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Abstract The solitary wave solutions gained well-reputed significance because of their peculiar characteristics. Solitary waves are
spatially localized waves and are found in a variety of natural systems from mathematical physics and engineering phenomena.
This manuscript deals the different solitary wave solutions that have a great significance in mathematical physics. Various solutions
are recovered in single and combo shapes like bright, dark, singular, bright-dark, and dark-singular solitons by the virtue of the
generalized exponential rational function method (GERFM), ( G ′

G2 )-expansion function method and the generalized Kudryashov
method. Besides, the singular periodic wave and rational function solutions are also derived. The physical behavior of the reported
results is sketched through several 3 dimensional, and 2 dimensional profiles with the assistance of suitable parameters. The acquired
results are valuable in grasping the elementary scenarios of nonlinear sciences as well as in the related nonlinear higher dimensional
wave fields. The achieved outcomes have been verified by putting them into the governing equation with the aid of Mathematica. Thus
our strategies through the fortress of representative calculations give a functioning and intense mathematical execute for tackling
complicated nonlinear wave problems. We anticipate, it will contribute us to observe the waves that occur in nonlinear complicated
phenomenas. We believe that this work is timely and will be of interest to a broad range of experts involved in modeling.

1 Introduction

This world has many complicated natural phenomena with a broad scope of mathematical applications. The mathematical models
of the nonlinear physical phenomena are illustrated explicitly by the nonlinear evolution equations (NLEEs) that have a significant
influence on the investigation of nonlinear sciences. So, recently, obtaining exact soliton solutions to NLEEs with the help of
computer programs that make repetitious and monotonous mathematical computations easier, has been a marvelous field for analysts
and researchers. NLEEs play out an extraordinary part in depicting the actual behavior of real phenomena and dynamical processes
in fluid mechanics, optical fibers, material science, geochemistry, ocean engineering, geophysics, mathematical physics, plasma
physical science, and numerous other logical regions. Nonlinear science is one of the best astonishing fields for investigators in this
bleeding-edge season of science. To track down the analytically or exact results has been the focal point of researchers because of
its fundamental commitment to examine the genuine element of the frameworks. As we all know, scholars have devised several
methodologies and mathematical tools to aid in the discovery of exact solutions to NLEEs, and each method is tailored to a certain
sort of solution [1–8].

Moreover, the concept of soliton or solitary waves is a phenomenon that has attracted the attention of people of all ages. When
there is a disturbance in the phenomenon, waves are formed. Soliton interactions occur when two or moresolitons come near enough
to interact. Soliton waves have risen to prominence among all the waves found in nature due to their fundamental properties that
are rarely found in other waves. Due to dispersive effects, the velocity of soliton waves varies with wavelength and is significantly
different from the velocity of energy propagation. Moreover, linear effects of soliton waves can be shown dominantly in breaking roll
waves on the seashore. Wave spreading effects, also known as dispersive effects, and wave focusing effects, also known as nonlinear
effects, have shown a moderate balance in generating waves with a permanent shape. Furthermore, the optical solitons are one of the
most significant domains of research in the branch of nonlinear optics. Particularly, the investigation of dispersive optical solitons
is getting a lot of consideration in the present days. This tendency is actually continuing, there are numerous new outcomes that
are constantly being published in the context of given model. Besides, the exact solutions are necessary for observing the physical
properties of mathematical modeled problems. Mathematical techniques are being established in a variety of ways. In previous
findings, several analytical schemes have been used to observe the analytic solutions such as the (G ′/G)-expansion method [9], the
anstaz approach [10,11], the trial equation technique [12], the adomian decomposition method [13], the variation iteration method
(VIM) [14], the modified exp(−Φ(ζ))-expansion method [15], the direct algebraic method [16], the extended Fan sub-equation
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method [17], the F-expansion technique [18], the generalized exponential rational function method [19], new Φ6-model expansion
method [20] and several others [21–26].

The key idea of this study is to conceive a variety of soliton solutions in the (2+1)-dimensional soliton equation by employing
three analytical methods. In this article we will consider the (2+1)-dimensional soliton equation given by [27]

iΨt + Ψxx + Ψ Φ = 0,

Φt + Φy + (Ψ Ψ ∗)x = 0, (1)

where ∗ represents the complex conjugate. The Φ = Φ(x, y, t) is real and Ψ = Ψ (x, y, t) is imaginary function. Here x , y and t
represent the spatial domains and time respectively. The governing equation is similar to the integrable Zakharov equation in plasma
physics which shows a significant role in several physical applications and governs the behavior of weakly nonlinear ion-acoustic
waves in a plasma. The physically most important example involves the interaction between the Langmuir and ion-acoustic waves
in plasmas. So far many studies for the (2 + 1)-dimensional soliton have been done in literature, for detail see references [28–32].
The authors attained a few solutions to the above equation. The more effective, novel solitary wave solutions of the given model
will be achieved via three proposed methods.

