ψ23 � e−2πa23 ,

s1 � (0, 0, 0), s2 � (1, 0, 0), s3 � (0, 1, 0), s4 � (0, 0, 1), s5 � (1, 1, 0),

s6 � (1, 0, 1), s7 � (0, 1, 1), s8 � (1, 1, 1), s j � (s j1 , s j2 , s j3 ),

Eq. (43) can be written as the form of a system of linear equations about η1, η2, η3, frequency ω1, ω2, ω3, constant u0 and integration
constant c, that is

M(ω1
2, ω2

2, ω3
2, η1, η2, η3, u0, c, ω1ω2, ω1ω3, ω2ω3) � b, (44)

then we obtain the three-periodic wave solution of Eq. (1)

u � u0 + 2(ln ϕ(τ1, τ2, τ3, a))xx , (45)

where the theta function ϕ(τ1, τ2, τ3, a) is given by Eq. (42), u0 is determined by formula (44), the other parameters
c1, c2, c3,a11, a12, a13, a23, a22, a33, ε1, ε2, ε3, υ1, υ2 and υ3 are free, the nine parameters a11, a12, a13, a23, a22, a33, ε1, ε2 and
ε3 play a major role in three-periodic waves.

6.2 Characteristics of three-periodic waves

(1) It is bounded for all complex variables (x, y, t).
(2) It is obvious that three-periodic waves are the direct generalization of the one- and two-periodic waves, but there are three phase

variables τ1, τ2 and τ3, it has three independent periods in two independent horizontal directions, respectively.
(3) B(Dx , Dy, Dt )ϕ(τ1, τ2, τ3, a)ϕ(τ1, τ2, τ3, a) can be written as the form of

+∞∑

m′�−∞

__
B(m1

′,m2
′,m3

′) cos(τ1m1
′) cos(τ2m2

′) cos(τ3m3
′).

According to the above formula, three-periodic wave has three characteristic lines: τ1 � ε1x + η1y + ω1t + υ1 � 0, τ2 �
ε2x + η2y + ω2t + υ2 � 0 and τ3 � ε3x + η3y + ω3t + υ3 � 0.

If giving the relations ε1 > 0(< 0), ε2 > 0(< 0), ε3 > 0(< 0), we obtain ε1
η1

≈ ε2
η2

≈ ε3
η3

, that is the three characteristic lines are
parallel, as shown in Figs. 21, 22, 23 and 24. In Fig. 21, ε1 	� ε2 	� ε3, it presents three strict periods along the x-axis, y-axis and
t-axis. Then we consider the special relations of ε1 � −ε2, and ε3 	� ε1, ε2, it presents two periods along the x-axis, y-axis and
t-axis, and appears interesting Hill-shaped protrusions, as shown in Fig. 24. In Fig. 22, ε1 � ε2 	� ε3, it presents two periods along
the x-axis, y-axis and t-axis. In Fig. 23, ε1 � ε2 � ε3, three-periodic wave degenerates into one-periodic wave in the x-axis, y-axis
and t-axis, and they are superimposed in three directions.
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Fig. 21 (Color online) A three-periodic wave of Eq. (1) with parameters c1 � c2 � c3 � 1, ε1 � 0.5, ε2 � 0.45, ε3 � 0.4, a11 � 1, a12 � 0.3, a13 �
0.3, a23 � 0.3, a22 � 1, a33 � 1. a Three-dimensional stereogram of three-periodic wave when t � 0. b Vertical view of plot (a). c The wave moves along
the x-axis when y � 0, t � 0. d The wave moves along the y-axis when x � 0, t � 0. e The wave moves along t-axis when x � 0, y � 0

6.3 Asymptotic properties of three-periodic waves

In what follows, we further analyze asymptotic properties of the three-periodic wave solution by solving Eq. (44) and taking a limit
condition. The expansion of matrix M has the following form of

