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Abstract The purpose of this paper is to investigate an extended KdV equation in (2+1)-dimensions which cannot be directly
bilinearized. The equation contains many important integrable models as its special cases. On the basis of the exchange identities
for Hirota’s bilinear operators and the existing research results, a bilinear Bäcklund transformation is presented for the extended
equation. And then, associated with the obtained bilinear Bäcklund transformations, we derive a Lax pair and a modified equation in
detail, which implies that the introduced equation is also integrable. Finally, two kinds of nonsingular rational solutions are generated
from the nonlinear superposition formula and arbitrary travelling wave solutions. The first class of rational solutions shows us that
the presented equation possesses a general class of lump solutions with negative coefficients of two second-order linear dispersion
terms. The second class of nonsingular rational solutions is essentially travelling wave solutions due to special solution structures
of the presented equation.

1 Introduction

It is known that the Kadomtsev–Petviashvili-I (KPI) equation

(ut + 6uux + uxxx )x + 3σ 2uyy � 0, σ 2 � −1, (1.1)

is a (2+1)-dimensional extension of the integrable Korteweg-de Vries (KdV) equation [1]. The KdV and KP equations are two of
the most significant mathematical models which possess abundant exact solutions in nonlinear science. The integrable positive KP
hierarchy associated with the Lax operator of the KPI Eq. (1.1) is introduced in Ref [2, 3]. The first four forms can be expressed as
follows:

ut1 � ux , (1.2a)

ut2 � −2uy, (1.2b)

ut3 � −6uux − uxxx + 3∂−1
x uyy, (1.2c)

ut4 � 12(2ux∂
−1
x uy − ∂−2

x uyyy + uxxy + 4uuy). (1.2d)

Note that third Eq. (1.2c) is just the KPI equation by setting t3 � t , and fourth Eq. (1.2d) can be reduced to an equivalent
expression of the normal KdV equation when y � x . Besides, under the potential u � φx and t4 � 1

24 t , fourth Eq. (1.2d) is read as

φxxxxy + 4φxxyφx + 2φxxxφy + 6φxyφxx − φyyy − 2φxxt � 0, (1.3)

which is named the (2+1)-dimensional Date–Jimbo–Kashiwara–Miwa (DJKM) equation [4, 5]. Because these two equations are
the generalizations of the KdV equation in (2+1)-dimensions, a novel integrable KdV system

ut � a(6uux + uxxx − 3wy) + b(2wux − zy + uxxy + 4uuy), uy � wx , uyy � zxx , (1.4)

has been firstly constructed by Lou [6]. This equation is also called as the cKP3–4 equation, to reflect the combination of the third
member and fourth member in the positive KP hierarchy. The Lax pair

ψy � i(ψxx + uψ), i ≡ √−1, (1.5a)
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ψt � 2ibψxxxx + 4aψxxx + 4ibuψxx + 2(3au + 2ibux + bw)ψx

−i(3aw + bz − 2bu2 + 3aiux − 2buxx + ibwx )ψ, (1.5b)

and the dual Lax pair

ψy � −i(ψxx + uψ), i ≡ √−1, (1.6a)

ψt � −2ibψxxxx + 4aψxxx − 4ibuψxx + 2(3au − 2ibux + bw)ψx

+i(3aw + bz − 2bu2 − 3aiux − 2buxx − ibwx )ψ, (1.6b)

have been proposed directly, which can indicate the integrability of the cKP3–4 Eq. (1.4). Furthermore, it has been found that
the combined equation may possess soliton molecules and the missing D’Alembert-type solutions [6]. Some important properties
such as the Painlevé property, Schwartz form and symmetry reductions for the cKP3–4 Eq. (1.4) have been discussed [7].

Motivated by these facts, we would like to investigate an extended form for the integrable cKP3–4 Eq. (1.4), written as

a(6γ uux + uxxx + 3δvxy) + b(uxxy + 2γ uxvx + 4γ uuy + δvyy) + cut � 0, vxx � uy, (1.7)

where a, b, c, γ and δ are arbitrary real constants, which satisfy cγ (a2 + b2) �� 0 to ensure the nonlinearity of the considered
equation. By taking the choice

γ � 1, δ � c � −1, vx � w, (1.8)

it is easy to see that the above form is just the cKP3–4 Eq. (1.4). For δ �� 0, the considered model equation includes the KP equation
and the (2+1)-dimensional DJKM equation as its special cases. For δ � 0, in the case

δ � 0, c � 1, γ � e

2b
, (1.9)

Equation (1.7) reduces to the (2+1)-dimensional generalized breaking soliton equation

ut + auxxx + buxxy +
3ae

b
uux + 2euvx + euxv � 0, uy � vx , (1.10)

which was firstly proposed by Xu and can pass the Painlevé test [8]. In particular, using the potential u � φx and setting a � 0, b �
1, e � −2, Eq. (1.10) transforms into the Bogoyavlenskii–Schiff (BS) equation, or named breaking soliton equation

φxt + φxxxy − 2φxxφy − 4φxφxy � 0, (1.11)

which was introduced by Calogero and Degasperis [9]. This equation was also studies by Bogoyavlenskii and Schiff in different
methods [10–12]. For all we know, the Painlevé property, integrability and various exact solutions of these two equations have been
widely investigated [13–19]. For example, bilinear Bäcklund transformations, Lax pairs and infinitely many conservation laws have
been constructed for the (2+1)-dimensional breaking soliton equation by using the binary Bell polynomial approach [20].