The layout of this manuscript is arranged as follows: The description of GERFM, ( G ′
G2 )-expansion function method and the

generalized Kudryashov method, is discussed in Sec. 2. Extraction of solitary wave solutions is given in Sec. 2. The Sec. 3 consist
of results and discussion along with the graphical representation. The conclusion is revealed in Sec. 4.

2 Description of the methods

We present brief description of the proposed methods in this section.
Suppose a NLPDE,

Δ(Θ,Θt ,Θx ,Θy,Θxx ,Θyy,Θxt , · · · ) = 0, (2)

where Δ is a polynomial in its arguments. We start with hypothesis as:

Θ(x, y, t) = φ(ζ ) and ζ = x + ηy − μt,

putting the traveling wave transformation into Eq. (2), yields NODE as,

χ(φ, φ′, φ′′, φ′′′, · · · ) = 0, (3)

where χ is a polynomial function of its arguments and ′ expresses the derivative w.r.t ζ .

2.1 GERFM

First we give a detail description of GERFM [33]. This technique incorporates the following steps.
Step 1. The solution of Eq. (3) is written as

φ(ζ ) = δ0 +
n∑

k=1

δkσ(ζ )k +
n∑

k=1

ρkσ(ζ )−k, (4)

where

σ(ζ ) = p1eq1ζ + p2eq2ζ

p3eq3ζ + p4eq4ζ
. (5)

The unknown coefficients δ0, δk , ρk (1 ≤ k ≤ n) and constants pi , qi (1 ≤ i ≤ 4) are determined. We use homogeneous balance
principle [34] in order to determine the positive integer n by balancing the nonlinear term and linear term with the highest order in
Eq. (3). More precisely, if degree of φ(ζ ) is deg

[
φ(ζ )

] = n then other terms will have degree may be obtained as follows:

deg
[
φk(ζ )

] = n + k,

deg
[
(φ(ζ ))p

(
φk(ζ )

)s] = np + s(n + k). (6)

From above equation we get

n + k = np + s(n + k). (7)

Step 2. We get a cluster of algebraic equations on putting Eq. (4) together with (5) into Eq. (3).
Step 3. On solving the cluster of equations, we get the unknown terms and consequently, the required solutions are achieved.
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2.2 ( G ′
G2 )-expansion function method

Here, we discuss in detail the general property of the proposed method [35].
Step 1. Suppose that Eq. (3) has the following form of solution

φ(ζ ) = a0 +
n∑

k=1

(
αk

(
G ′

G2

)k

+ βk

(
G ′

G2

)−k)
, (8)

where G = G(ζ ) holds (
G ′

G2

)′
= Υ + Ω

(
G ′

G2

)2

, (9)

with Ω �= 0, Υ �= 1 are integers. The unknown constants a0, αk, βk (k = 1, 2, 3, · · · , n) to be calculated latter.
Step 2. Thus ( G ′

G2 )-expansion method provides three types of solutions:

• Trigonometric solution:
If Υ Ω > 0, (

G ′

G2

)
=

√
Υ

Ω

(
ζ1 cos(

√
Υ Ω ζ) + ζ2 sin(

√
Υ Ω ζ)

ζ2 cos(
√

Υ Ω ζ) − ζ1 sin(
√

Υ Ω ζ)

)
. (10)

• Hyperbolic solution:
If Υ Ω < 0, (

G ′

G2

)
= −

√|Υ Ω|
Ω

(
ζ1 sinh(2

√|Υ Ω|ζ ) + ζ1 cosh(2
√|Υ Ω|ζ ) + ζ2

ζ1 sinh(2
√|Υ Ω|ζ ) + ζ1 cosh(2

√|Υ Ω|ζ ) − ζ2

)
, (11)

• Rational solution:
If Υ = 0, Ω �= 0, (

G ′

G2

)
=

(
− ζ1

Ω(ζ1 ζ + ζ2)

)
, (12)

where ζ1 and ζ2 are constants.

Step 3. On the utilization of Eq. (7) for the homogeneous balance principle the value of n in Eq. (3) is calculated.
Step 4. After putting Eq. (8) together with (9) into Eq. (3) and a set of algebraic system is extracted on the comparison of specific
terms.
Step 5. The required set of parameters will be obtained after solving the system of algebraic equations through soft computations.

2.3 The general properties of generalized Kudryashov method

Here, we discuss in detail the general property of the proposed method [36].
Step 1: Suppose that Eq. (3) has the following form of solution

φ(ζ ) =
∑n

i=0 ai G
i (ζ )∑m

j=0 b j G j (ζ )
, (13)

where, ai (i = 0, 1, 2, 3, · · · , n) and b j ( j = 0, 1, 2, 3, · · · ,m) are constants to be determined after ward such that an �= 0 and
bm �= 0,
where G = G(ζ ) holds

G ′(ζ ) = G2(ζ ) − G(ζ ). (14)

Moreover,the solution of Eq. (14) has the structure like

G(ζ ) = 1

1 + Seζ
. (15)