M �

⎛

⎜⎜⎜
⎝

1×8
︷ ︸︸ ︷
0 · · · 01 000

· · · 0 · · ·
︸ ︷︷ ︸

7×11

⎞

⎟⎟⎟
⎠

+

⎛

⎜⎜
⎝

· · · 0 · · ·
−8π200−8π2ε1c200−48π2ε1

2 20 00
· · · 0 · · ·
︸ ︷︷ ︸

6×11

⎞

⎟⎟
⎠ψ1

+

⎛

⎜⎜⎜⎜⎜
⎝

2×11
︷ ︸︸ ︷
· · · 0 · · ·

0−8π200−8π2ε2c20−48π2ε2
2 20 00

· · · 0 · · ·
︸ ︷︷ ︸

5×11

⎞

⎟⎟⎟⎟⎟
⎠

ψ2

+

⎛

⎜⎜⎜⎜⎜
⎝

3×11
︷ ︸︸ ︷
· · · 0 · · ·

00−8π200−8π2ε3c2−48π2ε3
2 20 00

· · · 0 · · ·
︸ ︷︷ ︸

4×11

⎞

⎟⎟⎟⎟⎟
⎠

ψ3
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Fig. 22 (Color online) A three-periodic wave of Eq. (1) with parameters c1 � c2 � c3 � 1, ε1 � 0.5, ε2 � 0.5, ε3 � 0.3, a11 � 1, a12 � 0.3, a13 �
0.3, a23 � 0.3, a22 � 1, a33 � 1. a Three-dimensional stereogram of three-periodic wave when t � 0. b Vertical view of plot (a). c The wave moves along
the x-axis when y � 0, t � 0. d The wave moves along the y-axis when x � 0, t � 0. e The wave moves along t-axis when x � 0, y � 0

+

⎛

⎜⎜⎜⎜⎜
⎝

4×11
︷ ︸︸ ︷
· · · 0 · · ·

−8π2−8π20�1�20�3 2(1 + ψ12)−16π2(ψ12 − 1) 00
· · · 0 · · ·
︸ ︷︷ ︸

3×11

⎞

⎟⎟⎟⎟⎟
⎠

ψ1ψ2

+

⎛

⎜⎜⎜⎜⎜
⎝

5×11
︷ ︸︸ ︷
· · · 0 · · ·

−8π20−8π2�40�5�6 2(1 + ψ13)0 −16π2(ψ13 − 1)0
· · · 0 · · ·
︸ ︷︷ ︸

2×11

⎞

⎟⎟⎟⎟⎟
⎠

ψ1ψ3

+

⎛

⎜⎜⎜⎜⎜
⎝

6×11
︷ ︸︸ ︷
· · · 0 · · ·

0−8π2−8π20�7�8�9 2(1 + ψ23)0 0−16π2(ψ23 − 1)
· · · 0 · · ·
︸ ︷︷ ︸

1×11

⎞

⎟⎟⎟⎟⎟
⎠

ψ2ψ3
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Fig. 23 (Color online) A three-periodic wave of Eq. (1) with parameters c1 � c2 � c3 � 1, ε1 � 0.5, ε2 � 0.5, ε3 � 0.5, a11 � 1, a12 � 0.3, a13 �
0.3, a23 � 0.3, a22 � 1, a33 � 1. a Three-dimensional stereogram of three-periodic wave when t � 0. b Vertical view of plot (a). c The wave moves along
the x-axis when y � 0, t � 0. d The wave moves along the y-axis when x � 0, t � 0. e The wave moves along t-axis when x � 0, y � 0