In various physical fields, the KP Eq. (1.1) is widely used to characterize the propagation of weakly dispersive and small amplitude
waves in (2+1)-dimensions [1]. Besides, the breaking soliton Eq. (1.11) is a significant model to describe the (2+1)-dimensional
interaction of a long wave propagating along the x-axis and a Riemann wave propagating along the y-axis [10, 11]. As an extended
form of these two equations, we believe that the generalized Eq. (1.7) should have potential applications in many areas of nonlinear
science. The extended form (1.7) can also be applied to physics as a way to model real (2+1)-dimensional shallow water waves due
to the negative coefficients of two second-order linear dispersion terms.

As well-known, Hirota’s bilinear method is a pretty effective tool in the study of nonlinear integrable equations. Hirota bilinear
forms play a crucial role in presenting exact solutions, particularly multi-soliton solutions. Most of nonlinear integrable equations can
be written in bilinear forms. However, it was further found that some nonlinear evolution equations cannot be directly transformed
into a bilinear form. For instance, the (2+1)-dimensional DJKM Eq. (1.3) does not possess a simple bilinear expression like the KdV
equation in (1+1)-dimensions, and it has a trilinear form given by previous studies [4, 5, 21–23].

In this paper, we would like to study some integrable properties of the generalized Eq. (1.7) which can be given by a trilinear
form instead of the bilinear form. The framework of this paper is as below. Firstly, a general multi-parameter bilinear Bäcklund
transformation will be derived with the help of appropriate bilinear exchange formulas. The resulting bilinear Bäcklund transforma-
tion can be converted into the corresponding Lax pairs. Secondly, a generic class of lump solutions will be built from the existing
nonlinear superposition formula when δ < 0 to the extended nonlinear model Eq. (1.7). Our conclusions and remarks will be given
in the last section.
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2 Bilinear Bäcklund transformation and Lax pair

It is obvious that under the transformation

u � 2

γ
(ln f )xx , v � 2

γ
(ln f )y, (2.1)

the extended form (1.7) can be given by

a( f 2 fxxxxx + 2 f fxx fxxx − 5 f fx fxxxx − 6 f 2
xx fx + 8 fxxx f

2
x + 3δ f 2 fxyy − 3δ f fx fyy

− 6δ f fy fxy + 6δ fx f
2
y ) + b( f 2 fxxxxy − f fxxxx fy + 2 f fxx fxxy − 4 f fx fxxxy

+ 4 fx fxxx fy − 2 f 2
xx fy − 4 fxx fx fxy + 4 f 2

x fxxy + δ f 2 fyyy + 2δ f 3
y − 3δ f fy fyy)

+ c f 2 fxxt − c f fxx ft − 2c f fx fxt + 2c f 2
x ft � 0. (2.2)

The trilinear Eq. (2.2) does not exist a direct bilinear form, whereas can be written as

3a

2
Dx

[(
D4
x + 3δD2

y

)
f · f

]
· f 2 + Dx

[(
bD3

x Dy +
3

2
cDx Dt

)
f · f

]
· f 2

+
b

2
Dy

[(
D4
x + 3δD2

y

)
f · f

]
· f 2 � 0, (2.3)

where the Hirota bilinear differential operators are defined by

Dn1
x1
Dn2
x2

f · g � (∂x1 − ∂x ′
1
)n1 (∂x2 − ∂x ′

2
)n2 f (x1, x2)g(x ′

1, x
′
2)|x ′

1�x1,x ′
2�x2

,

with n1 and n2 being arbitrary nonnegative integers [24].
In mathematical physics, bilinear Bäcklund transformations are significantly helpful to search for exact solutions to nonlinear

equations, and they can connect with Lax pairs and construct the modified soliton equation [25–31]. In the following, let us present
a bilinear Bäcklund transformation for the trilinear Eq. (2.3).

Theorem 2.1 Suppose that f and f ′ are two different solutions to the trilinear Eq. (2.3). Then, we have the following multi-parameter
Bäcklund transformation to Eq. (2.3):

(δ̃Dy + D2
x + μDx + λ) f · f ′ � 0, (2.4a)

[
aD3

x + bD2
x Dy + (bμ − 3aδ̃)Dx Dy − bδ̃D2

y − 3aλDx

+(bμ2 − 3bλ − 3aδ̃μ)Dy + cDt + κ(y, t)
]
f · f ′ � 0, (2.4b)

where δ̃ � ±√
δ, λ,μ are two arbitrary constants and κ(y, t) is an arbitrary function.

