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Abstract Antiferromagnetic spin-1 XYZ model is examined by using a mean-field approach with the introduction of spin operators
on the simple cubic lattice. The model includes the crystal field interaction (Dz) along the z-axis, the Dzyaloshinskii–Moriya
interaction (�m) and an external magnetic field with the components of Hx = Hy = Hz = H . The bilinear exchange interaction
parameter (Jz) is taken as a scaling parameter chosen to be negative to simulate the antiferromagnetic interactions between the
nearest-neighbor spins. Thermal variations of the total magnetization and its components are investigated in detail to obtain the
phase diagrams on the (H/|Jz |, T/|Jz |), (Dz/|Jz |, T/|Jz |) and (�m/|Jz |, T/|Jz |) planes. The model exhibits antiferromagnetic,
paramagnetic and random phase regions. Very interesting various phase lines and critical points are observed including the tricritical
points, bicritical points, critical end points and two more. The reentrant behavior is also observed for appropriate values of the system
parameters.

1 Introduction

Antiferromagnetic materials demonstrate a special demeanor in an applied magnetic field depending on the temperature. The
material shows no response to the external magnetic field at very low temperatures, since the antiparallel ordering of atoms is strictly
maintained. Some atoms break free of the antiparallel arrangement and align with the external magnetic field at higher temperatures.
This alignment remains until a critical temperature called as the Néel temperature [1]. Above this temperature, thermal agitation
progressively prevents alignment of the atoms with the magnetic field, so that the weak magnetism produced in the material by the
alignment of its atoms continuously decreases as temperature is increased.

In addition, when the spins are chosen to lie along a given axis, which is usually taken as the z-axis, the problem is relatively easier
in comparison with the two- or three-dimensional cases. The latter leads to the quantum spin models which is much more difficult
and may be approached by using the Schrödinger equations or Heisenberg models. The difficulty arises from the nonlinearity of the
considered equations [2–7] in addition to the non-commutativity of the spin operators.

Some examples for the two-dimensional models usually include the bilinear interaction parameter in the z-direction and the
transverse magnetic field in the x-direction which were considered in the effective-field theory (EFT) [8–13]. Besides, some other
parameters were also included in this model, such as the addition of the longitudinal crystal field in the EFT [14], the longitudinal
magnetic field by combining the pair approximation with the discretized path-integral representation [15], random longitudinal
crystal-field interactions in terms of an expansion technique for cluster identities of localized spin systems [16], the longitudinal
crystal and external magnetic fields [17] and the effect of random transverse crystal field [18] in terms of a mean-field approximation
(MFA), the Blume–Capel (BC) model with longitudinal random crystal and transverse magnetic fields in the MFA [19,20] and with
both transverse field and transverse crystal field in a stochastic series expansion quantum Monte Carlo method [21]. The Blume–
Emery–Griffiths (BEG) model was also used by including the transverse fields effects [22] in the MFA, the random transverse field
with the EFT [23] and a new effective correlation MFA in a transverse crystal field [24]. The Oguchi approximation (OA) was
also considered in a few works. The spin-1/2 anisotropic Heisenberg model was studied by taking into account the Dzyaloshinskii–
Moriya (DM) interaction parameter [25] and by the consideration of the second-nearest-neighbor exchange interactions [26]. Both
exchange interaction and single-ion anisotropy effects were examined in the mixed spin-1 and spin-1/2 case [27], its compensation
temperature behavior [28] and the investigation of magnetic susceptibility [29], in the mixed spin-3/2 and spin-1/2 model [30] and
with random crystal field [31] and, in the mixed spin-2 and spin-1/2 for the square [32] and simple cubic lattices [33].