+

⎛

⎜
⎝

−32π200−32π2ε1c200−192π2ε1
2 2000

· · · 0 · · ·
︸ ︷︷ ︸

7×11

⎞

⎟
⎠ψ1

2

+

⎛

⎜
⎝

0−32π200−32π2ε2c20−192π2ε2
2 2000

· · · 0 · · ·
︸ ︷︷ ︸

7×11

⎞

⎟
⎠ψ2

2

+

⎛

⎜
⎝

00−32π200−32π2ε3c2−192π2ε3
2 2000

· · · 0 · · ·
︸ ︷︷ ︸

7×11

⎞

⎟
⎠ψ3

2

+

⎛

⎜
⎝

7×11
︷ ︸︸ ︷
· · · 0 · · ·

−8π2−8π2−8π2�10�11�12�13�14�15�16�16

⎞

⎟
⎠ψ1ψ2ψ3 + o(ψ1

iψ2
jψ3

k), i + j + k ≥ 3,

�1 � �2 � −8π2c2[(ε1 + ε2)ψ12 + (ε1 − ε2)], �3 � −48π2[(ε1 + ε2)2ψ12 + (ε1 − ε2)2],

�4 � �5 � −8π2c2[(ε1 + ε3)ψ13 + (ε1 − ε3)], �6 � −48π2[(ε1 + ε3)2ψ13 + (ε1 − ε3)2],
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Fig. 24 (Color online) A three-periodic wave of Eq. (1) with parameters c1 � c2 � c3 � 1, ε1 � 0.5, ε2 � −0.5, ε3 � 0.3, a11 � 1, a12 � 0.3, a13 �
0.3, a23 � 0.3, a22 � 1, a33 � 1. a Three-dimensional stereogram of three-periodic wave when t � 0. b Vertical view of plot (a). c The wave moves along
the x-axis when y � 0, t � 0. d The wave moves along the y-axis when x � 0, t � 0. e The wave moves along t-axis when x � 0, y � 0

�7 � �8 � −8π2c2[(ε2 + ε3)ψ23 + (ε2 − ε3)], �9 � −48π2[(ε2 + ε3)2ψ23 + (ε2 − ε3)2],

�10 � −48π2c2[(ε1 + ε2 + ε3)ψ12ψ13ψ23 + (ε1 − ε2 − ε3)ψ23 + (ε1 − ε2 + ε3)ψ13 + (ε1 + ε2 − ε3)ψ12],

�11 � −48π2c2[(ε1 + ε2 + ε3)ψ12ψ13ψ23 + (−ε1 + ε2 + ε3)ψ23 + (−ε1 + ε2 − ε3)ψ13 + (ε1 + ε2 − ε3)ψ12],

�12 � −48π2c2[(ε1 + ε2 + ε3)ψ12ψ13ψ23 + (−ε1 + ε2 + ε3)ψ23 + (ε1 − ε2 + ε3)ψ13 + (−ε1 − ε2 + ε3)ψ12],

�13 � −48π2[(ε1 + ε2 + ε3)2ψ12ψ13ψ23 + (−ε1 + ε2 + ε3)2ψ23 + (ε1 − ε2 + ε3)2ψ13 + (ε1 + ε2 − ε3)2ψ12],

�14 � 2(ψ12 + ψ13 + ψ23 + ψ12ψ13ψ23), �15 � −16π2(ψ12ψ13ψ23 + ψ12 − ψ13 − ψ23),

�16 � −16π2(ψ12ψ13ψ23 + ψ13 − ψ12 − ψ23), �17 � −16π2(ψ12ψ13ψ23 + ψ23 − ψ12 − ψ13), (46)

and

b �

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
H1

0
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

ψ1 +

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0

H2

0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

ψ2 +

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
0
0

H3

0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

ψ3 +

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

H4

0
0
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

ψ1
2 +

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

H5
0
0
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

ψ2
2 +

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

H6

0
0
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

ψ3
2
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+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0