Proof Let us first introduce a key function

P1 � f
′4
{3a

2
Dx

[
(D4

x + 3δD2
y) f · f

] · f 2
}

− f 4
{3a

2
Dx

[
(D4

x + 3δD2
y) f ′ · f ′] · f

′2
}
. (2.5)

By using the exchange identities (A.1)-(A.7) for Hirota’s bilinear operators in Appendix A in turn, P1 can be expressed as

P1 � 3a

2
Dx

{
f

′2(D4
x + 3δD2

y) f · f − f 2(D4
x + 3δD2

y) f ′ · f ′} · f 2 f
′2

� 3a

2
Dx

{
6δDy(Dy f · f ′) · f f ′ + 2Dx (D3

x f · f ′) · f f ′ − 6Dx (D2
x f · f ′) · (Dx f · f ′)

}
· f 2 f

′2

� 3aDx

{
− 3δ̃Dy[(D2

x + μDx ) f · f ′] · f f ′ + Dx (D3
x f · f ′)

+ 3Dx [(δ̃Dy + λ) f · f ′] · (Dx f · f ′)
}

· f 2 f
′2

� 3aDx

{
− 3δ̃Dx [Dx Dy f · f ′) · f f ′ + (Dy f · f ′) · (Dx f · f ′)]

− 3δ̃μDy(Dx f · f ′) · f f ′ + 3δ̃Dx (Dy f · f ′) · (Dx f · f ′)

+ Dx (D3
x f · f ′) · f f ′ − 3Dx (Dx f · f ′) · λ f f ′} · f 2 f

′2

� 3Dx

{
Dx [(aD3

x − 3aδ̃Dx Dy − 3aδ̃μDy − 3aλDx ) f · f ′] · f f ′} · f 2 f
′2, (2.6)

�
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where we have applied (2.4a) in the above derivation. Let us second consider another key function

P2 � f
′4
{
Dx

[
(bD3

x Dy +
3

2
cDx Dt ) f · f

] · f 2 +
b

2
Dy

[
(D4

x + 3δD2
y) f · f

] · f 2
}

− f 4
{
Dx

[
(bD3

x Dy +
3

2
cDx Dt ) f

′ · f ′] · f
′2 +

b

2
Dy

[
(D4

x + 3δD2
y) f ′ · f ′] · f

′2
}
. (2.7)

According to the bilinear Bäcklund transformation presented by Hu and Li [4, 5] for the (2+1)-dimensional DJKM Eq. (1.3) and
using (2.42.4a), a similar direct computation leads to (see Appendix B for details)

P2 � 3Dx

{
Dx

[
(bD2

x Dy − 3bλDy + cDt − bδ̃D2
y + bμ2Dy + bμDx Dy) f · f ′] · f f ′} · f 2 f

′2. (2.8)

Moreover, we have

P1 + P2 � f
′4
{3a

2
Dx

[
(D4

x + 3δD2
y) f · f

] · f 2 + Dx
[
(bD3

x Dy +
3

2
cDx Dt ) f · f

] · f 2

+
b

2
Dy

[
(D4

x + 3δD2
y) f · f

] · f 2
}

− f 4
{3a

2
Dx

[
(D4

x + 3δD2
y) f ′ · f ′] · f

′2

+ Dx
[
(bD3

x Dy +
3

2
cDx Dt ) f

′ · f ′] · f
′2 +

b

2
Dy

[
(D4

x + 3δD2
y) f ′ · f ′] · f

′2
}

� 3Dx

{
Dx

[
(aD3

x − 3aδ̃Dx Dy − 3aδ̃μDy − 3aλDx + bD2
x Dy − 3bλDy

+ cDt − bδ̃D2
y + bμ2Dy + bμDx Dy) f · f ′] · f f ′} · f 2 f

′2. (2.9)

Therefore, the system of bilinear equations (2.4) guarantees P1 + P2 � 0. This shows that the system (2.4) presents a Bäcklund
transformation for the trilinear Eq. (2.3).

We remark that if δ̃ � 0, the system (2.4) reduces to the Bäcklund transformations given in Refs. [8, 14] by choosing appropriate
parameters. Next, we will derive a Lax pair for Eq. (1.7), based on the above bilinear Bäcklund transformation. Taking

ψ � f

f ′ , u � 2

γ
(ln f ′)xx , (2.10)

and applying the following identities:⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(Dx f · f ′)/ f ′2 � ψx ,

(D2
x f · f ′)/ f ′2 � ψxx + γ uψ,

(D3
x f · f ′)/ f ′2 � ψxxx + 3γ uψx ,

(Dx Dy f · f ′)/ f ′2 � ψxy + γ ∂−1
x uyψ,

(D2
x Dy f · f ′)/ f ′2 � ψxxy + 2γ ∂−1

x uyψx + γ uψy,

· · · · · ·

(2.11)

the bilinear Bäcklund transformation (2.4) can be transformed into the following system:

δ̃ψy + ψxx + μψx + (λ + γ u)ψ � 0, (2.12a)

cψt + aψxxx + bψxxy + (bμ − 3aδ̃)ψxy − bδ̃ψyy + (3aγ u − 3λa

+ 2bγ ∂−1
x uy)ψx + (bγ u − 3aδ̃μ − 3λb + bμ2)ψy + (bμγ ∂−1

x uy

− 3aδ̃γ ∂−1
x uy − bδ̃γ ∂−2

x u2y + κ(y, t))ψ � 0. (2.12b)

A direct computation shows that system (2.12) becomes

L1ψ � δ̃ψy + ψxx + μψx + (λ + γ u)ψ � 0, (2.13a)

L2ψ � cψt + 4aψxxx − 2bδ̃ψyy + 3aμψxx + (6aγ u + 2bγ ∂−1
x uy)ψx + (bμ2 − 4λb

−3aδ̃μ)ψy + (3aγ ux − bγ uy + μbγ ∂−1
x uy − 3aγ δ̃∂−1

x uy − bγ δ̃∂−2
x u2y + κ(y, t))ψ, (2.13b)

where

L1 � δ̃∂y + ∂2
x + μ∂x + (λ + γ u), (2.14a)

L2 � c∂t + 4a∂3
x − 2bδ̃∂2

y + 3aμ∂2
x + (6aγ u + 2bγ ∂−1

x uy)∂x + (bμ2 − 4λb

−3aδ̃μ)∂y + (3aγ ux − bγ uy + μbγ ∂−1
x uy − 3aγ δ̃∂−1

x uy − bγ δ̃∂−2
x u2y + κ(y, t)). (2.14b)
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We can check that the compatibility condition [L1, L2] � 0 of the above system generates Eq. (1.7), which means system (2.14)
can be regarded as a Lax pair of Eq. (1.7).

