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Abstract We investigate the Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism for non-Hermitian field theories with local
non-Abelian gauge symmetry in different regions of their parameter spaces. We demonstrate that the two aspects of the mechanism,
that is giving mass to gauge vector bosons and at the same time preventing the existence of massless Goldstone bosons, remain to
be synchronized in all regimes characterized by a modified CPT symmetry. In the domain of parameter space where the “would
be Goldstone bosons” can be identified the gauge vector bosons become massive and the Goldstone bosons cease to exist. The
mechanism is also in tact at the standard exceptional points. However, at the zero exceptional points, that is when the eigenvalues of
the mass squared matrix vanish irrespective of the symmetry breaking, the mechanism breaks down as the Goldstone bosons cannot
be identified and the gauge vector bosons remain massless. This breakdown coincides with the vanishing of the CPT inner product
of symmetry breaking vacua defined on the eigenvector space of mass squared matrix. We verify this behaviour for a theory with
SU(2) symmetry in which the complex scalar fields are taken in the fundamental as well as in the adjoint representation.

1 Introduction

Our main objective is to extend the Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism [1–4], hereafter simply referred to
as Higgs mechanism, to non-Hermitian field theories with a local non-Abelian gauge symmetry using a pseudo-Hermitian approach.
We focus on the two key aspects for which the mechanism was originally developed, that is to give mass to gauge vector bosons and
at the same time prevent the existence of massless Goldstone bosons. When keeping the symmetry global one may adopt different
starting points for the study of Goldstone phases, such as the field content of local operators, a scattering matrix based on a particle
picture or an explicit Lagrangian.

For instance, two-dimensional conformal quantum field theories are well-understood in terms of their operator content character-
ized by infinite-dimensional algebras of local conformal transformations [5]. A large class of such theories, minimal models [6], are
known to possess a finite operator content, and the treatment of unitary and non-unitary theories is formally identical. The simplest
massive non-unitary field theory consisting of only one real scalar field describing in its ultraviolet limit the critical point of the
Ising model in a purely imaginary magnetic field, the Yang-Lee edge singularity [7, 8], is known for a long time to correspond to
the non-Hermitian Lagrangian [9, 10]

L �
∫

dd x

[
1

2
(�φ)2 + i(h − hc)φ +

1

3
igφ3
]
. (1)

Exact scattering theories for two-dimensional models have also been identified [11] that can be used to probe the ultraviolet limit
most easily by employing the thermodynamic Bethe Ansatz [12]. These techniques have also been employed for hypothetical
scattering matrices for massless Goldstone fermions (Goldstinos) [13] and scattering matrices that reduce to them in certain limits
[14]. Despite the fact that the Mermin–Wagner theorem prevents the validity of the Goldstone theorem in dimensions d ≤ 2, it was
argued in [15] that for certain symmetry groups, e.g. SO(N) with formally taking N < 2, this restriction can be circumvented so
that Goldstone phases maybe be identified in such type of non-Hermitian systems.

Rather than taking an operator content or a scattering matrix as a starting point, one may of course also commence directly with a
non-Hermitian Lagrangian. From that perspective, it is natural to try to extend techniques and methods developed for the treatment
of non-Hermitian quantum mechanics [16–19] to a quantum field theory setting. Such considerations have been carried out for a
scalar field theory with imaginary cubic self-interaction terms [20, 21], with a Lagrangian identical to (1) but for h � hc without
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a linear term, deformed harmonic oscillators [22], non-Hermitian versions with a field theoretic Yukawa interaction [23–26], free
fermion theories with a γ5-mass term and the massive Thirring model [27], PT -symmetric versions of quantum electrodynamics
[28–30] and other types of PT -symmetric quantum field theories in higher dimensions [22] than (1).

Non-Hermitian quantum field theories are also viewed as possible options to overcome the limitations of the Standard Model of
particle physics, which is well-known to fail in describing gravity and neutrino oscillations in a consistent manner. In [31], a study
was initiated to potentially resolving the latter issue by extending the ordinary two-flavour neutrino oscillation to a non-Hermitian
PT-symmetric/pseudo Hermitian setting. A well-studied simple Hermitian extension of the Standard Model referred to as the two-
Higgs doublet-model [32] involves a second Higgs doublet or possibly more [33]. Here, we investigate non-Hermitian variants of
these models.

Here, we are especially interested in complex non-Hermitian scalar field theories and the question of how the aforementioned
Goldstone phases manifest in these theories, together with the subsequent extension to the Higgs mechanism [1–4] in Abelian and
non-Abelian gauge theories. These issues have been studied recently by various groups in different approaches, which differ from
their very onset: Given a generic action for a complex scalar field theory of the form I � ∫ d4xL(φ, φ∗), one has two options in a
Hermitian theory to derive the equations of motion by means functional variation, either to calculate δI/δφ � 0 or δI/δφ∗ � 0.
Since the standard CPT -theorem [34] applies, the two resulting equations are the same. In contrast, in a non-Hermitian theory, one
no longer has I � I∗, so that the two equations are not only not the same, but in addition one also has the new options δI∗/δφ � 0
and δI∗/δφ∗ � 0. In the first approach, we refer to as the “surface term approach”, it was suggested [35, 36] to take of only the
two equations resulting from δI/δφ � 0, δI∗/δφ∗ � 0 and neglect the remaining two. As the resulting equations are in general not
compatible, the authors propose to use some non-vanishing surface terms to compensate for the discrepancy. The second approach
[37] consists of taking δI/δφ � 0 or δI/δφ∗ � 0, and when determining the vacuum allowing the real and imaginary parts of the
complex scalar field to be also complex. Thus, in this approach the field content is doubled or re-defined.

Here, we follow an approach, we refer to as the “pseudo-Hermitian approach” [38, 39], more aligned to the procedure pursued
in non-Hermitian versions of quantum mechanics, in which one employs so-called Dyson maps [40] to transform a non-Hermitian
Hamiltonian to a Hermitian Hamiltonian. Since the action I contains a Lagrangian, rather than a Hamiltonian, we need to first
Legendre transform the complex Lagrangian L to a non-Hermitian Hamiltonian H, carry out the similarity transformation by means
of a Dyson map, while preserving equal time commutation relations, to obtain a Hermitian Hamiltonian h, which we then inverse
Legendre transform to a real Lagrangian l

L
Legendre→ H

Dyson→ ηHη−1 � h
Legendre−1

→ l. (2)

A consistent set of equations of motion is then obtained by functionally varying the action s � ∫ d4x l(ϕ, χ) involving this real
Lagrangian l with respect to the real field components ϕ, χ ∈ R of the complex scalar field φ � 1/

√
2(ϕ + iχ), i.e. δs/δϕ � 0 and

δs/δχ � 0. In order to perform the similarity transformation, one needs to canonically quantize the theory first, which is what we
will do below.

In fact, this will be the only quantum aspect in our manuscript. Our discussion here is kept classical and we will not carry out
a second quantization of the scalar fields, nor BRST quantization for the gauge fields, etc. Supported by our analysis below and in
our previous papers [38, 39], our view here is that much insight can be gained by a classical treatment, apart from the appeal to the
quantum field theory for the canonical commutation relations. One may of course fully analyse the theory in its quantum aspects,
but our view is that this should be performed on the transformed, i.e. Hermitian, theory rather than directly on the non-Hermitian
theory. In the former scenario one would not expect any issues to arise as one is simply dealing with a Hermitian system, whereas
in the latter case one may encounter a number of what we would refer to as “pseudo-problems”.