H7

0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

ψ1ψ2 +

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0

H8

0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

ψ1ψ3 +

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0

H9

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

ψ2ψ3 +

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0
0
0
0
0

H10

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

ψ1ψ2ψ3, (47)

where

H1 � 8π2ε1
2c1 − 32π4ε1

4c3, H2 � 8π2ε2
2c1 − 32π4ε2

4c3, H3 � 8π2ε3
2c1 − 32π4ε3

4c3,

H4 � 32π2ε1
2c1 − 512π4ε1

4c3, H5 � 32π2ε2
2c1 − 512π4ε2

4c3, H6 � 32π2ε3
2c1 − 512π4ε3

4c3,

H7 � 8π2c1[(ε1 + ε2)2ψ12 + (ε1 − ε2)2] − 32π4c3[(ε1 + ε2)4ψ12 + (ε1 − ε2)4],

H8 � 8π2c1[(ε1 + ε3)2ψ13 + (ε1 − ε3)2] − 32π4c3[(ε1 + ε3)4ψ13 + (ε1 − ε3)4],

H9 � 8π2c1[(ε2 + ε3)2ψ23 + (ε2 − ε3)2] − 32π4c3[(ε2 + ε3)4ψ23 + (ε2 − ε3)4],

H10 � 8π2c1[(ε1 + ε2 + ε3)2ψ12ψ13ψ23 + (−ε1 + ε2 + ε3)2ψ23

+ (ε1 − ε2 + ε3)2ψ13 + (ε1 + ε2 − ε3)2ψ12] − 32π4c3[(ε1 + ε2 + ε3)4ψ12ψ13ψ23

+ (−ε1 + ε2 + ε3)4ψ23 + (ε1 − ε2 + ε3)4ψ13 + (ε1 + ε2 − ε3)4ψ12].

Then, we assume the solution of M(ω1
2, ω2

2, ω3
2, η1, η2, η3, u0, c, ω1ω2, ω1ω3, ω2ω3) � b has the following form of

(ω1
2, ω2

2, ω3
2, η1, η2, η3, u0, c, ω1ω2, ω1ω3, ω2ω3, )T

� (ω1
2(0), ω2

2(0), ω3
2(0), η1

(0), η2
(0), η3

(0), u0
(0), c(0), ω1ω2

(0), ω1ω3
(0), ω2ω3

(0))T

+ (ω1
2(1), ω2

2(1), ω3
2(1), η1

(1), η2
(1), η3

(1), u0
(1), c(1), ω1ω2

(1), ω1ω3
(1), ω2ω3

(1))Tψ1

+ (ω1
2(2), ω2

2(2), ω3
2(2), η1

(2), η2
(2), η3

(2), u0
(2), c(2), ω1ω2

(2), ω1ω3
(2), ω2ω3

(2))Tψ2

+ (ω1
2(3), ω2

2(3), ω3
2(3), η1

(3), η2
(3), η3

(3), u0
(3), c(3), ω1ω2

(3), ω1ω3
(3), ω2ω3

(3))Tψ3

+ (ω1
2(11), ω2

2(11), ω3
2(11), η1

(11), η2
(11), η3

(11), u0
(11), c(11), ω1ω2

(11), ω1ω3
(11), ω2ω3

(11))Tψ1
2

+ (ω1
2(22), ω2

2(22), ω3
2(22), η1

(22), η2
(22), η3

(22), u0
(22), c(22), ω1ω2

(22), ω1ω3
(22), ω2ω3

(22))Tψ2
2

+ (ω1
2(33), ω2

2(33), ω3
2(33), η1

(33), η2
(33), η3

(33), u0
(33), c(33), ω1ω2

(33), ω1ω3
(33), ω2ω3

(33))Tψ3
2

+ (ω1
2(12), ω2

2(12), ω3
2(12), η1

(12), η2
(12), η3

(12), u0
(12), c(12), ω1ω2

(12), ω1ω3
(12), ω2ω3

(12))Tψ1ψ2

+ (ω1
2(13), ω2

2(13), ω3
2(13), η1

(13), η2
(13), η3

(13), u0
(13), c(13), ω1ω2

(13), ω1ω3
(13), ω2ω3

(13))Tψ1ψ3

+ (ω1
2(23), ω2

2(23), ω3
2(23), η1

(23), η2
(23), η3

(23), u0
(23), c(23), ω1ω2

(23), ω1ω3
(23), ω2ω3

(23))Tψ2ψ3

+ (ω1
2(123), ω2

2(123), ω3
2(123), η1

(123), η2
(123), η3

(123), u0
(123), c(123), ω1ω2

(123), ω1ω3
(123), ω2ω3

(123))T

× ψ1ψ2ψ3 + o(ψ1
iψ2

jψ3
k), i + j + k ≥ 3. (48)

Finally, the relation of the three-soliton wave solution and three-periodic wave solution is given as follows.