Here, S is constant of integration.
Step 2: The values of n and m are evaluated by using homogeneous balance principle in Eq. (3).
Step 3: We obtain a polynomial in G(ζ ), after putting Eqs. (13) and (14) into Eq. (3). We get a cluster of an algebraic equations on
equating the same powers of G(ζ ) to zero, and we secure the values of ai (i = 0, 1, 2, 3, · · · , n) and b j ( j = 0, 1, 2, 3, · · · ,m). On
the utilization of the obtained values in Eq. (13) with the usage of Eq. (15), we finally find the exact solutions of Eq. (1).
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3 Extraction of solitary wave solutions

In this section, the application of the proposed methods are utilized for establishing the new soliton solutions to Eq.(1). Suppose the
following traveling wave transformation :

Ψ (x, y, t) = H(ζ )eiθ , Φ(x, y, t) = R(ζ ) θ = lx + py + ct, ζ = L(x + Py − 2lt), (16)

where l, p, c, L and P are constants; H(ζ ) and R(ζ ) represent real functions. By inserting Eq. (16) into Eq. (1), we attain,

L2H ′′(ζ ) − (c + l2)H(ζ ) + H(ζ )R(ζ ) = 0. (17)

(P − 2l)R′(ζ ) + (H2(ζ ))′ = 0. (18)

By integrating Eq. (18), we obtain

R(ζ ) = − H2(ζ )

(P − 2l)
+ a. (19)

where a is the constant of the integration and P �= 2l. Substituting Eq. (19) into Eq. (18), we get
(
a − c − l2

)

L2 H(ζ ) − 1

L2(P − 2l)
H3(ζ ) + H ′′(ζ ) = 0. (20)

3.1 Solutions via GERFM

By using the homogeneous balance rule, the highest order derivative H ′′(ζ ) and the nonlinear term of the highest order H3(ζ ) are
balanced via the Eq. (7) in Eq. (20), and from Eq. (20), we get

deg
[
H ′′(ζ )

] = n + 2 = deg
[
H3(ζ )

(
H ′′(ζ )

)s] = 3n + 0(n + 2) (21)

which leads to n = 1. The solution of (20), becomes

H(ζ ) = δ0 + δ1σ(ζ ) + ρ1σ(ζ )−1. (22)

Family-1: For p = [−1,−1, 1,−1] and q = [1,−1, 1,−1], the Eq. (5) gives

σ(ζ ) = −cosh(ζ )

sinh(ζ )
. (23)

Plugging Eq. (22) and Eq. (23) in Eq. (20), we secure solution sets as follows:
Set-1:

δ0 = 0, δ1 = √
2
√
L2(P − 2l), ρ1 = √

2
√
L2(P − 2l), c = a − l2 − 8L2.

• Combo solitons are obtained

Ψ1(x, y, t) =
(

−
√

2L2(P − 2l) tanh(L(−2lt + Py + x))

−
√

2L2(P − 2l) coth(L(−2lt + Py + x))

)
× ei(lx+py+ct). (24)

Set-2:

δ0 = 0, δ1 = √
2
√
L2(P − 2l), ρ1 = 0, c = a − l2 − 2L2.

• Singular solitons are obtained

Ψ2(x, y, t) = −√
2
√
L2(P − 2l) coth(L(−2lt + Py + x)) × ei(lx+py+ct). (25)

Set-3:

δ0 = 0, δ1 = 0, ρ1 = √
2
√
L2(P − 2l), c = a − l2 − 2L2.

• Dark solitons are obtained

Ψ3(x, y, t) = −√
2
√
L2(P − 2l) tanh(L(−2lt + Py + x)) × ei(lx+py+ct). (26)
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Family-2: For p = [−i, i, 1, 1] and q = [i,−i, i,−i], the Eq. (5) provides

σ(ζ ) = − sin(ζ )

cos(ζ )
. (27)

Putting Eq. (22) and Eq. (27) in Eq. (20), we retrieves the solution sets as follows:
Set-1:

δ0 = 0, δ1 = i L
√

4l − 2P, ρ1 = i L
√

4l − 2P, c = a − l2 − 4L2.

• Trigonometric solutions are obtained

Ψ4(x, y, t) = −2i L
√

4l − 2P csc(2L(−2lt + Py + x)) × ei(lx+py+ct). (28)

Set-2:

δ0 = 0, δ1 =
√

2L2
(
P − 2

√
a − c − 4L2

)
, ρ1 =

√
2L2

(
P − 2

√
a − c − 4L2

)
,

l =
√
a − c − 4L2.

• Periodic solutions are obtained

Ψ5(x, y, t) = −2
√

2

√
L2

(
P − 2

√
a − c − 4L2

)
csc

(
2L

(
−2t

√
a − c − 4L2 + Py + x

))
× ei(lx+py+ct). (29)

Family-3: For p = [1, 0, 1, 1] and q = [1, 0, 1, 0], the Eq. (5) gives

σ(ζ ) = eζ

eζ + 1
. (30)

Substituting Eq. (22) and Eq. (30) in Eq. (20), we achieves the solution set as follows:
Set-1:

δ0 = i
√

2l − P
√
a − c − l2, δ1 = −2i

√
2l − P

√
a − c − l2, ρ1 = 0, L = √

2
√
a − c − l2.