The above-mentioned incompatibility of the variational principle is an example for such a problem that already occurs on the
level of the classical theory. One may try to fix this problem directly for the non-Hermitian system or simply consider the equivalent
Hermitian system in which the problem is entirely absent. Another well-known example for a pseudo-problem in the quantum
mechanical context is for instance to take the variables x and p, that might appear in the definition of a non-Hermitian Hamiltonian,
to be physical observables. However, only the pseudo-Hermitian counterparts or the Dyson mapped quantities ηxη−1 and ηpη−1

can be observed and should be interpreted as being physical. Taking instead the original operators x and p from the non-Hermitian
theory one may derive violations of the uncertainly relations and other properties that contradict standard quantum mechanical
principles. Again these problems entirely disappear in the equivalent Hermitian system when considering the correct variables.

Previously, we have analysed the Goldstone theorem for a non-Hermitian scalar field theory with an Abelian [38] and a non-
Abelian symmetry [39]. Here, the main purpose is to investigate the extension to the Higgs mechanism. As it is well-known, in the
standard Higgs mechanism the Goldstone bosons acquires a mass so that our previous findings will inevitably have a bearing on
the investigation to be carried out here. Let us therefore recall the key finding from [38, 39]: The main object of study has been
the eigenvalue spectra of the non-Hermitian squared mass matrix M2, obtained by expanding around the symmetry breaking or
preserving vacua. The reality of these eigenvalues has been guaranteed by a modified CPT -symmetry of the original action I.
Hence, we distinguished in the usual fashion between CPT -symmetry regime characterized by M2 commuting with this symmetry
operator and its eigenstates being simultaneous eigenstates of the symmetry operator. When the latter is not the case, one refers
to that regime as the CPT -spontaneously broken regime in which some eigenvalues become complex conjugate pairs. The points
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in parameter space at which this occurs are commonly referred to as exceptional point. As physical masses are positive and real,
we also require the eigenvalues of M2 to be non-negative. We encountered a special behaviour at the transition points when the
eigenvalues become zero, which we referred to [38, 39] as zero exceptional points of type I and type II .1 At the type I points, the
mass matrix is non-diagonalizable and the continuous symmetry is broken, whereas at the type II points, the mass matrix can be
diagonalized and the vacuum with broken continuous symmetry re-acquires the symmetry at this point.

Using the above-mentioned approaches, the Higgs mechanism was previously studied for Abelian [37, 41] as well as non-Abelian
gauge theories [36] leading to slightly different findings. In [37], the interesting observation made, that the mass of the gauge vector
boson vanishes at the zero exceptional point, was not confirmed in [41]. In addition, for the non-Abelian gauge theories, it was
found in [36] that the Higgs mechanism even applies in the spontaneously broken CPT -regime. Our aim is here to compare the
various observations made using these alternative approaches with a pseudo-Hermitian approach, extend the studies to other models,
symmetries and representations within this framework.

Our manuscript is organized as follows: In Sect. 2.1, we introduce first our non-Hermitian model with scalar field taken in the
fundamental representation possessing a local SU (2) ×U (1)-symmetry, discuss the symmetry breaking vacuum of this theory and
subsequently the Higgs mechanism. We indicate how to extend the model from SU(2) to SU(N). We repeat the same discussion in
Sect. 2.2 for a non-Hermitian model with scalar field taken in the adjoint representation. Our conclusions are stated in Sect. 3. The
distinction between the two types of exceptional points is crucial and for that reason, we include in our appendix a discussion for
part of the squared mass matrix that explains the difference.

2 Pseudo-Hermitian approach to the Higgs mechanism

In this section, we commence by investigating the same model considered in [36] using, however, a pseudo-Hermitian method
to compare our results with the findings in [36]. We will observe that the mass spectrum of the fields in the SU(2) fundamental
representation coincides with the one found in [36], but the masses for the gauge vector bosons differ and in particular vanish at the
zero-exceptional points. We will extend this model to incorporate a SU(N)-symmetry and continue to observe this phenomena also
for these more general systems. Finally, we will consider a new model for which the fields are taken in a different representation,
the adjoint representation of SU(2), making similar observations.

2.1 A SU(2)-model in the fundamental representation

We start by applying the pseudo-Hermitian approach to a model with local SU (2) × U (1)-symmetry previously studied using the
surface term approach in [36]. The model corresponds to the gauged version of the one for which the Goldstone mechanism was
studied in [38]

L2 �
2∑

i�1

∣∣Dμφi
∣∣2 + m2

i |φi |2−μ2(φ†
1φ2 − φ

†
2φ1) − g

4
(|φ1|2)2 − 1

4
Tr
(
FμνF

μν
)
. (3)

Here, g, μ ∈ R, mi ∈ R or mi ∈ iR are constants. When compared to [38], we have replaced here as usual the standard derivatives
∂μ by covariant derivatives Dμ :� ∂μ − ieAμ, involving a charge e ∈ R and the Lie algebra-valued gauge fields Aμ :� τ a Aa

μ. Here,
the τ a , a � 1, 2, 3, are taken to be Pauli matrices, which when re-defined as i(−1)a+1τ a are the generators of SU(2). We have also
added the standard Yang–Mills term comprised of the Lie algebra valued field strength Fμν :� ∂μAν −∂ν Aμ − ie[Aμ, Aν]. The two
complex scalar fields φi are taken to be in the representation space of fundamental representation of SU(2). The model described by
L2 admits a global continuous U(1)-symmetry, a local continuous SU(2)-symmetry and two discrete antilinear CPT -symmetries as
described in more detail in [38]. Crucially, L2 is not Hermitian, which at this point is simply to be understood as not being invariant
under complex conjugation. The Abelian version of L2 was discussed in [37, 39].

As argued in [38], it is useful to decompose the complex fields into their real components φk
j � 1/

√
2(ϕk

j + iχk
j ) with ϕk

j , χ
k
j ∈ R.

Thus simply rewriting the complex scalar fields in Eq. (3) in terms of their real and imaginary components, we obtain the following
Lagrangian:

L2 � 1

2

2∑
k�1

2∑
j�1

{[
∂μϕk

j + e(Aμχ j )
k
][

∂μϕk
j + e(Aμχ j )

k
]∗

+
[
∂μχk

j − e(Aμϕ j )
k
][

∂μχk
j − e(Aμϕ j )

k
]∗ − 2Im

[[
∂μϕk

j + e(Aμχ j )
k
]∗[

∂μχk
j − e(Aμϕ j )

k
]]

+ m2
j

[
(ϕk

j )
2 + (χk

j )2
]

− 2iμ2(ϕk
1χk

2 − χk
1 ϕk

2) − 1

4
Fk

μν

(
Fk
)μν
}

− g

16

[
2∑

k�1

(ϕk
1)2 + (χk

1 )2

]2

. (4)

1 The difference between these two types of points is discussed in the appendix in form of a general discussion for key blocks of the squared mass matrix.
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We use here the standard notation * for complex conjugation and † for the simultaneous conjugation with transposition. See also
[38] for further details.