Theorem 3 If three-periodic wave solution Eq. (45) satisfies the condition of

ε j � k j
2π i

, η j � l j
2π i

, υ j � δ j + πa j j

2π i
, a js � A js

−2π
, ( j � 1, 2, 3) (49)

where k j , l j and δ j ( j � 1, 2, 3) are given by Eq. (5), we have the following asymptotic properties:

u0 → 0, c →0, τ j → σ j + πa j j

2π i
( j � 1, 2, 3),

ϕ(τ1, τ2, τ3, a) →1 + eσ1 + eσ2 + eσ3 + eσ1+σ2+A12 + eσ1+σ3+A13 + eσ2+σ3+A23

+ eσ1+σ2+σ3+A12+A13+A23 , ψ1, ψ2, ψ3 → 0.

Proof By substituting Eq. (46-48) into Eq. (44), we obtain the following relations of

c(0) � c(1) � c(2) � c(3) � c(12) � c(13) � c(23) � c(123) � 0,

ω1
2(0) + 6ε1u

(0)
0 � −ε1

2c1 − ε1η1
(0)c2 + 4π2ε1

2c3,
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ω2
2(0) + 6ε2u

(0)
0 � −ε2

2c1 − ε2η2
(0)c2 + 4π2ε2

2c3,

ω3
2(0) + 6ε3u

(0)
0 � −ε3

2c1 − ε3η3
(0)c2 + 4π2ε3

2c3,

ω1
2(1) + ε1η1

(1)c2 + 6ε1u
(1)
0 � 0, ω2

2(1) + ε2η2
(1)c2 + 6ε2u

(1)
0 � 0, ω3

2(1) + ε3η3
(1)c2 + 6ε3u

(1)
0 � 0,

c(11) − 32π2ω1
2(0) − 32π2ε1η1

(0)c2 − 192π2ε2
2u(0)

0 � 32π2ε1
2c1 − 512π4ε1

4c3,

c(22) − 32π2ω2
2(0) − 32π2ε2η2

(0)c2 − 192π2ε2
2u(0)

0 � 32π2ε2
2c1 − 512π4ε2

4c3,

c(33) − 32π2ω3
2(0) − 32π2ε3η3

(0)c2 − 192π2ε3
2u(0)

0 � 32π2ε3
2c1 − 512π4ε3

4c3. (50)

�

Then by using condition (49), taking u(0)
0 � 0, η

(0)
j � η j , ( j � 1, 2, 3) and letting the remaining components of η are zero, Eq.

(50) has the following form of

c � −384π4ε1
4c3ψ1

2 − 384π4ε2
4c3ψ2

2 − 384π4ε3
4c3ψ3

2 + o(ψ1
2ψ2

2ψ3
2),

2π iω1 �
√

−4π2ω1 �
√

−4π2(−ε1
2c1 − ε1η1c2 + 4π2ε1

2c3),

2π iω2 �
√

−4π2ω2 �
√

−4π2(−ε2
2c1 − ε2η2c2 + 4π2ε2

2c3),

2π iω3 �
√

−4π2ω3 �
√

−4π2(−ε3
2c1 − ε3η3c2 + 4π2ε3

2c3).

By using condition (49), we have

u0 → 0, c →0, 2π iω1 →
√

−k1
2c1 − k1l1c2 − k1

2c3,

2π iω2 →
√

−k2
2c1 − k2l2c2 − k2

2c3,

2π iω3 →
√

−k3
2c1 − k3l3c2 − k3

2c3, ψ1, ψ2, ψ3 → 0.