• Exponential function solutions are obtained

Ψ6(x, y, t) = −
i
√

2l − P
√
a − c − l2

(
e
√

2
√
a−c−l2(−2lt+Py+x) − 1

)

e
√

2
√
a−c−l2(−2lt+Py+x) + 1

× ei(lx+py+ct). (31)

Family-4: For p = [1 − i, 1 + i, 1, 1] and q = [i,−i, i,−i], the Eq. (5) provides

σ(ζ ) = cos(ζ ) + sin(ζ )

cos(ζ )
. (32)

Imposing Eq. (22) and Eq. (32) in Eq. (20), we get solution set as follows:
Set-1:

δ0 =
√

2L2(P − 2l), δ1 = 0, ρ1 = −2
√

2L2(P − 2l), c = a − l2 + 2L2.

• Trigonometric solutions are obtained

Ψ7(x, y, t) =
√

2
√
L2(P − 2l)(sin(L(−2lt + Py + x)) − cos(L(−2lt + Py + x)))

sin(L(−2lt + Py + x)) + cos(L(−2lt + Py + x))
× ei(lx+py+ct). (33)

Family-5: For p = [−3,−1, 1, 1] and q = [1,−1, 1,−1], the Eq. (5) provides

σ(ζ ) = −2 cosh(ζ ) − sinh(ζ )

cosh(ζ )
. (34)

Inserting Eq. (22) and Eq. (34) in Eq. (20), we obtain the solution sets as follows:
Set-1:

δ0 = 2
√

2L2(P − 2l), δ1 =
√
L2(P − 2l), ρ1 = 0, c = a − l2 − 2L2.
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• Dark solitons are obtained

Ψ8(x, y, t) = −√
2
√
L2(P − 2l) tanh(L(−2lt + Py + x)) × ei(lx+py+ct). (35)

Set-2:

δ0 = 2
√

2L2(P − 2l), δ1 = 0, ρ1 = 3
√

2L2(P − 2l), c = a − l2 − 2L2.

• Combo solitons are obtained

Ψ9(x, y, t) =
√

2
√
L2(P − 2l)(2 sinh(L(−2lt + Py + x)) + cosh(L(−2lt + Py + x)))

sinh(L(−2lt + Py + x)) + 2 cosh(L(−2lt + Py + x))
× ei(lx+py+ct). (36)

Family-6: For p = [−1, 0, 1, 1] and q = [0, 1, 0, 1], the Eq. (5) gives

σ(ζ ) = − 1

eζ + 1
. (37)

Switching Eq. (22) and Eq. (37) in Eq. (20), we recover solution sets as follows:
Set-1:

δ0 =

√
L2

(
P −

√
4a − 2

(
2c + L2

))

√
2

, δ1 =
√

2L2

(
P −

√
4a − 2

(
2c + L2

))
, ρ1 = 0, l =

√

a − c − L2

2
.

• Exponential function solutions are obtained as

Ψ10(x, y, t) =

√
−L2

(√
4a − 2

(
2c + L2

) − P
) (

exp
(
L

(
t
(
−√

4a − 4c − 2L2
)

+ Py + x
))

− 1
)

√
2

(
exp

(
L

(
t
(
−√

4a − 4c − 2L2
)

+ Py + x
))

+ 1
) × ei(lx+py+ct). (38)

Set-2:

δ0 = i
√

2l − P
√
a − c − l2, δ1 = 2i

√
2l − P

√
a − c − l2, ρ1 = 0, L = √

2
√
a − c − l2.

• Exponential function solutions are obtained

Ψ11(x, y, t) = i
√

2l − P
√
a − c − l2

(
1 − 2

e
√

2
√
a−c−l2(−2lt+Py+x) + 1

)
× ei(lx+py+ct). (39)

Family-7: For p = [−1, 1, 1, 1] and q = [1,−1, 1,−1], the Eq. (5) provides

σ(ζ ) = − sinh(ζ )

cosh(ζ )
. (40)

Putting Eq. (22) and Eq. (40) in Eq. (20), we get the solution sets as follows:
Set-1:

δ0 = 0, δ1 =
√

2l − P
√
a − c − l2√
2

, ρ1 = −
√

2l − P
√
a − c − l2√
2

, L = 1

2

√
−a + c + l2.

• Mixed solitons are obtained

Ψ12(x, y, t) =
(√

2l − P
√
a − c − l2 coth

(
1
2

√−a + c + l2(−2lt + Py + x)
)

√
2

−
√

2l − P
√
a − c − l2 tanh

(
1
2

√−a + c + l2(−2lt + Py + x)
)

√
2

)
× ei(lx+py+ct). (41)

Set-2:

δ0 = 0, δ1 = −i L
√

4l − 2P, ρ1 = i L
√

4l − 2P, c = a − l2 + 4L2.
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• The soliton solutions are obtained

Ψ13(x, y, t) = ıL
√

4l − 2P tanh(L(−2lt + Py + x)) − i L
√

4l − 2P coth(L(−2lt + Py + x)) × ei(lx+py+ct). (42)

Family-8: For p = [2 − i, 2 + i, 1, 1] and q = [i,−i, i,−i], the Eq. (5) provides

σ(ζ ) = sin(ζ ) + 2 cos(ζ )

cos(ζ )
. (43)

Placing Eq. (22) and Eq. (43) in Eq. (20), we retrieve the solution sets as follows:
Set-1:

δ0 = 2
√

2L2(P − 2l), δ1 = −
√

2L2(P − 2l), ρ1 = 0, c = a − l2 + 2L2.