The SU(2)-symmetry manifests itself as follows: A change in the complex scalar fields due to this symmetry is δφk
j � iαaT kl

a φl
j ,

where the generators Ta of the symmetry transformation are the standard Pauli matrices σa , a � 1, 2, 3. The infinitessimal changes
for the real component fields are then identified as

δϕ1
j � − α1χ

2
j + α2ϕ

2
j − α3χ

1
j , δχ1

j � α1ϕ
2
j + α2χ

2
j + α3ϕ

1
j , (5)

δϕ2
j � − α1χ

1
j − α2ϕ

1
j + α3χ

2
j , δχ2

j � α1ϕ
1
j − α2χ

1
j − α3ϕ

2
j , (6)

which leave the above Lagrangian invariant. The discrete antilinearCPT ±-symmetries, see [38] for more details, manifest themselves
as

CPT ± : ϕk
j (xμ) → ∓(−1) jϕk

j (−xμ), χk
j (xμ) → ±(−1) jχk

j (−xμ). (7)

A noteworthy remark is that it is straightforward to generalize the model from a locally SU(2) -invariant one to a locally SU(N)-
invariant one, by extending the sum over k from 2 to N , while keeping the U(1)-symmetry global. In what follows, we will focus
on N � 2.

A crucial feature of L2 is that its CPT -invariance translates into pseudo-Hermiticity [18, 42], meaning that it can be mapped to
a Hermitian Lagrangian l2 by means of the adjoint action of a Dyson map η as l2 � ηL2η

−1. This may be achieved by the slightly
modified version of the Dyson map used in [37, 38]

η±
2 � exp

(
±

2∑
i�1

∫
d3xϕi

2 (t ′, �x)ϕi
2(t ′, �x) + χ i

2 (t ′, �x)χ i
2(t ′, �x)

)
. (8)

We denote here the time dependence by t ′ to indicate that commutators are understood as equal time commutators for the canonical

momenta ϕi
2 � ∂tϕ

i
2 and χ i

2 � ∂tχ
i
2, i � 1, 2. satisfying

[
ψk

j (x, t),
ψm
l (y, t)

]
� iδ jlδkmδ(x − y), j, k, l,m � 1, 2, for

ψ � ϕ, χ .
Hence, η±

2 is not to be viewed as explicitly time-dependent as discussed in much detail for instance in [43]. The adjoint action
of η+

2 on the individual fields maps as

ϕk
1 → ϕk

1 , ϕk
2 → −iϕk

2 , χk
1 → χk

1 , χk
2 → −iχk

2 , Aμ → Aμ, k � 1, 2. (9)

Thus, we convert the complex Lagrangian into the real Lagrangian

l2 � 1

2

2∑
j�1

(−1) j+1
{∣∣∂μϕ j + e(Aμχ j )

∣∣2 +
∣∣∂μχ j − e(Aμϕ j )

∣∣2 + m2
j

[
ϕ j · ϕ j + χ j · χ j

]

− 2Im
[[

∂μϕ j + e(Aμχ j )
]∗ · [∂μχ j − e(Aμϕ j )

]]
+ (−1) j2μ2(ϕ1 · χ2 − χ1 · ϕ2)

}

− g

16
[ϕ1 · ϕ1 + χ1 · χ1]2 − 1

4
Tr
(
FμνF

μν
)
. (10)

We may transform here directly the Lagrangian rather than the Hamiltonian, as suggested in (2), since the kinetic energy term is
real and the complexity only results from the potential term. Introducing the two two-component fields of the form

�k :�
⎛
⎝ ϕk

1

χk
2

⎞
⎠, �k :�

⎛
⎝χk

1

ϕk
2

⎞
⎠, k � 1, 2, (11)

we can re-write the Lagrangians L2 and l2 more compactly. Defining the 2 × 2 matrices

H± :�
⎛
⎝−m2

1 ± μ2

±μ2 m2
2

⎞
⎠, I :�

⎛
⎝ 1 0

0 − 1

⎞
⎠, E :�

⎛
⎝ 1 0

0 0

⎞
⎠, (12)

the real Lagrangian l2 acquires the form

l2 � 1

2

{[
∂μ� + eIAμ�

]∗I[∂μ� + eIAμ�
]

+
[
∂μ� − eIAμ�

]∗I[∂μ� − eIAμ�
]

− 2Im
[(

∂μ� + eIAμ�
)∗(

∂μ� − eIAμ�
)]− �T H+� − �T H−�

}

− g

16

(
�T E� + �T E�

)2 − 1

4
Tr
(
FμνF

μν
)
. (13)

123



Eur. Phys. J. Plus         (2022) 137:716 Page 5 of 15   716 

We have simplified here the index notation by implicitly contracting, keeping in mind that we are summing over two separate index
sets k ∈ {1, 2} and j ∈ {1, 2}. For instance, we set

(I Aμ�)kα →Iαβ A
kj
μ �

j
β, (14)[

∂μ�k
j + e
(
IAμ�

)k
j

]∗
I j�

[
∂μ�k

� + e
(
IAμ�

)k
�

]
→[∂μ� + eIAμ�

]∗I[∂μ� + eIAμ�
]
, (15)

�k T H+�k →�T H+�. (16)

In this formulation, we may think of the real and complex Lagrangians, l2 and L2, as being simply related by a kind of Wick rotation
in the field-configuration space

�k → T�k, �k → T�k, with T :�
(

1 0
0 − i

)
. (17)

One may of course wonder about the negative sign in the kinetic term of l2 and whether these lead to ghost fields. Thus, we finish
this subsection with a short discussion that establishes that these signs disappear when the Lagrangian is properly diagonalized. As
this argument is the same in the global and local theory, we set the gauge fields to zero without loss of generality for this purpose
and consider the corresponding action

S � 1

2

∫
d4x
(
∂μ��I∂μ� − ��H±�

)
+ Sint, (18)

� −1

2

∫
d4x��I

(
∂μ∂μ + M2)� + Sint, (19)

where Sint contains all terms of higher order than �2. We also assumed that surface terms vanish at infinity when integrating by
parts and used I2 � I, M2 � IH±. Next, we diagonalize the squared mass matrix as M2 � T−1DT and consider next only the
integrant of the first term in (2)

��I
(
∂μ∂μ + M2)� � ��I

(
∂μ∂μ + T DT−1)� � ��(∂μ∂μ + D

)
�, (20)

where we introduced the new field � :� T�I� and used T−1 � T�I.
The latter relation is derived as follows: We start by defining the right and left eigenvectors of M2 as

IH±vi � λivi , and (IH±)†ui � λi ui , (21)

respectively. Noting that I† � I and H†
± � H± , the last relation implies that IH±Iui � λiIui . Therefore, we can express the right

eigenvectors in terms of the left eigenvectors as vi � Iui . The matrix T is made out of the column vectors of vi , i.e. T � (v1, . . .)
so that IT � (u1, . . .). Since the left and right eigenvector form a biorthonormal basis, vi · u j � δi j , it follows that T�IT � I and
hence T−1 � T�I.