The DM interaction is an antisymmetric exchange interaction with a contribution to total magnetic exchange interaction between
two neighboring magnetic spins as a source of weak ferromagnetic behavior in an antiferromagnet. The spin-1/2 model with the
inclusion of the DM interaction (DMI) was established in a precise mapping correspondence to the simple spin-1/2 Ising model on
Kagome lattice [34], in the EFT with the study of the critical and reentrant behaviors for the antiferromagnet model in a longitudinal
magnetic field [35], the MFA in the study of the potassium jarosite compound KFe3(OH)6(SO4)2 for the antiferromagnetic XY
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model [36], in the matrix-product-state method to examine the quantum phase transitions and the ground-state phase diagram for
the Heisenberg–Ising alternating chain [37], the magnetization of triangular-lattice antiferromagnets Ba3CoSb2O9 and CsCuCl3
with a 120◦ spin structure in the ab plane [38], in a combined analytical and density matrix renormalized group study of the
antiferromagnetic XXZ chain in a transverse magnetic field [39], the pair XYZ Heisenberg interaction and quartic Ising interactions
was exactly solved by establishing a precise mapping relationship with the corresponding zero-field eight-vertex model [40] and
with antiferromagnetic exchange interactions in the presence of a longitudinal external magnetic field by employing the usual MFA
[41].

In order to see the effects of crystal field on this system, the spin-1 models were also taken under consideration. A few examples
may be given as: the two-spin cluster MF method on the simple cubic lattice [42], the Schwinger boson MF theory for one-dimensional
antiferromagnet [43], the infinite time-evolving block decimation method on ground-state phase diagrams of alternating chains [44],
the local moments on the pyrochlore lattice with a generic interacting spin model on a pyrochlore lattice [45], the chain in the
presence of an external magnetic field by using a combination of numerical and analytical techniques [46] and the two-dimensional
Heisenberg model with Ising anisotropy and dipolar interaction under zero and finite magnetic fields using a Monte Carlo method
[47]. The quantum-memory-assisted entropic uncertainty relations in two-qutrit spin-1 Heisenberg XYZ and XXX chains under
homogeneous magnetic fields were studied [48]. The spin-1 SU(3)-models in the seven-parameter manifold of translation- and
reflection-invariant Hamiltonians with nearest-neighbor couplings were considered [49]. The quantum coherence was studied in a
spin chain with both symmetric exchange and antisymmetric DM couplings [50]. The XYZ Heisenberg model was considered from
the standpoint of the quantum inverse problem method [51]. The negativity as a measure of thermal entanglement was studied for
a two-qutrit spin-1 anisotropic Heisenberg XYZ chain with the DM interaction in a homogeneous magnetic field [52]. As we can
see from these works, the thermal variations and the DMI effects on the magnetization and magnetic phase diagrams have not been
considered in detail.

Recently, the spin-1 XYZ model with the DMI effects was examined in the MFA by introducing the spin operators for the
ferromagnetic case, i.e., Jz > 0.0 [53] and very interesting behaviors for the magnetization and phase diagrams were observed.
In this work, the antiferromagnetic case with Jz < 0.0 is considered for the Hamiltonian consisting of the DMI parameter �m ,
the crystal field Dz along the z-axis and the external magnetic field in all three dimensions with Hx = Hy = Hz = H for the
coordination number q = 6.0 corresponding to the simple cubic lattice. The thermal variations of the total magnetization and its
components are investigated in detail to obtain the phase diagrams on the (H/|Jz |, T/|Jz |), (Dz/|Jz |, T/|Jz |) and (�m/|Jz |, T/Jz)
planes for given values �m , Dz and H .

The remainder of this work is structured as follows: Sect. 2 involves our approach to the formulation in the MFA, the thermal
variations of net magnetization are illustrated in Sect. 3, Sect. 4 contains the phase diagrams, and the last section includes a brief
summary and conclusions.

2 The formulation

The spin-1 XYZ model Heisenberg Hamiltonian in terms of the bilinear exchange interaction parameter (Jz) between the nearest-
neighbor (NN) spins, the crystal field (Dz) along the z-axis, the DMI (�m) and external magnetic field components (Hx , Hy, Hz)
is given as:

H = −Jz
∑

〈i, j〉
Szi S

z
j −

∑

i

Dz
(
Szi

)2 − �m

∑

〈i, j〉

(
Sxi S

y
j − Syi S

x
j

)

−Hx

∑

i

Sxi − Hy

∑

i

Syi − Hz

∑

i

Szi , (1)

where 〈i, j〉 points out the summation over the NN spins, Jz < 0 for the antiferromagnetic (AFM) interaction and Sxi , Syi and Szi
are the components of spin-1 operator at site i which are presented in the matrix forms as:

Sxi = 1√
2

⎛

⎝
0 1 0
1 0 1
0 1 0

⎞

⎠ , Syi = 1√
2

⎛

⎝
0 −i 0
i 0 −i
0 i 0

⎞

⎠ , Szi =
⎛

⎝
1 0 0
0 0 0
0 0 −1

⎞

⎠ . (2)

In order to surmount the difficulty of studying the quantum mechanical model, we approach to the problem by using a mean-field
approximation. Even if this approach does not lead to the exact solutions, one can get at least some qualitative results. Therefore,
the Hamiltonian H in Eq. (1) can be written in the MF form as:

− βHMFA = −β
∑

i

H(i)
MFA (3)
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in which

− βH(i)
MFA = βq JzMzS

z
i + βDz

(
Szi

)2 + βq�m
(
MyS

x
i − Mx S

y
i

)

+β
(
Hx S

x
i + HyS

y
i + HzS

z
i

)
(4)

where Mμ = 〈Sμ
j 〉 are the magnetization components with μ = x, y, z, β = 1/(kT ), k is being the Boltzmann constant and set to

1.0 for convenience and q is the number of the NNs.
The matrix representation of −βH(i)

MFA is achieved by using the spin operators, i.e., Eq. (2), and found as:

− βH(i)
MFA =

⎛

⎝
β(Dz + Hz + q JzMz) H12 0

H21 0 H23

0 H32 β(Dz − Hz − q JzMz)

⎞

⎠ (5)

in which H12 = H23 = β√
2
[(Hx − i Hy) + q�m(iMx + My)] and H32 = H21 = H∗

12 = H∗
23, i.e., the last two are the complex

conjugates of first two. The eigenvalues of this matrix are real and are attained from the below third degree equation

λ3 + a2λ
2 + a1λ + a0 = 0 (6)

where the coefficients are found as:

a0 = β3Dz

[
H2
x + H2

y + 2q�m(HxMy − HyMx ) + q2�2
m

(
M2

x + M2
y

)]
,

a1 = β2
[
D2
z − H2

x − H2
y − H2

z + 2q�m(HyMx − HxMy) − 2qHz JzMz

−q2�2
m

(
M2

x − M2
y

)
− q2 J 2

z M
2
z

]
,

a2 = −2βDz . (7)

The eigenvalues are reached by using the mathematical identity given as:

λn+1 = 2y cos

[
1

3

{
arccos

(
− G

2y3

)
+ 2nπ

}]
− a2

3
, n = 0, 1, 2. (8)

with y = (−W )1/2, W = (3a1 − a2
2)/9 and G = (27a0 − 9a1a2 + 2a3

2)/27.
The partition function can be calculated by using these three eigenvalues obtained from the MFA Hamiltonian as:

Zi = Tr(i) exp
[
−βH(i)

MFA

]

=
3∑

n=1

eλn = eλ1 + eλ2 + eλ3 . (9)

The free energy of the model is found from the well-known definition by the usage of the partition function as:

f = − 1

β
ln Zi (10)

which will be utilized to find the formulations of the order-parameters. The dipolar moments or magnetization components, Mμ =
〈Sμ

j 〉 with μ = x, y, z are found from

Mμ = 〈Sμ
i 〉 = − ∂ f

∂Hμ

= 1

β

∂ ln Zi

∂Hμ

=
Tr(i)

[
Szi exp

(
−βH(i)

MFA

)]

Zi

= 1

β

⎡

⎣
∂λ1
∂Hμ

eλ1 + ∂λ2
∂Hμ

eλ2 + ∂λ3
∂Hμ

eλ3

eλ1 + eλ2 + eλ3

⎤

⎦

= 1

β ′

⎡

⎣
∂λ1
∂hμ

eλ1 + ∂λ2
∂hμ

eλ2 + ∂λ3
∂hμ

eλ3

eλ1 + eλ2 + eλ3

⎤

⎦ . (11)

where β ′ = β Jz and hμ = Hμ/Jz which are the reduced temperature and external magnetic field components.
It should be noted that the lattice must be divided into two sublattices A and B to count the AFM interactions, i.e., Jz < 0.0.