• Singular periodic solutions are obtained

Ψ14(x, y, t) = −√
2
√
L2(P − 2l) tan(L(−2lt + Py + x)) × ei(lx+py+ct). (44)

Set-2:

δ0 = −2
√

2L2(P − 2l), δ1 = 0, ρ1 = 5
√

2L2(P − 2l), c = a − l2 + 2L2.

• Singular periodic solutions are obtained

Ψ15(x, y, t) =
√

2
√
L2(P − 2l)(1 − 2 tan(L(−2lt + Py + x)))

tan(L(−2lt + Py + x)) + 2
× ei(lx+py+ct). (45)

Family-9: For p = [1, 2, 1, 1] and q = [1, 0, 1, 0], the Eq. (5) recovers

σ(ζ ) = eζ + 2

eζ + 1
. (46)

Imposing Eq. (22) and Eq. (46) in Eq. (20), we get the solution sets as follows:
Set-1:

δ0 = −3
√
L2(P − 2l)√

2
, δ1 = 0, ρ1 = 2

√
2L2(P − 2l), c = a − l2 − L2

2
.

• Exponential function solutions are obtained

Ψ16(x, y, t) =
√
L2(P − 2l)

(
eL(−2lt+Py+x) − 2

)
√

2
(
eL(−2lt+Py+x) + 2

) × ei(lx+py+ct). (47)

Set-2:

δ0 = −3
√
L2(P − 2l)√

2
, δ1 =

√
2L2(P − 2l), ρ1 = 0, c = a − l2 − L2

2
.

• Exponential function solutions are obtained

Ψ17(x, y, t) = −
√
L2(P − 2l)

(
eL(−2lt+Py+x) − 1

)
√

2
(
eL(−2lt+Py+x) + 1

) × ei(lx+py+ct). (48)

Family-10: For p = [2, 1, 1, 1] and q = [1, 0, 1, 0], the Eq. (5) retrieves

σ(ζ ) = 2eζ + 1

eζ + 1
. (49)

Switching Eq. (22) and Eq. (49) in Eq. (20), we obtain the solution sets as follows:
Set-1:

δ0 = −3
√
L2(P − 2l)√

2
, δ1 = 0, ρ1 = 2

√
2L2(P − 2l), c = a − l2 − L2

2
.
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• Exponential function solutions are obtained

Ψ18(x, y, t) =
√
L2(P − 2l)

(
1 − 2eL(−2lt+Py+x)

)
√

2
(
2eL(−2lt+Py+x) + 1

) × ei(lx+py+ct). (50)

Set-2:

δ0 = −3
√
L2(P − 2l)√

2
, δ1 =

√
2L2(P − 2l), ρ1 = 0, c = a − l2 − L2

2
.

• Exponential function solutions are obtained

Ψ19(x, y, t) =
√
L2(P − 2l)

(
eL(−2lt+Py+x) − 1

)
√

2
(
eL(−2lt+Py+x) + 1

) × ei(lx+py+ct). (51)

Family-11: For p = [1, 1, 1, 1] and q = [0, 0, 1,−1], the Eq. (5) provides

σ(ζ ) = 2

eζ + e−ζ
. (52)

Putting Eq. (22) and Eq. (49) in Eq. (20), we get the solution set as follows:
Set-1:

δ0 = 0, δ1 =
√

2L2(2l − P), ρ1 = 0, c = a − l2 + L2.

• Bright solitons are obtained

Ψ20(x, y, t) =
√

2L2(2l − P)sech(L(2lt − Py − x)) × ei(lx+py+ct). (53)

3.2 Solutions via ( G ′
G2 )-expansion method

By applying balance rule via Eq. (21), in Eq. (20) yields, n = 1. The solution of Eq. (20) as follows:

H(ζ ) = β0 +
n∑

j=1

(
β j

(
G ′

G2

) j

+ δ j

(
G ′

G2

)− j)
,

H(ζ ) = β0 + β1

(
G ′

G2

)
+ δ1

(
G ′

G2

)−1

. (54)

Inserting Eq. (54) into Eq. (20) together with Eq. (9) and by equating the coefficients of each powers of

(
G ′
G2

)
to zero. On solving

the system of algebraic equations through Mathematica, we obtain the following solution sets:

Set − 1 : β0 = 0, β1 =
√

2L2Ω2(P − 2l), δ1 = 0, c = a − l2 + 2L2Υ Ω.

Set − 2 : β0 = 0, β1 = 0, δ1 =
√

2L2Υ 2(P − 2l), c = a − l2 + 2L2Υ Ω.