2.1.1 The symmetry breaking vacuum

The vacuum solutions �k
0, �

k
0 by solving δV � 0, with V denoting the potential

V � ��H+� + ��H−� +
g

16

(
��E� + ��E�

)2
(22)

amounts to solving the two equations(
H− +

g

4
R2E
)
�k

0 � 0,
(
H+ +

g

4
R2E
)
�k

0 � 0, k � 1, 2, (23)

with R2 :�
∣∣∣(φ0

1

)1∣∣∣2 +
∣∣∣(φ0

1

)2∣∣∣2 � 1
2

∑2
k�1 �k

0
T
E�k

0 +�k
0
T
E�k

0 =const. Hence, in the real component field configuration space, the

vacuum manifold is a S3-sphere with radius R. Consequently, we may consider equations (23) as two eigenvalue equations. Thus,
besides the trivial SU(2)-invariant vacuum �k

0 � �k
0 � 0, k � 1, 2, we must have zero eigenvalues in both equations, which is

equivalent to requiring

R2 � 4

gm2
2

(μ4 + m2
1m

2
2). (24)

Since R2 is positive, this equality imposes restrictions on the parameters g, μ and the possible choices for m1 ∈ R, m2 ∈ iR or
m1 ∈ iR, m2 ∈ R. The corresponding vectors that satisfy equation (23), suitably normalized with regard to the standard inner
product, are

�2
0 � N�

(
m2

2
μ2

)
, �2

0 � N�

(−m2
2

μ2

)
. (25)
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Imposing now the constraint on R2 as stated after equation (23), a possible solution is �1
0 � �1

0 � �2
0 � 0 and �2

0 as defined in
(25) with normalization constant N� � ±√

2R/m2
2. Hence, we recover the symmetry breaking vacuum used in [39].

2.1.2 The Higgs mechanism

Let us now demonstrate how the gauge vector boson acquires a finite mass and how at the same time the emergence of a Gold-
stone boson is prevented by the Higgs mechanism [1–4] in the CPT -symmetric regime, at the exceptional points and even in the
spontaneously broken CPT -symmetric regime. The mechanism breaks down at the two types of zero exceptional points.

Expanding the potential V in (22) around the vacuum specified at the end of Sect. 2.1.1 leads to

V (�0 + �,�0 + �) � V (�0, �0) +
1

2
�i ∂2V (�0, �0)

∂�i∂� j
� j +

1

2
� i ∂2V (�0, �0)

∂� i∂� j
� j

+ �i ∂2V (�0, �0)

∂�i∂� j
� j + · · · (26)

� 1

2

2∑
i�1

−�i�(H+ +
g

4
R2E
)
�i − �1�(

H− +
g

4
R2E
)
�1

− �2�[
H− +

g

4
R2E + −g

2
(E�2

0 )2E
]
�2 + · · · (27)

As expected, multiplying the Hessians in (27) by I gives back the squared mass matrix we found in [39]. The kinetic term is almost
unchanged except for the term involving �2

T � 1

2

[
∂μ� + eIAμ�

]†I[∂μ� + eIAμ�
]

+ Re
{(

∂μ� + eIAμ�
)†I(eIAμ�0

)}

− Im
{(

∂μ� + eIAμ� + eIAμ�0
)†(

∂μ� − eIAμ�
)}

+
1

2
e2(Aμ�0

)†I(Aμ�0
)

(28)

The last term corresponds to the mass term of the gauge vector boson that we evaluate to

1

2
e2(Aμ�0

)∗I(Aμ�0
) �1

2
e2(Aμ�0

)∗k
α
Iαβ

(
Aμ�0
)k
β

(29)

� 1

2
e2(A†

μA
μ
)k j

(�0)
k
αIαβ(�0)

j
β

� 1

2
e2(A†

μA
μ
)22

(�0)
2
αIαβ(�0)

2
β

� 1

2
e2Aa

μA
bμ(τ a†τ b)22 2R2

m4
2

(
m4

2 − μ4)

� 1

2
m2

g A
a
μA

aμ, (30)

where we used the standard relation τ a†τ b � τ aτ b � δabI+iεabcτ c. Therefore, we read off the mass of each of the three components
of the gauge vector boson as

mg :�
√

2eR

m2
2

√
m4

2 − μ4. (31)

In [39], we identified the physical regions in the parameter space in which the squared mass matrix has non-negative eigenvalues and
in which the Goldstone bosons can be identified. Let us now compare those regions with the values for which the gauge vector boson
becomes massive. We immediately see from the expression in (31) that the gauge vector boson remains massless when μ4 � m4

2
or when R � 0, i.e. μ4 � −m2

1m
2
2. The two sets of values correspond precisely to the two types of zero exceptional points, type

I and II, respectively, at which the squared mass matrix develops zero eigenvalues λ � 0. These points are distinct from standard

exceptional points where two eigenvalues coalesce and become complex thereafter, here at λ � μ4

m2
2

− m2
2. See the appendix for a

more detailed explanation about the distinction between these types of exceptional points.
Thus, the two aspects of the Higgs mechanism, i.e. giving mass to the gauge vector boson and at the same time preventing the

existence of the Goldstone bosons, remain to go hand in hand. In the CPT -symmetric regime, the mechanism applies, but at the
zero exceptional points, the Higgs mechanism breaks down as the Goldstone bosons are not identifiable [39], and at the same time,
the gauge vector boson remains massless. In contrast, at the exceptional point, the Goldstone bosons are identifiable [39], although
in a different manner, and the gauge vector bosons become massive.
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Fig. 1 Regions, for which the
gauge vector boson is massive
(blue with mesh) versus physical
regions (orange) in which the
would be Goldstone boson can be
identified, bounded by exceptional
and zero exceptional points as
function of (μ4/m4

1,m2
2/m2

1) for
the theory expanded around the
SU(2)-symmetry breaking
vacuum. Left panel for
c1 � −c2 � 1 and right panel for
c1 � −c2 � −1. The coupling
constant g must be positive

Let us see this in detail by following [39] and replacing m2
i → cim2

i , with ci � ±1 to account for all possibilities in signs. We
found that physical regions only exist for the two cases c1 � − c2 � 1 and c1 � − c2 � −1. For the two cases, we may then write

m2
g

m2
1

� c2
4e2

g

m6
1

m6
2

(
m4

2

m4
1

− μ4

m4
1

)(
μ4

m4
1

− m2
2

m2
1

)
, (32)

noting that m2
g/m

2
1 only depends on the two parameters m2

2/m
2
1 and m4

2/m
4
1 similarly as the eigenspectrum of the squared mass

matrix [36, 39]. We require the right-hand side of (32) to be positive as shown in Fig. 1.
We observe in Fig. 1 that while the region in which the Goldstone boson can be identified is bounded by exceptional as well as zero

exceptional points, the exceptional points lie well inside the region for which the gauge vector boson is massive, i.e. they acquire a
mass in the CPT -symmetric regime as well as in the spontaneously broken CPT -symmetric regime. In the CPT -symmetric regime,
this agrees well with the findings that at these points the “would be Goldstone boson” is prevented from existing as a massless
particle. We use here “would be Goldstone bosons” rather than “Goldstone boson”, as they do not exist in the gauged theory, but
could be constructed by setting the gauge fields to zero. We may think of the sign change in front of the mass terms, ci → −ci , that
relates the left to the right panel as a phase transition [44].