For simplicity, in the following discussion of this section, we adopt λ � μ � κ(y, t) � 0 in the bilinear Bäcklund transformation
(2.4). It is easily checked that system (2.13) becomes

δ̃ψy + ψxx + γ uψ � 0, δ̃ � ±√
δ, (2.15a)

cψt − 2b

δ̃
ψxxxx + 4aψxxx − 4bγ

δ̃
uψxx + 2

(
3aγ u − 2bγ

δ̃
ux + bγ ∂−1

x uy

)
ψx

−
(

3aγ δ̃∂−1
x uy + bγ δ̃∂−2

x u2y +
2bγ 2

δ̃
u2 − 3aγ ux +

2bγ

δ̃
uxx − bγ uy

)
ψ � 0, (2.15b)

which is equivalent to the Lax pair (1.5) or the dual Lax pair (1.6) to the cKP3–4 equation, under the choice (1.8). By the dependent
variable transformation

φ � ln( f/ f ′), ρ � ln( f f ′), (2.16)

the bilinear Bäcklund transformation (2.4) can be transformed into the following coupled system:

δ̃φy + ρxx + φ2
x � 0, (2.17a)

a(φxxx + 3φxρxx + φ3
x − 3δ̃ρxy − 3δ̃φxφy)

+ b(φxxy + 2φxρxy + φyρxx + φ2
xφy − δ̃ρyy − δ̃φ2

y ) + cφt � 0, (2.17b)

where δ̃ � ±√
δ. By eliminating ρ and then taking the derivative with respect to x at both ends of the resulting equation, the coupled

system (2.17) yields

a(φxxxx − 6φ2
xφxx − 6δ̃φxxφy + 3δφyy) + b

[
φxxxy − 4δ̃φxyφy

−(2φx + 2φxx∂
−1
x − δ̃∂−1

x ∂y)((φ
2
x )y + δ̃φyy)

]
+ cφxt � 0, (2.18)

which can be regarded as a modified form of Eq. (1.7). In particular, setting δ � 0 and introducing the new dependent variable �

by � � φx , the corresponding modified equation is

a(�xxx − 6� 2�x ) + b[�xxy − 4� 2�y − 2�x∂
−1
x (� 2)y] + c�t � 0, (2.19)

which is called as the (2+1)-dimensional modified KdV-CBS equation [32] and can be reduced to the modified KdV equation in the
case of y � x .

In addition, since the left-hand side of (2.4a) may be written as

(δ̃Dy + D2
x ) f · f ′/( f f ′) � δ̃[ln( f/ f ′)]y + [ln( f f ′)]xx + [ln( f/ f ′)]2

x

� δ̃[ln( f/ f ′)]y + 2[ln( f )]xx − [
ln( f/ f ′)

]
xx + [ln( f/ f ′)]2

x , (2.20)

the bilinear equation (δ̃Dy + D2
x ) f · f ′ � 0 is equivalent to

γ u � φxx − φ2
x − δ̃φy, δ̃ � ±√

δ, (2.21)

by using the following related variable transformation

u � 2

γ
[ln( f )]xx , φ � ln( f/ f ′). (2.22)

This shows that formula (2.21) connects the solution u of the extended KdV Eq. (1.7) and the solution φ of Eq. (2.18).

3 Lump solutions with δ �� 0

Lump solutions are a kind of analytical rational solutions, which decay to zero in all directions in space. In particular, such solutions
play a crucial role in revealing complex nonlinear phenomena in scientific fields such as nonlinear optics, ocean engineering, plasmas
and fluid mechanics [33]. Hence, the study on the lump solution of nonlinear soliton equations can help us understand a variety of
interesting phenomena and the related physical mechanisms in nature. It is reported that many kinds of methods can generate lump
solutions, such as symbolic computations with Maple [21, 34–37], the long wave limit approach [22, 38, 39], the Hirota bilinear
method and the use of nonlinear superposition formulae [25]. In this section, by using the nonlinear superposition formula associated
with the bilinear Bäcklund transformation in Theorem 2.1, we would like to explore lump solutions for the extended KdV Eq. (1.7)

with δ �� 0. Now, let us set λ � 0 for convenience and rewrite (2.4) symbolically by f
μ→ f ′. We have the following nonlinear

superposition formula of Eq. (2.3):
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Theorem 3.1 [4, 5, 40] Let f0 be a nonzero solution of Eq. (2.3) and assume that f1 and f2 are two nonzero solutions given by the

bilinear Bäcklund transformation (2.4) such that f0
μi→ fi (i � 1, 2). Then, f12 defined by

f0 f12 � ĉ
[
Dx +

1

2
(μ2 − μ1)

]
f1 f2 (3.1)

is a new solution to Eq. (2.3) which is interrelated to f1 and f2 under system (2.4) with parameters μ2 and μ1 , respectively. Here,
ĉ is a nonzero real constant.