Thus, the magnetization components for the sublattices must be written as:

MA
μ = MA

μ

(
MB

x , MB
y , MB

z

)
,

MB
μ = MB

μ

(
MA

x , MA
y , MA

z

)
. (12)
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Since the magnetization vector is given as �M = Mx î + My ĵ + Mzk̂, the sublattice magnetizations can be obtained from

MA =
√ ∑

δ=x,y,z

(
MA

μ

)2 =
√

(
MA

x

)2 +
(
MA

y

)2 + (
MA

z

)2 (13)

and

MB =
√ ∑

δ=x,y,z

(
MB

μ

)2 =
√

(
MB

x

)2 +
(
MB

y

)2 + (
MB

z

)2
. (14)

Finally, the total magnetization of the system, i.e., the net magnetization, is given as:

MTot = MA − MB . (15)

After having calculated the magnetization components and net magnetization for the sublattices A and B, we are now ready to study
their thermal variations for given values of Dz , �m , the external magnetic field components chosen as H = Hx = Hy = Hz and
the coordination number q = 6 corresponding to the simple cubic lattice. An iterative procedure is followed for the calculation of
our order-parameters with given values of the system parameters under temperature variations. The obtained results are presented
in the next section.

3 Thermal variations of net magnetization

The usual approach to obtain the phase diagrams involves the study of thermal changes of magnetization. It is well known that
when magnetization goes to zero continuously, it is called as the second-order phase transition (SOPT), and when it presents a
discontinuity, it is the first-order phase transition (FOPT), the lines of which enclose a region of the ordered phase, i.e., the AFM
phase since Jz < 0.0. In addition to these phase regions, this work also reveals a region of random or oscillatory behavior for
magnetization which is well confined by the borders and it is to be called as the random phase regions. The temperatures at which
these phase transitions take place are denoted as Tc, Tt and Tr for the SOPT, FOPT and random cases, respectively. A model can
display any combinations of these phase transitions or the same ones more than once. When the latter occurs, the reentrant behavior
appears in the phase diagrams.

Before presenting the thermal variations of MTot, it should be noted we have combined together two solutions of ±MTot whenever
it is possible which allows us to distinguish the symmetric and anti-symmetric solutions. In Fig. 1, the topological thermal variation
plots of the total magnetization, MTot, are presented for given values of (�m, H, Dz) when q = 6 and Jz = −1.0. Figure 1a and b
shows the existence of one Tc, while Fig. 1c and d presents two Tc’s. Figure 1e shows that the magnetization lines enclosing the AFM
phase at lower temperatures, before termination they start oscillating randomly at the Tr and this randomness ends at the second Tr .
Afterward, the system enters into the PM phase. Figure 1f first shows the AFM phase at lower temperatures which terminates at the
Tc. Then the system enters into the PM phase. With the increasing temperature, the random phase appears at Tr which also terminate
at the second Tr with the entrance of the PM phase again. It is shown in Fig. 1g that the random phase starts from zero and finishes
at the Tr , then MTot separates the AFM phase which expires at the Tc. Figure 1h and i shows the existence of Tt ’s. The first one gives
a Tt and then a Tc and the last one gives only a Tt . In Fig. 1j and k, the random phase starts at zero temperature and terminates at
the Tr ’s. MTot = 0.0 appears at lower temperatures and then, the random phase starts from the first Tr with increasing temperature
and disappears at the second Tr which leads to the reentrant behavior as seen in Fig. 1l. MTot shows itself in an oscillatory fashion
in Fig. 1m which terminates at the Tr . When the random solutions are zoomed closer, this oscillatory behavior is observed in some
cases; therefore, they are not distinguished from each other in this work. Figure 1n first shows a Tt and then two Tr ’s. The final plot,
Fig. 1o shows a Tr then a Tt and then a Tc, i.e., all types of phase transitions coexist together.

In the next section, we combine all these solutions to construct the phase diagrams on the possible planes of our system parameters.
The combinations of these points make up the possible phase lines and their combinations lead to the some critical points.