Let us now demonstrate this behaviour in detail and expand for this purpose the Lagrangian around the symmetry broken vacuum
up to second order in the fields

l2 �
2∑

k�1

1

2
∂μ�k T I∂μ�k +

1

2
∂μ�k T I∂μ�k − 1

2
�k T
(
H+ +

g

4
R2E
)
�k

− 1

2
�1T
(
H− +

g

4
R2E
)
�1 − 1

2
�2T
(
H+ +

g

4
R2E +

g

2
(E�2

(0))
2E
)
�2

+ eRe
[
∂μ�†(Aμ�0)

]
+ eIm
[(
IAμ�0

)†
∂μ�
]

+
1

2
m2

g A
a
μA

aμ + · · · (33)

We recall now from [39] that the first two lines of the Lagrangian l2 can be diagonalized and the Goldstone bosons can be identified
in terms of the field content of the model. Furthermore, the Goldstone modes are eigenvectors in the null space of squared mass
matrices

M2± :� I
(
H± +

g

4
R2E
)
, (34)

computed above as �2
0 and I�2

0 , so that the Goldstone modes are proportional to these two vectors. The explicit forms of the
Goldstone fields were found in [38] (equation (3.40) therein), denoted as ψGb

5 , ψGb
3 and ψGb

1 , therein. We express them here as

G1 :� e

mg

(
�2

0

)T
�1, G3 :� e

mg

(
�2

0

)T
�2, G2 :� − e

mg

(
�2

0

)T I�1, (35)

respectively. As expected for the Higgs mechanism, the number of “would be Goldstone bosons” equals the amount of massive
vector gauge bosons. The fact that the Goldstone modes are inverse proportional to the mass of the gauge bosons explains that
they cannot be identified for massless gauge bosons. Keeping now only the Goldstone kinetic term from the first two lines of the
Lagrangian l2 and the one involving the gauge fields in Eq. (33), we obtain

l2 �
3∑

a�1

1

2
∂μG

a∂μGa + eRe
[
∂μ�†(Aμ�0)

]
+ eIm
[(
IAμ�0

)†
∂μ�
]

+
1

2
m2

g A
a
μA

aμ + · · · (36)

Using the explicit representations of the Pauli matrices, the real and imaginary parts are determined as

Re
[
∂μ�T Aμ�0

]
� Aa

μRe
[
∂μ�T τ a�0

]
� A1

μ∂μ�T τ 1�0 + A3
μ∂μ�T τ 3�0
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� A1
μ∂μ

(
�1)T�2

0 − A3
μ∂μ

(
�2)T�2

0

� A1
μ

mg

e
∂μG1 − mg

e
A3

μ∂μG3 (37)

Im
[(
IAμ�0

)†
∂μ�
]

� Aa
μIm
[
�T

0 τ aI∂μ�
]

� −i
(
A2

μ�T
0 τ 2I∂μ�

)

� A2
μ

(
�2

0

)T I∂μ�1 � −A2
μ

mg

e
∂μG2. (38)

Finally, the Lagrangian in (36) can be simplified to

l2 �
3∑

a�1

1

2
∂μG

a∂μGa − mg A
1
μ∂μG1 + mg A

2
μ∂μG2 − mg A

3
μ∂μG3 +

1

2
m2

g A
a
μA

aμ + · · ·

� 1

2
m2

g

(
A1

μ − 1

mg
∂μG

1
)2

+
1

2
m2

g

(
A2

μ +
1

mg
∂μG

2
)2

+
1

2
m2

g

(
A3

μ +
1

mg
∂μG

3
)2

+ · · ·

� 1

2

3∑
a�1

m2
g B

a
μB

aμ + · · · , (39)

where we defined the new vector gauge particle with component fields Ba
μ :� Aa

μ − 1
mg

∂μGa . We may also replace Aa
μ by Ba

μ in
the field strength Fμν so that Aμ can be eliminated entirely from the Lagrangian. We see that the Higgs mechanism applies as long
as mg � 0. However, at the zero exceptional points, not only the gauge boson mass vanishes, but the Higgs mechanism no longer
applies, in the sense that we cannot remove the degrees of freedom of Goldstone bosons.

We summarize the behaviour we found in the different types of regimes in the following Table.

CPT Sp. broken CPT EP Zero EP I Zero EP II

Gauge bosons Massive Massive Massive Massless Massless

Goldstone bosons ∃ ∃ ∃ � �

Thus, we encounter three different types of behaviour: in the CPT -symmetric regime, at the standard exceptional points as well as
in the spontaneously broken CPT -symmetric regime, the Higgs mechanism applies in the usual way. However, in the latter regime,
other particles in the theory become non-physical. At the zero exceptional points, the vector gauge bosons remain massless, and no
Goldstone bosons can be identified in the global theory.

2.1.3 From SU(2) to SU(N)

We will now follow the same line of reasoning as in the previous subsection and generalize our model from possessing a SU(2)-
symmetry to one with a SU(N)-symmetry. For this purpose, we simply replace the Pauli matrices in all our expressions by the
traceless and skew-Hermitian N × N -matrices corresponding to the SU(N)-generators T a with a � 1, . . . , (N 2 − 1) . The vacua
are still determined by the solutions of the eigenvalue problem (23) with zero eigenvalue condition

R2 � 1

2

N∑
i�1

�i
0
T
E�i

0 + � i
0
T
E� i

0 � constant � 4

gm2
2

(μ4 + m2
1m

2
2). (40)

The zero eigenvalue condition implies that the vacuum manifold is a S2N−1-sphere with radius R. This follows from the fact
that SU(N) acts on the 2N-dimensional space spanned by (ϕ0

1 )i , (χ0
1 )i , i � 1, . . . , N , with norm equal to R2. On this space

SU (N − 1) simply permutes the fields among themselves, hence acting as a stabilizer or isotropy subgroup. Thus, the vacuum
manifold corresponds to the coset SU (N )/SU (N − 1) ∼� S2N−1.

As we discussed in detail in [39], we may utilize the symmetry of the Lagrangian to transform the vacua into convenient forms
without changing the eigenvalue spectrum of the mass matrix. Thus, using the elements T ∈ SU (N )/SU (N − 1) ⊂ SU (N ) , we
may transform the vacuum into the form

�i
0 � 0, � i

0 �
√

2R√
Nm2

2

(
m2

2
μ2

)
, for i � 1, . . . , N , (41)

satisfying the constraint (40). Let us now use this SU(N)-symmetry breaking vacuum to calculate the mass of the gauge vector
boson. Taking the proper SU(N)-algebra rather than the physicist’s version, as in the last subsection for SU(2), we also change
e → ie. Dropping here the kinetic term reported in (28) and considering only the relevant term in the Lagrangian we obtain

lA :� 1

2
e2Aa

μA
bμ
(
T a†T b

)
i j

(�0)
i
αIαβ(�0)

j
β
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� 1

N
e2Aa

μA
bμR2

(
1 − μ4

m4
2

)∑N

i, j�1

(
T aT b
)
i j

. (42)

We evaluate the last factor using the identity T aT b � 1
2N δabIN + 1

2

∑N2−1
c�1 ( fabc + igabc)T c, where the gabc and fabc are completely

symmetric and anti-symmetric tensors, respectively. We note that
∑N

i, j�1(T c)i j � TrT c � 0 due to the skew-Hermitian nature of

T c and
∑N

i, j�1(IN )i j � TrIN � N . Thus, we can diagonalize lA, computing

lA � R2

2N
e2

(
1 − μ4

m4
2

)
Aa

μA
aμ � 1

2
m2

g A
a
μA

aμ, (43)

from which we read off the masses m(a)
g of the N 2 − 1 gauge vector bosons. We note that once again they vanish at the zero

exceptional points, but now for all SU(N)-models.