Set − 3 : β0 = 0, β1 =
√

2L2Ω2(P − 2l), δ1 =
√

2L2Υ 2(P − 2l),

c = a − l2 − 6L2Υ 2
√
L2Ω2(P − 2l)√

L2Υ 2(P − 2l)
+ 2L2Υ Ω.

For Set-1,

• Trigonometric solutions:
If Υ Ω > 0,

Ψ1,1(x, y, t) =
√

2
√

Υ
√
L2Ω2(P − 2l)

(
ζ1 sin

(
ζ
√

Υ Ω
)

+ ζ2 cos
(
ζ
√

Υ Ω
))

√
Ω

(
ζ2 cos

(
ζ
√

Υ Ω
)

− ζ1 sin
(
ζ
√

Υ Ω
)) × ei(lx+py+ct). (55)

123



Eur. Phys. J. Plus         (2022) 137:674 Page 9 of 14   674 

• Hyperbolic solution:
If Υ Ω < 0,

Ψ1,2(x, y, t) = −
√∣∣Υ Ω

∣∣√−2L2Ω2(2l − P)
(
ζ1

(
sinh

(
2ζ

√∣∣Υ Ω
∣∣) + cosh

(
2ζ

√∣∣Υ Ω
∣∣)) + ζ2

)

Ω
(
ζ1

(
sinh

(
2ζ

√∣∣Υ Ω
∣∣) + cosh

(
2ζ

√∣∣Υ Ω
∣∣)) − ζ2

) × ei(lx+py+ct). (56)

• For soliton solution, take ζ1 = ζ2, we get singular wave solution as:

Ψ1,2(x, y, t) = −
√

2
√∣∣Υ Ω

∣∣√−L2Ω2(2l − P) coth
(
ζ

√∣∣Υ Ω
∣∣
)

Ω
× ei(lx+py+ct). (57)

• Rational solutions:
If Υ = 0,Ω �= 0,

Ψ1,3(x, y, t) = −
√

2ζ1

√
L2Ω2(P − 2l)

Ω (ζζ1 + ζ2)
× ei(lx+py+ct). (58)

If we take ζ1 = ζ2, a rational function solution is obtained

Ψ1,3(x, y, t) = −
√

2
√−L2Ω2(2l − P)

ζΩ + Ω
× ei(lx+py+ct). (59)

For Set-2,
• Trigonometric solutions:

If Υ Ω > 0,

Ψ2,1(x, y, t) =
√

2
√

Ω
√
L2Υ 2(P − 2l)

(
ζ2 cos

(
ζ
√

Υ Ω
)

− ζ1 sin
(
ζ
√

Υ Ω
))

√
Υ

(
ζ1 sin

(
ζ
√

Υ Ω
)

+ ζ2 cos
(
ζ
√

Υ Ω
)) × ei(lx+py+ct). (60)

• Hyperbolic solution:
If Υ Ω < 0,

Ψ2,2(x, y, t) = −
√

2Ω
√−L2Υ 2(2l − P)

(
ζ1

(
sinh

(
2ζ

√∣∣Υ Ω
∣∣
)

+ cosh
(

2ζ

√∣∣Υ Ω
∣∣
))

− ζ2

)

√∣∣Υ Ω
∣∣
(
ζ1

(
sinh

(
2ζ

√∣∣Υ Ω
∣∣
)

+ cosh
(

2ζ

√∣∣Υ Ω
∣∣
))

+ ζ2

) × ei(lx+py+ct). (61)

• For soliton solution, take ζ1 = ζ2, we get dark soliton solution as:

Ψ2,2(x, y, t) = −
√

2Ω
√−L2Υ 2(2l − P) tanh

(
ζ

√∣∣Υ Ω
∣∣
)

√∣∣Υ Ω
∣∣

× ei(lx+py+ct). (62)

For Set-3,
• Trigonometric solutions:

If Υ Ω > 0,

Ψ3,1(x, y, t) =
√

2
√

Ω
√
L2Υ 2(P − 2l)

(
ζ2 cos

(
ζ
√

Υ Ω
)

− ζ1 sin
(
ζ
√

Υ Ω
))

√
Υ

(
ζ1 sin

(
ζ
√

Υ Ω
)

+ ζ2 cos
(
ζ
√

Υ Ω
))

+
√

2
√

Υ
√
L2Ω2(P − 2l)

(
ζ1 sin

(
ζ
√

Υ Ω
)

+ ζ2 cos
(
ζ
√

Υ Ω
))

√
Ω

(
ζ2 cos

(
ζ
√

Υ Ω
)

− ζ1 sin
(
ζ
√

Υ Ω
)) × ei(lx+py+ct). (63)

• For soliton solution, take ζ1 = ζ2, we get periodic wave solution as:

Ψ3,1(x, y, t) = 1√
Υ

√
Ω

× √
2 sec

(
2ζ

√
Υ Ω

) (
Ω

√
−L2Υ 2(2l − P) + Υ

√
−L2Ω2(2l − P)

+
(
Υ

√
−L2Ω2(2l − P) − Ω

√
−L2Υ 2(2l − P)