By expanding the theta function

ϕ(τ1, τ2, τ3, a) � 1 + (e2π iτ1 + e−2π iτ1 )e−πa11 + (e2π iτ2 + e−2π iτ2 )e−πa22

+ (e2π iτ3 + e−2π iτ3 )e−πa33 +
(
e2π i(τ1+τ2) + e−2π i(τ1+τ2))e−π (a11+2a12+a22)

+
(
e2π i(τ1+τ3) + e−2π i(τ1+τ3))e−π (a11+2a13+a33) +

(
e2π i(τ2+τ3) + e−2π i(τ2+τ3))e−π (a22+2a23+a33)

+
(
e2π i(τ1+τ2+τ3) + e−2π i(τ1+τ2+τ3))e−π (a11+2a12+2a13+2a23+a22+a33) + · · · ,

and applying condition(49), one yields

ϕ(τ1, τ2, τ3, a) � 1 + eτ1
′
+ eτ2

′
+ eτ3

′
+ eτ1

′+τ2
′−2πa12 + eτ1

′+τ3
′−2πa13 + eτ2

′+τ3
′−2πa23

+ eτ1
′+τ2

′+τ3
′−2π (a12+a13+a23) + ψ1

2e−τ1
′
+ ψ2

2e−τ2
′
+ ψ3

2e−τ3
′

+ · · · → 1 + eτ1
′
+ eτ2

′
+ eτ3

′
+ eτ1

′+τ2
′+A12 + eτ1

′+τ3
′+A13

+ eτ2
′+τ3

′+A23 + eτ1
′+τ2

′+τ3
′+A12+A13+A23 , ψ1, ψ2, ψ3 → 0, (51)

where

τ1
′ � 2π iτ1 − πa11 → k1x + l1y +

√
−c2k1l1 − c3k1

4 − c1k1
2t + δ1 � σ1,

τ2
′ � 2π iτ2 − πa22 → k2x + l2y +

√
−c2k2l2 − c3k2

4 − c1k2
2t + δ2 � σ2,

τ3
′ � 2π iτ3 − πa33 → k3x + l3y +

√
−c2k3l3 − c3k3

4 − c1k3
2t + δ3 � σ3, ψ1, ψ2, ψ3 → 0. (52)

Finally, combining Eqs. (51) and (52), we obtain

ϕ(τ1, τ2, τ3, a) →1 + eσ1 + eσ2 + eσ3 + eσ1+σ2+A12 + eσ1+σ3+A13 + eσ2+σ3+A23

+ eσ1+σ2+σ3+A12+A13+A23 , ψ1, ψ2, ψ3 → 0.

Therefore, three-periodic wave solution tends to three-soliton solution under the condition of ψ1, ψ2, ψ3 → 0.
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7 Conclusion

In this paper, we have investigated the soliton solutions, breath-wave solutions and their transformations, and one-, two-, and three-
periodic waves for a (2+1)-dimensional Boussinesq-type equation. Based on the Hirota’s bilinear method, the soliton solutions have
been derived. By taking the complex conjugate condition to the soliton solutions, the breather solutions are further obtained. And
transformation mechanism of the one breather wave is systematically studied by considering the case which two characteristic lines

are parallel, that is

∣
∣
∣
∣
a1 p1

a2 p2

∣
∣
∣
∣ � 0, under this condition, a large number of types of nonlinear waves are obtained, including quasi-anti-

dark soliton, M-shaped soliton, oscillation M-shaped soliton, multi-peak soliton, quasi-sine wave, quasi-periodic W-shaped wave,
quasi-periodic anti-dark soliton wave and quasi-periodic wave. The transformation of two breather waves is further studied.