This theorem might be proved via a similar way to the one in the previous works [4, 5, 40]. Thus, we omit its proof in this paper.
In what follows, we take

f0 � 1, fi � θi + ξi , θi � ki x + li y + mi t + ζi , i � 1, 2, (3.2)

where ki , li ,mi , i � 1, 2, are parameters to be determined, and ξi , ζi , i � 1, 2, are arbitrary constants. By employing the bilinear
Bäcklund transformation (2.4), we get

μi � − li
ki

δ̃, mi � −δ

c

(3al2i
ki

+
bl3i
k2
i

)
, i � 1, 2. (3.3)

Applying Theorem 3.1 and choosing ĉ � 2
μ2−μ1

in (3.1), a new solution of Eq. (2.3) is presented as follows:

f12 � 2

μ2 − μ1

[
f1x f2 − f1 f2x +

1

2
(μ2 − μ1) f1 f2

]

� θ1θ2 +

(
ξ1 +

2k1

μ2 − μ1

)
θ2 +

(
ξ2 − 2k2

μ2 − μ1

)
θ1

+ ξ1ξ2 +
2(k1ξ2 − k2ξ1)

μ2 − μ1
. (3.4)

Upon selecting

ξ1 � 2k1

μ1 − μ2
, ξ2 � 2k2

μ2 − μ1
(3.5)

and substituting (3.3) into (3.4), then f12 has the following form:

f12 � θ1θ2 + B12, B12 � 4k3
1k

3
2

δ(k1l2 − k2l1)2 . (3.6)

To establish lump solutions, we take

k1 � r1 + d1i, l1 � r2 + d2i, ζ1 � r4 + d4i, i ≡ √−1,

k2 � k∗
1 , l2 � l∗1 , ζ2 � ζ ∗

1 , ri , di ∈ R, i � 1, 2, 4, (3.7)

where the asterisk denotes the complex conjugate. Substituting (3.2), (3.3) and (3.7) into (3.6) generates the following class of
rational solutions:

f12 � (r1x + r2y + r3t + r4)2 + (d1x + d2y + d3t + d4)2 + d, (3.8)

where r3, d3 and d are given by

r3 � −3aδ(r1r2
2 − r1d2

2 + 2d1d2r2)

c(r2
1 + d2

1 )
− bδ

[
(r2

1 − d2
1 )(r3

2 − 3r2d2
2 ) − 2r1d1(d3

2 − 3r2
2d2)

]

c(r2
1 + d2

1 )2
,

d3 � −3aδ(d1d2
2 − d1r2

2 + 2d2r1r2)

c(r2
1 + d2

1 )
− bδ

[
(r2

1 − d2
1 )(3r2

2d2 − d3
2 ) − 2r1d1(r3

2 − 3r2d2
2 )

]

c(r2
1 + d2

1 )2
,

d � − (r2
1 + d2

1 )3

δ(r1d2 − r2d1)2 , (3.9)

where r1d2 − r2d1 �� 0 and the other parameters involved are arbitrary. Clearly, the conditions

r1d2 − r2d1 �� 0 and δ < 0, (3.10)

guarantee that the above class of function solutions is always positive. We remark that the class of function solutions reduces to the
polynomial solutions of the extended bilinear second KP equation given by the long wave limit approach [22]. Under the constraint
(3.10), the transformation (2.1) presents the following lump solutions to the extended form (1.7):

u � 2

γ
(ln f12)xx � 2( f12,xx f12 − f 2

12,x )

γ f 2
12

, v � 2

γ
(ln f12)y � 2 f12,y

γ f12
, (3.11)
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Fig. 1 Profile of u in the lump solution (3.11) with (3.8), (3.9) and parameters: r1 � 1
2 , r2 � 1, r4 � 3, d1 � 2, d2 � −1, d4 � −2, a � −2, b � 1, c �

−1, γ � 1, δ � −1, t � 0: (a) 3D plot, (b) contour plot and (c) x-curves

Fig. 2 Profile of v in the lump solution (3.11) with (3.8), (3.9) and same parameters as above: (a) 3D plot, (b) contour plot and (c) x-curves

where f12 is defined by (3.8) and (3.9). Figures 1 and 2 exhibit three-dimensional plots and curves of the lump solutions (3.11)
with choices of the involved parameters. We see that the lump solution u has a peak and two valleys, and decays algebraically in all
directions in the (x, y)-plane.

It is worth noting that extended Eq. (1.7) may possess abundant solution structures. We can also see if the analytic function
f � f (x, y, t) in expression (2.2) satisfies

fy � −a

b
fx , ft � −2a3δ

cb2 fx , (3.12)

then the function f solves the trilinear Eq. (2.2). Thus, the trilinear Eq. (2.2) has the following solutions in the form

f � F(η), η � kx − a

b
ky − 2a3δ

cb2 kt + h, (3.13)

where k is an arbitrary nonzero real constant, h is arbitrary and F(η) is an arbitrary function. As an example, let us consider a class
of polynomial function solutions to the trilinear Eq. (2.2) in the form

f �
[
k1(x − a

b
y − 2a3δ

cb2 t) + h1

]4
+

[
k2(x − a

b
y − 2a3δ

cb2 t) + h2

]2
+ h3, (3.14)
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Fig. 3 Profile of u in the lump solution (3.15) with parameters: k1 � 1, k2 � 2, h1 � 1, h2 � 2, h3 � 5, a � −2, b � 1, c � −1, γ � 1, δ � −1, t � 1:
(a) 3D plot, (b) contour plot and (c) y-curves