)
sin

(
2ζ

√
Υ Ω

))
× ei(lx+py+ct). (64)
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• Hyperbolic solution:
If Υ Ω < 0,

Ψ3,2(x, y, t) =
Ω2

(
−√

2L2Υ 2(P − 2l)
)(

ζ2 − ζ1e
2ζ

√∣∣Υ Ω

∣∣) 2

Ω

√∣∣Υ Ω
∣∣
(

ζ 2
1 e

4ζ

√∣∣Υ Ω

∣∣ − ζ 2
2

))

−
∣∣Υ Ω

∣∣√2L2Ω2(P − 2l)

(
ζ1e

2ζ

√∣∣Υ Ω

∣∣ + ζ2

)
2

Ω

√∣∣Υ Ω
∣∣
(

ζ 2
1 e

4ζ

√∣∣Υ Ω

∣∣ − ζ 2
2

)) × ei(lx+py+ct). (65)

• For soliton solution, take ζ1 = ζ2, we get combo dark-singular wave solution as:

Ψ3,2(x, y, t) = −
tanh

(
ζ

√∣∣Υ Ω
∣∣
) (∣∣Υ Ω

∣∣√2L2Ω2(P − 2l) coth2
(
ζ

√∣∣Υ Ω
∣∣
)

+ Ω2
√
L2Υ 2(P − 2l)

)

Ω

√∣∣Υ Ω
∣∣

× ei(lx+py+ct).

(66)

For all the above set (1, 2, 3) ζ = L(x + Py − 2lt).

3.3 Solutions via generalized Kudryashov method

By using the homogeneous balance rule, the highest order derivative H ′′(ζ ) and the nonlinear term of the highest order H3(ζ ) are
balanced via the Eq. (7) in Eq. (20), and from Eq. (20), for this method we have

deg
[
H ′′(ζ )

] = (n − m) + 2 (67)

deg
[
H3(ζ )

(
H ′′(ζ )

)s] = 3(n − m) + s(n − m + k). (68)

From above two equations we have

(n − m) + 2 = 3(n − m) + 0(n − m + k). (69)

which leads to

n = m + 1. (70)

Particularly, if we assigning m = 1, we get n = 2. The proposed method has the solution to Eq. (20) as follows

H(ζ ) = a0 + a1G(ζ ) + a2G2(ζ )

b0 + b1G(ζ )
, (71)

where a0, a1, a2, b0 and b1 are to be determined. Now, solving Eqs. (20) and (71), and following the step 3 of the method, we get the
system of equations is obtained. With the assistance of computational software like Mathematica, we solve the system of algebraic
expression, and a variety of solution sets is obtained as
Set-1:

a1 = −i (2b0 − b1) L

√
l − P

2
, a0 = ib0L

√
l − P

2
, c = a − l2 − L2

2
, a2 = −ib1L

√
4l − 2P.

On substituting the above values of parameters in Eq. (71) and with the assistance of Eq. (15), and on setting S = 1, the hyperbolic
functions are obtained

Ψ1(x, y, t) = −i L

√
l − P

2
tanh

(
1

2
L(2lt − Py − x)

)
× ei(lx+py+ct). (72)

Set-2:

a1 = −i (2b0 + b1) L

√
l − P

2
, a0 = −

√
b2

0 (b0 + b1) 2
(−L2

)
(2l − P) + ib2

0L
√

2l − P
√

2b1
,
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c = 1

2

⎛

⎜⎜⎜⎜⎝
2a +

2L

(
b0 (b0 + b1) (−L) + i

√
b2

0(b0+b1)2(−L2)(2l−P)√
2l−P

)

b2
1

− 2l2 − L2

⎞

⎟⎟⎟⎟⎠
, a2 = 0.

By taking S = 1 and solving Eqs. (71) and (15) together, we get exponential function solution as follows

Ψ2(x, y, t) = −

√
b2

0(b0+b1)2(−L2)(2l−P)+ib2
0L

√
2l−P√

2b1
+ i(2b0+b1)L

√
l− P

2

eL(−2lt+Py+x)+1
b1

eL(−2lt+Py+x)+1
+ b0

× ei(lx+py+ct). (73)

Set-3:

a1 = −2ib0L
√

4l − 2P, b1 = −2b0; a0 =
−

√
b2

0L
2(P − 2l) + 3ib0L

√
2l − P

2
√

2
,

c = a −
3i L

√
b2

0L
2(P − 2l)

4b0
√

2l − P
− l2 − 5L2

4
, a2 = 2ib0L

√
4l − 2P.

On selecting S = 1 and solving Eqs. (71) and (15) together, we get soliton solution as

Ψ3(x, y, t) = 1

b0 − 2b0− sinh(2l Lt−LPy−Lx)+cosh(2l Lt−LPy−Lx)+1

×

×
(

2ib0L
√

4l − 2P

(− sinh(2l Lt − LPy − Lx) + cosh(2l Lt − LPy − Lx) + 1)2 + 3ib0L
√

2l − P

2
√

2

−
√
b2

0L
2(P − 2l)

2
√

2
− 2ib0L

√
4l − 2P

− sinh(2l Lt − LPy − Lx) + cosh(2l Lt − LPy − Lx) + 1

)
× ei(lx+py+ct). (74)

Set-4:

a1 = ib0L
√

4l − 2P, b1 = 0, a0 = −ib0L

√
l − P

2
, c = a − l2 − L2

2
, a2 = 0.