2.2 A SU(2)-symmetric model in adjoint representation

As we have demonstrated, the gauge vector boson becomes massive for the SU(N)-symmetric model in the CPT -symmetric regime
and at the exceptional point when the fields are taken to be in the representation space of the fundamental representation. On the
other hand, the Higgs mechanism breaks down at the zero exceptional points. Remarkably, it still applies when the CPT -symmetry
is broken, although in that regime other particles acquire complex masses so that the region is non-physical. Recall that the regions
in which the CPT -symmetry holds are identified in Fig. 1.

Let us now see whether we encounter a similar behaviour when the fields are taken in adjoint representation. We consider here a
slightly different non-Hermitian SU(2)-invariant Lagrangian

Lad
2 � 1

2
Tr(Dφ1)

2 +
1

2
Tr(Dφ2)

2 − m2
1

2
Tr(φ2

1) +
m2

2

2
Tr(φ2

2) − iμ2Tr(φ1φ2)

− g

4

[
Tr(φ2

1)
]2 − 1

4
Tr
(
F2), (44)

where as in Eq. (4), we take g, μ ∈ R, mi ∈ R or mi ∈ iR, to be constants. The two complex scalar fields are expressed as
φi � φa

i T
a , i � 1, 2 and a � 1, 2, 3, where the T a are the three SU(2)-generators in the adjoint representation that, up to a

factor of 2, satisfy the same algebra as the Pauli spin matrices, that is [T a, T b] � iεabcT c. Hence, the adjoint representation is
(T a)bc � −iεabc, i.e. to be explicit

T 1 �
⎛
⎝ 0 0 0

0 0 − i
0 i 0

⎞
⎠, T 2 �

⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠, T 3 �

⎛
⎝ 0 − i 0

i 0 0
0 0 0

⎞
⎠, (45)

such that Tr(T aT b) � 2δab and therefore Tr(φ2) � 2
∑3

a�1 φaφa . The SU(2)-symmetry in the adjoint representation for each
generator T a is therefore

φ j → eiαT
a
φ j e

−iαT a ≈ φ j − αεabcφ
b
j T

c, (46)

so that the infinitesimal changes to the fields φa
i result to

δφa
i � −αεabcφ

b
i . (47)

We will utilize this expression below.
In more a compact form, the Lagrangian in (44) can be expressed equivalently as

Lad
2 � Dμφa

i D
μφa

i − φa
i M

2
i jφ

a
j − g
(
φa
i Ei jφ

a
j

)2 − 1

4
Fa

μν

(
Fμν
)a

, (48)

where repeated indices are summed over the appropriate index sets i, j, μ, ν ∈ {1, 2} and a, b ∈ {1, 2, 3}. The matrix M2 is defined
as

M2 �
⎛
⎝ m2

1 iμ2

iμ2 − m2
2

⎞
⎠, (49)

and E as in (12). The covariant derivative in the adjoint representation acting on a complex field takes on the form

(Dμφi )
a :� ∂μφa

i + eεabc A
b
μφc

i (50)
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Pursuing here a pseudo-Hermitian approach we perform a similarity transformation on the Lagrangian in (48) with Dyson map

η �
3∏

a�1

e
π
2

∫
d3xa

2φa
2 , (51)

that maps the complex Lagrangian Lad
2 to a real Lagrangian

lad
2 � (Dμφi )

aIi j (Dμφ j )
a − φa

i Hi jφ
a
j − g
(
φa
i Ei jφ

a
j

)2
, (52)

where the matrix H is defined as

H :�
⎛
⎝m2

1 μ2

μ2 m2
2

⎞
⎠, (53)

and I as in (12).

2.2.1 The SU(2)-symmetry preserving and breaking vacua

To find the different types of vacua φ0, we need to solve again δV � 0. The corresponding functional variation of the Lagrangian
in (52) leads to the three sets of equations

(
H + 2gR2E

)(
φ0)a � 0, a � 1, 2, 3, (54)

with R2 :� (φ0
i

)a
Ei j

(
φ0
j

)a
. Next to the trivial SU(2)-symmetry preserving solution

(
φ0
)a � 0, a SU(2)-symmetry breaking

solution is obtained by requiring
(
φ0
)a

to become a vector in the null space of the matrix H + 2gR2E , which is the case when

(
φ0)a � Na

m2
2

⎛
⎝ m2

2

−μ2

⎞
⎠, and R2 � μ4 − m2

1m
2
2

2gm2
2

, (55)

where the Na are normalization constants. Given the solution in (55), the relation for R2 imposes the additional constraint R2 �
N 2

1 + N 2
2 + N 2

3 on these constants. Expressing the Lie algebra valued vacuum field φ0
i � (φ0

i

)a
T a in the matrix form of the adjoint

representation (45), we obtain

φ0
1 � i

⎛
⎝ 0 − N3 N2

N3 0 − N1

−N2 N1 0

⎞
⎠, and φ0

2 � − μ2

m2
2

φ0
1 . (56)

We can now apply the SU(2)-symmetry to the vacuum state in the form

φvac �
[(

φ0
1

)1
,
(
φ0

2

)1
,
(
φ0

1

)2
,
(
φ0

2

)2
,
(
φ0

1

)3
,
(
φ0

2

)3]
, (57)

so that the infinitesimal changes δφi (φvac) with (47) and (55) yield the following states for each generator

v0
1 � α1

m2
2

(
0, 0, N3m

2
2,−N3μ

2,−N2m
2
2, N2μ

2), (58)

v0
2 � α2

m2
2

(−N3m
2
2, N3μ

2, 0, 0, N1m
2
2,−N1μ

2), (59)

v0
3 � α3

m2
2

(
N2m

2
2,−N2μ

2,−N1m
2
2, N1μ

2, 0, 0
)
, (60)

as solutions for φvac. Evidently, these states are linearly dependent as

∑3

i�1

Niv
0
i

αi
� 0. (61)

According to Goldstone’s theorem, the states v0
i should be eigenvectors of the squared mass matrix with eigenvalue 0. As only

two of them are linearly independent we expect to find two massless Goldstone bosons, which in our gauged model correspond to
“would be Goldstone bosons”. Hence, the SU(2)-symmetry has been broken down to a U(1)-symmetry, so that the group theoretical
argument predicts two Goldstone bosons equal to the dimension of the coset SU(2)/U(1).
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2.2.2 The squared mass matrix

Expanding the Lagrangian in Eq. (48) about the vacuum solution gives

lad
2 � (Dμφi )

aIi j (Dμφ j )
a − 1

2
φa
i H

(a)
i j φa

j + 2(Dμφ0
i )aIi j (Dμφ j )

a + (Dμφ0
i )aIi j (Dμφ0

j )
a + O(φ3), (62)

where the last two terms originate from expanding the covariant kinetic term. The Hessian matrix is then computed by differentiating
(54) once more