According to the Riemann theta function, we have got one- and two-period wave solutions. At the same time, we firstly extend the
study of periodic wave to three-periodic wave solution. In addition, when studying the dynamic characteristics of periodic waves,
the characteristic line method is also firstly introduced. It is obvious that the one-periodic wave solution has one characteristic line of
τ � εx +ηy+ωt +υ � 0, the propagation direction of wave is completely determined by τ, and vx

vy
� ε

η
, as shown in Fig. 16. And the

two-periodic wave has two characteristic lines of τ1 � ε1x + η1y + ω1t + υ1 � 0 and τ2 � ε2x + η2y + ω2t + υ2 � 0. By considering
whether the two characteristic lines are parallel or not, the different forms of two-periodic wave are obtained, as shown in Figs. 17,
18, 19 and 20. The three-periodic wave has three characteristic lines of τ1 � ε1x +η1y+ω1t +υ1 � 0, τ2 � ε2x +η2y+ω2t +υ2 � 0
and τ3 � ε3x + η3y + ω3t + υ3 � 0. By considering the relationship between the values of ε1, ε2 and ε3, the different forms of
three-periodic wave are gained, as shown in Figs. 21, 22, 23 and 24.

The generalized Boussinesq equation can be reduced into some integrable equations including rich algebraic and geometric
structures, and it appears in many disciplines and research fields, such as fluid mechanics, ocean waves, nonlinear optics and
atmospheric science. The obtained results about the transformation mechanism of the breather waves and high-dimensional Riemann
theta function quasi-periodic waves, in particular the three-periodic waves, will play an important role in explaining the nonlinear
phenomena existing in Eq. (1). Furthermore, the characteristic line method has been well extended to analyze the dynamical behaviors
of the quasi-periodic waves, which gives a new perspective to consider the Riemann theta function periodic waves. The analytic
method presented in this paper can be applied to other integrable systems to explore rich integrable properties.

Acknowledgements This work is supported by the National Natural Science Foundation of China (No. 12101572) and Research Project Supported by
Shanxi Scholarship Council of China (No. 2020-105).

Data Availability Statement Our manuscript has no associated data.

Declarations

Conflicts of interest The authors declare that they have no conflict of interest.

References

1. M.B. Riaz, A. Atangana, A. Jhangeer, S. Tahir, Soliton solutions, soliton-type solutions and rational solutions for the coupled nonlinear Schrödinger
equation in magneto-optic waveguides. Eur. Phys. J. Plus 136, 161 (2021)

2. H. Bulut, T.A. Sulaiman, H.M. Baskonus, On the new soliton and optical wave structures to some nonlinear evolution equations. Eur. Phys. J. Plus 132,
459 (2017)

3. A. Biswas, J.M. Vega-Guzman, A.H. Kara, Q. Zhou, M. Ekici, Y. Yıldırım, H.M. Alshehri, M.R. Belic, Conservation laws for solitons in magneto-optic
waveguides with dual-power law nonlinearity. Phys. Lett. A 416, 127667 (2021)

4. X.Y. Wu, B. Tian, L. Liu, Y. Sun, Bright and dark solitons for a discrete (2+1)-dimensional Ablowitz-Ladik equation for the nonlinear optics and
Bose-Einstein condensation. Commun. Nonlinear Sci. Numer. Simul. 50, 201–210 (2017)

5. T. Pavithra, R. Ravichandran, G. Sunny, L. Kavitha, Electromagnetic lump soliton solution of (2+1) dimensional ferromagnetic nanowire with
Dzyaloshinskii-Moriya interaction. Mater. Today: Proc. 25, 192–198 (2020)

6. V. Senthil Kumar, L. Kavitha, C. Boopathy, D. Gopi, Loss-less propagation, elastic and inelastic interaction of electromagnetic soliton in an anisotropic
ferromagnetic nanowire. Commun. Nonlinear Sci. Numer. Simul. 51, 50–65 (2017)

7. L. Kavitha, M. Saravanan, V. Senthilkumar, R. Ravichandran, D. Gopi, Collision of electromagnetic solitons in a weak ferromagnetic medium. J. Magn.
Magn. Mater. 355, 37–50 (2014)

8. J. Borhanian, I. Kourakis, S. Sobhanian, Electromagnetic envelope solitons in magnetized plasma. Phys. Lett. A 373, 3667–3677 (2009)
9. J.B. Okaly, F.I. Ndzana, R.L. Woulaché, T.C. Kofané, Solitary wavelike solutions in nonlinear dynamics of damped DNA systems. Eur. Phys. J. Plus.