For S = 1 and solving Eqs. (71) and (15) together, we get the singular wave solution as

Ψ4(x, y, t) = i L

√
l − P

2
coth

(
1

2
L(2lt − Py − x)

)
× ei(lx+py+ct). (75)

Set-5:

a1 = 2ib0L
√

4l − 2P, b1 = −2b0, a0 =
√
b2

0L
2(P − 2l) − 3ib0L

√
2l − P

2
√

2

c = a −
3i L

√
b2

0L
2(P − 2l)

4b0
√

2l − P
− l2 − 5L2

4
, a2 = −2ib0L

√
4l − 2P.

In particular, on S = −1 and solving Eqs. (71) and (15) together, the hyperbolic function solution can be expressed as

Ψ5(x, y, t) = 1√
2b0

(
e2L(−2lt+Py+x) − 1

) ×
(

− ib0L
√

2l − P(3 cosh(L(2lt − Py − x)) + 1)

√
b2

0L
2(P − 2l) + (cosh(L(2lt − Py − x)) − 1)

)
× ei(lx+py+ct). (76)

Set-6:

a1 = −ib1L
√

4l − 2P, a0 = 0, b0 = −b1

2
, c = a − l2 + L2, a2 = ib1L

√
4l − 2P.

If we select S = 1 and solving Eqs. (71) and (15) together, then we obtain singular wave solution as

Ψ6(x, y, t) = −i L
√

4l − 2Pcsch(L(2lt − Py − x)) × ei(lx+py+ct). (77)
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Fig. 1 The 3D, and 2D graphs are presented for Eq. (26)

Fig. 2 The 3D, and 2D graphs are presented for Eq. (44)

4 Results and discussion

In this section, we will compare our results with other results in the existing research literature after successful utilization of
three proposed computational methods to the given dynamical model. Akhtar Chowdhury et al. [27] examine the explicit and
periodic solutions by utilizing the double (G

′
G , 1

G )-expansion method. Besides, in these references [28–32], the authors attained a
few solutions to the (2+1)-dimensional soliton equation. However, in this manuscript, our main objective is to extract a variety of
solitons in bright, dark, singular, and combo forms along with exponential function, rational and singular periodic solutions. We
observe that the retrieved solutions are new and to the best of our knowledge the applications of these techniques to the dynamical
soliton equation have not been reported in the literature beforehand. The accomplished outcomes are remarkable and new from the
current results in available writing. We encountered that the results presented in this article could help explain the genuine meaning
of various nonlinear advancement conditions arising in the many fields of nonlinear sciences especially in mathematical physics.
Moreover, these results have some other physical meanings, for instance; the hyperbolic sine function appears in the gravitational
potential of a cylinder and the calculation of the Roche limit, the hyperbolic cosine function appears in the shape of a hanging cable
(the so-called CATENARY), the hyperbolic tangent appears in the calculation of magnetic moment and special relativity rapidity,
and the hyperbolic cotangent appears in the Langevin function for magnetic porosity [37]. By substituting the diverse values to the
parameters, variants wave results are discovered from the exact peregrinating wave solution. The dark, periodic and bright soliton
solutions, which are provided in Eqs. (26, 62, 72), 44 and (53) as exhibited in figs (1,4, 5), (2) and (3) respectively. The physically
description of some solutions are given below.

5 Conclusions

The exploration of this novel effort is to investigate solitary wave solutions in diverse forms as hyperbolic, trigonometric, exponential,
and rational function solutions along with well-known soliton solutions in the shapes of bright dark, singular, and multiple solitons
by three analytical mathematical methods. The accomplished outcomes are remarkable and new from the current results in available
writing. Furthermore, 3D, and 2D graphs have been plotted under the choice of appropriate parameters for getting the physical
behavior of some secured solutions. The reported outcomes will be valuable for a comprehensive insight of the dynamics of the
mentioned model, and more, the analysis can be enhanced to other nonlinear models. The scrutinized wave’s results are loyal to
the researchers and also have imperious applications in mathematical physics. Finally, our solutions have been verified using the
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Fig. 3 The 3D, and 2D graphs are presented for Eq. (53)

Fig. 4 The 3D, and 2D graphs are presented for Eq. (62)

Fig. 5 The 3D, and 2D graphs are presented for Eq. (72)

Mathematica by substituting them back into the original equation. We can assert from the obtained results that the applied techniques
are simple, vibrant, and quite well, and will be helpful tool for addressing more highly nonlinear issues in various of fields, especially
in physical sciences. Furthermore, our findings are first step toward understanding the structure and physical behavior of complicated
structures. We anticipate that our results will be highly valuable in better understanding the waves that occur in the diverse area of
physics. We feel that this work is timely and will be of interest to a wide spectrum of experts working on physical and engineering
models.
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