Ĥab
i j :� ∂2V

∂φa
i ∂φb

j

� 2Hi j + 4gR2Ei jδ
ab + 8g

(
Eφa)

i

(
Eφb
)
j
, (63)

from which we obtain the non-Hermitian squared mass matrix as

M2 � 1

2
I Ĥ
∣∣∣∣
φvac

�

⎛
⎜⎜⎜⎜⎜⎜⎝

m2
1 + 2gR2 + 4gN 2

1 μ2 4gN1N2 0 4gN1N3 0
−μ2 − m2

2 0 0 0 0
4gN1N2 0 m2

1 + 2gR2 + 4gN 2
2 μ2 4gN2N3 0

0 0 − μ2 m2
2 0 0

4gN1N3 0 4gN2N3 0 m2
1 + 2gR2 + 4gN 2

3 μ2

0 0 0 0 − μ2 − m2
2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (64)

The entries in the rows and columns of M2 are labelled as (φ1
1 , φ1

2 , φ2
1 , φ2

2 , φ3
1 , φ3

2) �: �. The six eigenvalues λ of M2 are then
computed to

λ1,2 � 0; λ3,4 � μ4 − m4
2

m2
2

, λ± � κ ±
√

2(μ4 − m2
1m

2
2) + κ2, (65)

with κ :� 3μ4/2m2
2 − m2

2/2 − m2
1. We can now verify that the three vectors v0

i in (58)–(60), corresponding to the infinitesimal
changes of the vacuum (55) under the action of the SU(2)-symmetry, are indeed vectors in the null space of M2. Due to their linear
dependence, we may choose two of them to be associated with the two massless “would be Goldstone bosons”.

We note that there are zero exceptional points at μ4 � m4
2 when λ3,4 � 0, and at μ4 � m2

1m
2
2 when either λ− � 0 or λ+ � 0.

The standard exceptional point for which the two eigenvalues λ− and λ+ coalesce occurs when m2
1 � 3μ4/2m2

2 + m2
2/2 ± μ2. The

Jordan normal form for the mass squared matrix becomes

diagDe � (0, λbe , 0, λbe , 0, λbe ,�), λbe � μ4

m2
2

− m2
2, � �

(±μ2 − m2
2 ± (α − β)μ2

0 ± μ2 − m2
2

)
, (66)

for some arbitrary constants α and β.
We notice that the eigenvalues in (65) do not depend on the choice of the three normalization constants Na , since all of these

vacua are equivalent as they are related by SU(2)-symmetry transformations. The physical regions of the model are determined by
the requirement that the eigenvalues are real and positive. Taking now account of the possibility that mi ∈ R or mi ∈ iR, by allowing
for different signs in front of the m2

i terms in setting m2
i → cim2

i , we find that the model does not possess any physical region when
c1 � c2 � ±1 and physical regions when c1 � −c2 � ±1 as argued also in the previous section.

2.2.3 The would be Goldstone bosons

Let us now identify the two massless Goldstone bosons ψGb
1,2 in the different PT -regimes by the same procedure as previously

explained in [38, 39], with the difference that they will be made to vanish due to the presence of the gauge bosons. In terms of the
original scalar fields in the model we identify the Goldstone bosons by evaluating

ψGb
1,2 :�

√
(�T ÎU )1,2(U−1�)1,2, (67)

where the matrix U diagonalizes the squared mass matrix by U−1M2U � D with diagD � (λ1, λ2, λ3, λ4, λ−, λ+) and diag Î �
{I, I, I}. In the PT -symmetric regime the similarity transformation U is well-defined by

U :� (v1, v2, v3, v4, v−, v+), (68)

where the vi are the eigenvectors of M2. Up to normalizations constants for each eigenvector, we obtain in our example the concrete
expressions

vi � [(m2
2 + λi
)
τi1,−μ2τi1,

(
m2

2 + λi
)
τi2,−μ2τi2,

(
m2

2 + λi
)
τi3,−μ2τi3

]
, (69)
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with τ12 � τ23 � τ32 � τ43 � 0, τ33 � τ42 � τ±1 � −τ13 � −τ22 � N1, τ21 � τ41 � τ±2 � N2 and τ11 � τ31 � τ±3 � N3.
Defining a PT -inner product as 〈a|b〉PT :� a Î b , these vectors can be orthonormalized

〈
vi |v j
〉
PT � δi j . Recall from the argument

after (21) that indeed vi � Iui , so that
〈
vi |v j
〉
PT � viI2u j � δi j . Here, we should stress that M2 is only the analogue to a

Hamiltonian, and we are not attempting to construct an associated Hilbert space.
For convenience, we take now N1 � N2 � 0, N3 � R and compute

ψGb
1 :� m2

2φ
3
1 + μ2φ3

2√
m4

2 − μ4
, and ψGb

2 :� m2
2φ

2
1 + μ2φ2

2√
m4

2 − μ4
. (70)

We note that detU � λ3λ4(λ− − λ+)μ6R4, indicating the breakdown of these expressions at the exceptional points when λ− � λ+,
the zero exceptional point when λ3 � λ4 � 0 and at the trivial vacuum when R � 0, as previously observed in [38, 39]. However,
at the exceptional point we may still calculate the expressions for the Goldstone boson when taking into account that in this case,
the two eigenvectors v− and v+ become identical. In order to obtain two linearly independent eigenvectors when the squared mass
matrix is converted into its Jordan normal form, we multiply two entries of the vector v+ by some arbitrary constants α � β as
(v+)1 → α(v+)1 and (v+)2 → β(v+)2. With this change the matrix U becomes invertible as detU � λ3λ4(β − α)(m2

2 + κ)N 2
1 μ6R2.

We may now evaluate the expression in (67) obtaining the same formulae for the Goldstone bosons as in (70). At the zero exceptional
point, it is not possible to identify the Goldstone in terms of the original fields in the model.

2.2.4 The mass of the vector gauge boson

Finally, we calculate the mass of the gauge vector bosons by expanding the minimal coupling term in equation (52) around the
symmetry breaking vacuum (57)[

Dμ(φ + φ0)
]T I[Dμ(φ + φ0)

] � (Dμφ0)T I(Dμφ0) + · · ·
� e2
[
εabc A

b
μ

(
φ0
i

)c]Ii j
(
εade A

dμ
(
φ0
j

)e)
+ · · ·

� e2
(
Aa

μA
aμ
(
φ0
i

)bIi j
(
φ0
j

)b − Aa
μA

bμ(φ0
i

)bIi j
(
φ0
j

)a)
+ · · · , (71)

where we used the standard identity εabcεade � δbdδce − δbeδcd . A convenient choice for the normalization constants Ni that
is compatible with (55) and diagonalizes (71) is to set two constants to zero and the remaining one to R. For instance, taking
N1 � N2 � 0, N3 � R , the only nonvanishing terms in (71) are

� e2(A1
μA

1μ + A2
μA

2μ
)(

φ0
i

)3Ii j
(
φ0
j

)3
, (72)

� e2R2

(
1 − μ4

m4
2

)(
A1

μA
1μ + A2

μA
2μ
)
. (73)

Thus for μ4 � m4
2 and R � 0 , we obtain two massive vector gauge bosons m(1)

g and m(2)
g , that is one for each “would be Goldstone

boson”. When μ4 � m4
2, that is then model is at the zero exceptional point of type I, the gauge mass vector bosons remain massless.

This feature is compatible with our previous observations in [38, 39] and above that at these points, the Goldstone bosons cannot be
identified.