Fig. 4 Profile of v in the lump solution (3.15) with same parameters as Fig. 3: (a) 3D plot, (b) contour plot and (c) y-curves

where the real constants k1 and k2 satisfy k2
1 + k2

2 �� 0, but the constants hi , 1 ≤ i ≤ 3, are all arbitrary. It is easy to observe that the
solutions in (3.14) are positive if the parameter h3 > 0 holds, and so the transformation in (2.1) with (3.13) present the nonsingular
rational solutions u and v for the extended Eq. (1.7):

u � 2

γ

[ 12k2
1(k1η

′ + h1)2 + 2k2
2

(k1η′ + h1)4 + (k2η′ + h2)2 + h3
− (4k1(k1η

′ + h1)3 + 2k2(k2η
′ + h2))2

((k1η′ + h1)4 + (k2η′ + h2)2 + h3)
2

]
,

v � − 2a

γ b

[4k1(k1η
′ + h1)3 + 2k2(k2η

′ + h2)

(k1η′ + h1)4 + (k2η′ + h2)2 + h3

]
, (3.15)

where

η′ � x − a

b
y − 2a3δ

cb2 t.

Note that solution (3.15) is just a special case of the arbitrary travelling wave with

u � u1(x − a

b
y − 2a3δ

cb2 t),

which needs to satisfy ab �� 0. Besides, this solution does not tend to zero in the direction x −ay/b−2a3δt/cb2 � constant, which
yields the plane lump solution from [41]. The three-dimensional plots and curves generated by nonsingular rational solution (3.15)
with the specific parameters are made by using Maple plot tools in Figs. 3 and 4.
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4 Concluding remarks

In summary, some meaningful integrable properties of the extended Eq. (1.7) have been explored, by means of a trilinear form. We
first have computed a bilinear Bäcklund transformation to Eq. (1.7), based on the exchange identities for Hirota’s bilinear operators
and the existing research results. And then, associated with the obtained bilinear Bäcklund transformations, we have also derived a
Lax pair and a modified equation to Eq. (1.7) in detail. Lastly, two kinds of nonsingular rational solutions have been generated from
the nonlinear superposition formula and arbitrary travelling wave solutions. The first class of rational solutions shows us that Eq.
(1.7) possesses a general class of lump solutions with δ < 0, while the second class of nonsingular rational solutions is essentially
travelling wave solutions due to special solution structures of Eq. (1.7).

We point out that the generalized Eq. (1.7) includes many important nonlinear soliton equations as its special cases, such as the
DJKM equation, the BS equation, the extended second KP equation and the generalized breaking soliton equation [4–6, 8, 14, 21, 22].
It is extremely important in soliton theory to search for nonlinear integrable systems and investigate their integrable characteristics. On
the one hand, our work extends the above-mentioned equations to a new one which possesses many interesting integrable properties.
The compatibility condition [L1, L2] � 0 of the general system (2.14) can generate the corresponding integrable equation with the
selection of coefficients a, b, c and δ, which provides new (2+1)-dimensional nonlinear integrable equations to describe nonlinear
phenomena in mathematical physics. On the other hand, the presented result enriches the existing theory on lumps to nonlinear
soliton equations, adding new examples of employing trilinear forms to search for lump solutions.

As far as we know, there is still a lot of work to do with Eq. (1.7), which is worth studying in depth. As Lou described in Ref.
[6], some interesting exact solutions are also valid for the extended Eq. (1.7) with δ �� 0, such as soliton molecule solutions and the
D’Alembert-type solutions [6, 42–45]. Moreover, recent works exhibit that many (2+1)-dimensional nonlinear equations possess
interaction solutions between lump or lump-type solutions and other kinds of exact solutions [36]. Therefore, it is meaningful for the
extended Eq. (1.7) to look for interaction solutions including lump-kink interaction solutions and lump-soliton interaction solutions
[46]. Another interesting work is to investigate Hirota N-soliton conditions [47–49] and linear superposition solutions [50] to the
introduced Eq. (1.7), which will be carried out in our future research.
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Appendix A

We list the following relevant exchange identities for Hirota’s bilinear operators, which come from the general exchange formula
(see [24] for details):

(Dxa · b)c2 − b2(Dxd · c) � Dx (ac − bd) · bc, (A.1)

(D4
xa · a)b2 − a2(D4

xb · b) � 2Dx (D3
xa · b) · ab − 6Dx (D2

xa · b) · (Dxa · b), (A.2)

(D2
ya · a)b2 − a2(D2

yb · b) � 2Dy(Dya · b) · ab, (A.3)

Dy(D2
xa · b) · ab � Dx [(Dx Dya · b) · ab + (Dya · b) · (Dxa · b)], (A.4)

Dy(Dxa · b) · b2 � Dx (Dya · b) · b2, (A.5)

D2n+1
x a · a � 0, n � 0, 1, 2, . . . , (A.6)

Dxa · b � −Dxb · a, (A.7)

(DyDxa · a)b2 − a2(DyDxb · b) � 2Dx (Dya · b) · ab � 2Dy(Dxa · b) · ab, (A.8)