134, 598 (2019)
10. S. Issa, I. Maïna, C.B. Tabi, A. Mohamadou, H.P. Ekobena Fouda, T.C. Kofané, Long-range modulated wave patterns in certain nonlinear saturation

alpha-helical proteins. Eur. Phys. J. Plus. 136(9), 1–21 (2021)
11. D.D. Georgiev, J.F. Glazebrook, Thermal stability of solitons in protein α-helices. Chaos, Solitons Fractals 155, 111644 (2021)
12. W. Ma, L. Yang, R. Rohs, W. Noble, DNA sequence plus shape kernel enables alignment-free modeling of transcription factor binding. Bioinformatics

33, 3003–3010 (2017)

123



  914 Page 30 of 30 Eur. Phys. J. Plus         (2022) 137:914 

13. R.X. Liu, B. Tian, L.C. Liu, B. Qin, X. Lü, Bilinear forms, N-soliton solutions and soliton interactions for a fourth-order dispersive nonlinear Schrödinger
equation in condensed-matter physics and biophysics. Phys. B 413, 120–125 (2013)

14. A.F. Shchepetkin, J.C. McWilliams, Accurate Boussinesq oceanic modeling with a practical, “stiffened” equation of state. Ocean Model. 38, 41–70
(2011)

15. S. Kumar, S. Rani, Study of exact analytical solutions and various wave profiles of a new extended (2+1)-dimensional Boussinesq equation using
symmetry analysis. J. Ocean Eng. Sci. (2021). https://doi.org/10.1016/j.joes.2021.10.002

16. B.Q. Li, A.M. Wazwaz, Y.L. Ma, Two new types of nonlocal Boussinesq equations in water waves: bright and dark soliton solutions. Chin. J. Phys. 77,
1782–1788 (2022)

17. J.G. Liu, W.H. Zhu, Multiple rogue wave solutions for (2+1)-dimensional Boussinesq equation. Chin. J. Phys. 67, 492–500 (2020)
18. W.Y. Sun, Y.Y. Sun, The degenerate breather solutions for the Boussinesq equation. Appl. Math. Lett. 128, 107884 (2021)
19. X.G. Geng, T. Su, Discrete coupled derivative nonlinear Schrödinger equations and their quasi-periodic solutions. J. Phys. A: Math. Theor. 40, 433–453

(2007)
20. E.G. Fan, Supersymmetric KdV-Sawada-Kotera-Ramani equation and its quasi-periodic wave solutions. Phys. Lett. A 374, 744–749 (2010)
21. L. Luo, E.G. Fan, Quasi-periodic waves of the N=1 supersymmetric modified Korteweg-de Vries equation. Nonlinear Anal. 74, 666–675 (2011)
22. S.F. Tian, H.Q. Zhang, A kind of explicit Riemann theta functions periodic waves solutions for discrete soliton equations. Commun. Nonlinear Sci.

Numer. Simul. 16, 173–186 (2011)
23. H. Jin, B. Liu, Y. Wang, The existence of quasiperiodic solutions for coupled Duffing-type equations. J. Math. Anal. Appl. 374, 429–441 (2011)
24. F. Veerman, F. Verhulst, Quasiperiodic phenomena in the Vanderpol-Mathieu equation. J. Sound Vib. 326, 314–320 (2009)
25. V.T. Yatsyuk, The existence of quasiperiodic solutions of systems of differential equations of the second order. Ukr. Math. J. 26, 578–584 (1974)
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