We notice here that the two massive vector gauge bosons are proportional to the CPT -inner product of the symmetry-broken
vacuum solution

m2
gauge ∝ 〈0|0〉CPT ∝ φvac Îφvac ∝ R2

(
1 − μ4

m4
2

)
. (74)

Hence, the vanishing of the mass for the vector gauge bosons at the two types of zero exceptional points can be associated to the
vanishing of the CPT -inner product at these points. This is reminiscent of the vanishing of the CPT -inner product at the standard
exceptional points, which is responsible for interesting phenomena such as the stopping of light at these locations in the parameter
space [45, 46]. We note, however, a key difference between the two scenarios: While the CPT -inner product in (74) is devised on
the eigenvector space of squared mass matrix, the latter is a CPT -inner product on the Hilbert space.

3 Conclusions

Employing a pseudo-Hermitian approach, we found that the Higgs mechanism applies in the usual way in the CPT -symmetric
regime by giving a mass to the vector gauge bosons and preventing Goldstone bosons to exist, which is also found in [37, 41]
using different approaches. As in [41], we also observed that in the spontaneously broken CPT -symmetric regime, the vector gauge
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bosons become massive and the Higgs mechanism is intact. However, as in this regime, other particles acquire complex masses,
it has to be discarded as non-physical for that reason. Even though technically one needs to treat the standard exceptional point
differently from the other regimes, the main principle of the Higgs mechanism still holds up. In contrast to the finding in [41], we
observed that the Higgs mechanism breaks down at the zero exceptional points, which was also observed in [37]. We find the same
characteristic behaviour, i.e. the matching of the amounts of massive vector gauge bosons and “would be Goldstone bosons”, for
the complex scalar fields taken in the fundamental as well as in the adjoint representation. The vanishing of the mass for the vector
gauge bosons coincides with the vanishing of the CPT -inner product on the eigenvector space of squared mass matrix.

Obviously, there are many interesting extensions to these investigations, such as for instance the treatment of models with a more
involved field content or different types of continuous symmetries.
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Appendix: Type I (standard) versus type II (zero) exceptional points

In this appendix, we present a discussion that illustrates the difference between the two types of exceptional points. The main
distinction in their behaviour is that a one-dimensional parameter space the PT -symmetry is spontaneously broken on one side of
the type I (standard) exceptional point, whereas for type II (zero) exceptional point the PT -symmetry is preserved on both sides.
The zero exceptional point occurs when two eigenvalues coalesce at zero, hence the name.

We consider here a (3 × 3)-matrix of a very generic form that occurs for instance as a building block of the squared mass matrix
in the model discussed in [39], see equation (3.48), therein,

H �
⎛
⎝ A W 0

−W B − V
0 V − C

⎞
⎠ (75)

Here, we carry out the discussion for a Hamiltonian H, having in mind the analogy to the squared mass matrix. The determinant
is easily computed to det H � Aκ − CW 2, κ :� V 2 − BC . In order to obtain a zero eigenvalue, λ0 � 0, we enforce now the
determinant to vanish by setting A � W 2C/κ . The other two eigenvalues then become

λ± � κ(B − C) + CW 2 ± τ

2κ
(76)

with τ �
√

κ2
(
(B + C)2 − 4V 2

)
+ 2κW 2

(
C(B + C) − 2V 2

)
+ C2W 4.

The exceptional points are identified by simultaneously solving the two equations:

det(H − λI) � 0, and
d

dλ
det(H − λI) � 0, (77)

for W and λ, obtaining the two sets of eigenvalues

λe± � κ̂2 − √
κV

C
, λ0 � 0 and λ0− � λ0 � 0, λ0

+ � C3 + BV 2 − 2CV 2

κ̂2 (78)

for the critical parameters

We � κ̃

C
, and W 0 � i

κ

κ̂
, (79)

respectively. We abbreviated κ̃ :� ±
√

κ
(
κ + V 2 − C2

)± 2κ3/2V and κ̂ :� √
V 2 − C2. The first set of eigenvalues in (78)

correspond to the standard exceptional point and the second set to the zero exceptional point.
Next, we calculate the bi-orthonormal basis from the normalized left and right eigenvectors ui , vi , i � 0,±, respectively, for H

v0 � 1√
N0

(−κ,CW, VW ), v± � 1√
N±

(W (κ̂2 − Cλ±), κ(C + λ±), V κ), ui � Uvi , (80)

with U � diag(1,−1, 1) and normalization constants N0 � κ2 + W 2κ̂2, N± � V 2κ2 + W 2[V 2 − C(C + λ±)]2 − (C + λ±)2κ2. By
construction, these vectors satisfy the orthonormality relation ui · v j � δi j .
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We observe now that at the standard exceptional point the two eigenvectors for the non-normalized (N± become zero at the
exceptional points) eigenvalues λe± coalesce, which distinguishes exceptional points from standard degeneracy. The left and right
eigenvectors become in this case

v
e,r
± � (κ̃, V

√
κ − κ,C

√
κ
)
, v

e,r
0 � (−Cκ,C κ̃, V κ̃), (81)

v
e,l
± � (κ̃, κ − V

√
κ,C

√
κ
)
, v

e,l
0 � (−Cκ,−C κ̃, V κ̃), (82)

with

v
e,l
± · v

e,r
± � 0, and v

e,l
0 · v

e,r
0 � C2(κ2 − κ̃2) + V 2κ̃2. (83)

Similarly, at the zero exceptional point, the eigenvectors for the eigenvalues λ0 and λ0− coalesce, which qualifies this point also to
be called “exceptional” in the standard terminology. In this case, the left and right eigenvectors become

v
0,r
+ � (V κ, iV κ̂(C − B), i κ̂3), v0,r � v

0,r
− � (i κ̂,C, V

)
, (84)

v
0,l
+ � (V κ, iV κ̂(B − C), i κ̂3), v0,l � v

0,r
− � (i κ̂,−C, V

)
, (85)

with

v
e,l
+ · v

e,r
+ � (C3 + BV 2 − 2CV 2)2, and v0,l · v0,r � 0. (86)

In order to understand the key difference between these two types of exceptional points, we consider at first the eigenvalues (76)
near the critical values in (79). Concerning the standard exceptional points, we note that the two eigenvalues become identical when
τ → 0. Thus, writing τ/C2 � (W 2 − (We)2)(W 2 − W̃ ), with W̃ being the second root of the polynomial in W 2 under the square
root, it is now clear that if we consider the eigenvalues as functions of W 2 the argument of the square root has different signs for
W 2 � (We)2 + ε and W 2 � (We)2 − ε. Hence, the eigenvalues are real on one side of the exceptional point in the W 2-parameter
space and complex on the other. In contrast, none of the eigenvalues becomes complex in the neighbourhood of the critical value
W 0.

For completion, we also report the Dyson map and hence the metric operator for which the same behaviour may be observed.
Using the operator that diagonalizes the non-Hermitian Hamiltonian H

η � (v0, v+, v−), ρ � ηη†, (87)

with determinant

det η � V κ√
N0N+N−

(λ− − λ+)(κ2 + W 2κ̂2), (88)

we verify the pseudo- and quasi-Hermiticity relations

η−1Hη � h � h†, ρH � H†ρ. (89)

We observe that the map breaks down at both exceptional points, i.e. det η � 0 for the critical values We and W 0, and on one side
of the standard exceptional point. In all other regions of the parameter space, it holds. Thus, we find the same behaviour as already
observed for the analysis of the eigenvalues.
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