(D3
x Dya · a)b2 − a2(D3

x Dyb · b) � 3Dy(Dxa · b) · (D2
xa · b)

+ 3Dx [(D2
x Dya · b) · ab + (Dya · b) · (D2

xa · b)] − Dy(D3
xa · b) · ab. (A.9)
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Appendix B

By applying (A.1), (A.2), (A.3), (A.5), (2.4a), (A.6), (A.8), (A.5), (A.4), (A.5), (A.9), (A.8), (2.4a), (A.5), (A.4) and (A.8) in
Appendix A in turn, expression (2.8) is derived as follows:

P2 � f ′4{Dx
[
(bD3

x Dy +
3

2
cDx Dt ) f · f

] · f 2 +
b

2
Dy

[
(D4

x + 3δD2
y) f · f

] · f 2
}

− f 4
{
Dx

[
(bD3

x Dy +
3

2
cDx Dt ) f

′ · f ′] · f
′2 +

b

2
Dy

[
(D4

x + 3δD2
y) f ′ · f ′] · f ′2}

� Dx

{
f

′2(bD3
x Dy +

3

2
cDx Dt ) f · f − f 2(bD3

x Dy +
3

2
cDx Dt ) f

′ · f ′} · f 2 f ′2

+
b

2
Dy

{
f

′2(D4
x + 3δD2

y) f · f − f 2(D4
x + 3δD2

y) f ′ · f ′} · f 2 f ′2

� Dx

{
f

′2(bD3
x Dy +

3

2
cDx Dt ) f · f − f 2(bD3

x Dy +
3

2
cDx Dt ) f

′ · f ′} · f 2 f ′2

+
b

2
Dy

{
6δDy(Dy f · f ′) · f f ′ + 2Dx (D3

x f · f ′) · f f ′

− 6Dx (D2
x f · f ′) · (Dx f · f ′)

}
· f 2 f ′2

� Dx

{
f

′2(bD3
x Dy +

3

2
cDx Dt ) f · f − f 2(bD3

x Dy +
3

2
cDx Dt ) f

′ · f ′} · f 2 f ′2

+ bDx

{
Dy(D3

x f · f ′) · f f ′} · f 2 f
′2 − 3bδ̃Dy

{
Dy

[
(D2

x + μDx ) f · f ′] · f f ′} · f 2 f ′2

+ 3bDy

{
Dx

[
(δ̃Dy + λ) f · f ′] · (Dx f · f ′)

}
· f 2 f ′2

� Dx

{
f

′2(bD3
x Dy +

3

2
cDx Dt ) f · f − f 2(bD3

x Dy +
3

2
cDx Dt ) f

′ · f ′ + bDy(D3
x f · f ′) · f f ′} · f 2 f ′2

− 3μbδ̃Dx

{
Dy(Dy f · f ′) · f f ′} · f 2 f

′2 − 3λbDx

{
Dy(Dx f · f ′) · f f ′} · f 2 f ′2

+ 3bδ̃Dy

{
− Dy(D2

x f · f ′) · f f ′ + Dx (Dy f · f ′) · (Dx f · f ′)
}

· f 2 f ′2

� Dx

{
f

′2(bD3
x Dy +

3

2
cDx Dt ) f · f − f 2(bD3

x Dy +
3

2
cDx Dt ) f

′ · f ′ + bDy(D3
x f · f ′) · f f ′

− 3μbδ̃Dy(Dy f · f ′) · f f ′ − 3λbDy(Dx f · f ′) · f f ′ − 3bδ̃Dy(Dx Dy f · f ′) · f f ′} · f 2 f ′2

� Dx

{
3bDy(Dx f · f ′) · (D2

x f · f ′) + 3bDx
[
(D2

x Dy f · f ′) · f f ′

+ (Dy f · f ′) · (D2
x f · f ′)

]
+ 3cDx (Dt f · f ′) · f f ′ − 3μbδ̃Dy(Dy f · f ′) · f f ′

− 3λbDx (Dy f · f ′) · f f ′ − 3bδ̃Dy(Dx Dy f · f ′) · f f ′} · f 2 f ′2

� 3Dx

{
bDx

[
(D2

x Dy − λDy) f · f ′] · f f ′ − bDy(Dx f · f ′) · [
(δ̃Dy + λ) f · f ′]

− bDx (Dy f · f ′) · [
(μDx + λ) f · f ′] + cDx (Dt f · f ′) · f f ′

+ μbDy
[
(D2

x + μDx ) f · f ′] · f f ′ − bδ̃Dy(Dx Dy f · f ′) · f f ′} · f 2 f ′2

� 3Dx

{
Dx

[
(bD2

x Dy − 3bλDy + cDt − bδ̃D2
y + bμ2Dy + bμDx Dy) f · f ′] · f f ′} · f 2 f ′2.

References

1. B.B. Kadomtsev, V.I. Petviashvili, Sov. Phys. Dokl. 15, 539 (1970)
2. S.Y. Lou, J. Phys. A Math. Gen. 26, 4387 (1993)
3. W.X. Ma, J. Phys. A Math. Gen. 25, 5329 (1992)
4. X.B. Hu, Y. Li, Acta Math. Sci. 11, 164 (1991) (in Chinese)
5. X.B. Hu, Y. Li, J. Grad. Sch. USTC 6, 8 (1989) (in Chinese)
6. S.Y. Lou, China Phys. B 29, 080502 (2020)
7. X.B. Wang, M. Jia, S.Y. Lou, China Phys. B 30(1), 010501 (2021)
8. G.Q. Xu, Appl. Math. Lett. 50, 16 (2015)
9. F. Calogero, A. Degasperis, Nuovo Cimento B 32, 201 (1976)

10. O.I. Bogoyavlenskii, Math. USSR Izv. 34, 245 (1990)

123



Eur. Phys. J. Plus         (2022) 137:902 Page 11 of 11   902 

11. O.I. Bogoyavlenskii, Math. USSR Izv. 36, 129 (1991)
12. J. Schiff, Painlevé Transendents, Their Asymptotics and Physical Applications (Plenum Press, New York, 1992), p. 393
13. A.M. Wazwaz, Phys. Scr. 81, 035005 (2010)
14. X. Lü, W.X. Ma, C.M. Khalique, Appl. Math. Lett. 50, 37 (2015)
15. S.Y. Lou, H.Y. Ruan, Commun. Theor. Phys. 26, 51 (1996)
16. X.L. Yong, Z.Y. Zhang, Y.F. Chen, Phys. Lett. A 372, 6273 (2008)
17. Z.Y. Yan, H.Q. Zhang, Comput. Math. Appl. 44, 1439 (2002)
18. S.J. Yu, K. Toda, N. Sasa, T. Fukuyama, J. Phys. A Math. Gen. 31, 3337 (1998)
19. Y.T. Gao, B. Tian, Comput. Math. Appl. 30, 97 (1995)
20. E.G. Fan, K.W. Chow, J. Math. Phys. 52, 023504 (2011)
21. W.X. Ma, L.Q. Zhang, Pramana J. Phys. 94, 43 (2020)
22. L. Cheng, Y. Zhang, W.X. Ma, J.Y. Ge, Math. Comput. Simulation 187, 720 (2021)
23. S.J. Yu, K. Toda, T. Fukuyama, J. Phys. A Math. Gen. 31(50), 10181 (1998)
24. R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, Cambridge, 2004)
25. X.B. Hu, H.W. Tam, J. Nonlinear Math. Phys. 8, 149 (2001)
26. W.X. Ma, A. Abdeljabbar, Appl. Math. Lett. 25, 1500 (2012)
27. X. Lü, Y.F. Hua, S.J. Chen, X.F. Tang, Commun. Nonlinear Sci. Numer. Simul. 95, 105612 (2021)
28. S.J. Chen, W.X. Ma, X. Lü, Commun. Nonlinear Sci. Numer. Simul. 83, 105135 (2020)
29. P.F. Han, T. Bao, Nonlinear Dyn. 108, 2513 (2022)
30. P.F. Han, T. Bao, Eur. Phys. J. Plus 137, 216 (2022)
31. X.J. He, X. Lü, M.G. Li, Anal. Math. Phys. 11, 4 (2021)
32. Y.H. Wang, H. Wang, Nonlinear Dyn. 89, 235 (2017)
33. M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge University Press, Cambridge, 1991)
34. W.X. Ma, S. Manukure, H. Wang, S. Batwa, Mod. Phys. Lett. B 35, 2150160 (2021)
35. J.W. Xia, Y.W. Zhao, X. Lü, Commun. Nonlinear Sci. Numer. Simul. 90, 105260 (2020)
36. X. Lü, S.J. Chen, Nonlinear Dyn. 103, 947 (2021)
37. Y. Zhou, S. Manukure, M. Mcanally, J. Geom. Phys. 167, 104275 (2021)
38. J. Satsuma, M.J. Ablowitz, J. Math. Phys. 20, 1496 (1979)
39. L. Cheng, Y. Zhang, W.X. Ma, J.Y. Ge, Eur. Phys. J. Plus 135, 379 (2020)
40. X.B. Hu, J. Phys. A Math. Gen. 30, 8225 (1997)
41. X.L. Yong, Y.N. Chen, Y.H. Huang, W.X. Ma, East Asian J. Appl. Math.10, 420 (2020)
42. Q.L. Zhao, S.Y. Lou, M. Jia, Commun. Theor. Phys. 72, 085005 (2020)
43. S.Y. Lou, J. Phys. Commun. 4, 041002 (2020)
44. M. Jia, S.Y. Lou, Chaos. Solitons and Fractals 140, 110135 (2020)
45. Z.W. Yan, S.Y. Lou, Commun. Nonlinear Sci. Numer. Simul. 91, 105425 (2020)
46. P.F. Han, T. Bao, Eur. Phys. J. Plus 136, 925 (2021)
47. W.X. Ma, Partial Differ. Equ. Appl. Math. 5, 100220 (2022)
48. W.X. Ma, Math. Comput. Simulation 190, 270 (2021)
49. W.X. Ma, X.L. Yong, X. Lü, Wave Motion 103, 102719 (2021)
50. P.F. Han, Y. Zhang, Nonlinear Dyn. 109, 1019 (2022)

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-
archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

123


	Integrability and lump solutions to an extended (2+1)-dimensional KdV equation
	Abstract
	1 Introduction
	2 Bilinear Bäcklund transformation and Lax pair
	3 Lump solutions with δneq0
	4 Concluding remarks
	Acknowledgements
	Appendix A
	Appendix B
	References