4 The phase diagrams

We are now ready to construct the phase diagrams on the (H/|Jz |, T/|Jz |), (Dz/|Jz |, T/|Jz |) and (�m/|Jz |, T/|Jz |) planes for
given values of �m , H and Dz , under the conditions Hx = Hy = Hz = H and q = 6 with Jz taken as a scaling factor. It is
found that the model exhibits SOPT, FOPT and random phase lines which are denoted by the solid, dashed and dotted-dashed lines
and called as Tc-, Tt - and Tr -lines, respectively. These lines can combine at some critical points in doubles or triples: It is well
known that the tricritical point is the point at which the Tc- and Tt -lines merge together is called here as TCP1 in shorthand notation.
Similarly, the point at which the Tc- and Tr -lines combined together is called as TCP2, while the meeting point of Tt - and Tr -lines is
called as TCP3. They are denoted with the solid, empty and dashed circles in the phase diagrams, respectively. The bicritical point
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Fig. 1 Thermal variations of total
magnetization for given values of
(�m , H, Dz ) as a
(0.6, 3.0,−2.0), b
(0.3, 3.0,−1.0), c (0.75, 3.0, 0.0),
d (1.0, 4.25, 0.5),
e (0.77, 3.0,−3.0),
f (1.0, 4.0,−2.8),
g (0.5, 0.5, −2.6),
h (0.25, 1.0,−2.5),
i (0.25, 0.5,−3.5),
j (0.6, 3.0,−3.0),
k (0.94, 3.0,−2.0),
l (1.0, 4.0,−3.1),
m (1.0, 0.2, −2.0),
n (1.0, 4.0,−2.25) and
o (1.0, 4.0, 0.5)
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is the combination point of two same type and one other type of phase lines. When two Tt -lines and a Tc-line, two Tr -lines and a
Tc-line and two Tr -lines and a Tt -line do this called as the BCP1, BCP2 and BCP3 and shown with the solid, empty and dashed
squares, respectively. In addition, the critical end point is observed when a critical line is terminated on another critical line. When
this happens with Tc-line ending on Tt -line, Tc-line terminating on Tr -line and Tt -line finishing on Tr -line are called as CEP1, CEP2

and CEP3 and denoted with the solid, empty and dashed ellipses, respectively. In addition, the combination points of the Tc-, Tt -
and Tr -lines denoted with a star. The final type of critical point observed in this work is termination of the Tc- and Tt -lines on the
line of Tr -line denoted with a cross.

Before the presentations of phase diagrams, the possible effects of our system parameters should be mentioned briefly. As Dz

gets low negative enough the lowest spin value, i.e., the zero state of spin-1, is preferred. External magnetic field tries to align the
spins in the given direction ferromagnetically. The bilinear exchange interaction parameter Jz < 0 favors the antiferromagnetic
alignment of the spins. The temperature competes with all these parameters to destroy all possible orders, i.e., it forces the spins to
orient themselves randomly leading to the paramagnetic phase. �m leads to spin-canting which is a special condition which occurs
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(a)

(b1) (d1)

(d2)(b2)

(c)

Fig. 2 The phase diagrams on the (H/|Jz |, T/|Jz |) planes for given values of Dz when a�m = 0.25, b1–b2 �m = 0.5, c�m = 0.75 and d1–d2 �m = 1.0

when antiparallel magnetic moments are deflected from the antiferromagnetic plane, resulting in a weak net magnetism. All these
competitions should lead to very rich magnetic phase diagrams with various phase transitions and critical points.

The first phase diagrams are obtained on the (H/|Jz |, T/|Jz |) planes for given values of Dz when �m = 0.25, 0.5, 0.75 and
1.0. Figure 2a is mapped for �m = 0.25 shows that the Tc-lines start from higher temperatures for higher Dz at H = 0.0 and they
are lowered as H increases which eventually terminate at higher H for higher Dz . The Tt - and Tr -lines are seen at lower H and
temperatures for negative Dz . It is clear that Tc > Tt > Tr and the magnetic fields satisfy for each phase Hc > Ht > Hr . When
Dz = −2.0, in addition to the Tc-line we see a combination Tt - and Tr -lines combined at the CEP3 for low T and H values. For
Dz = −2.5 the Tc- and Tt -lines unite at the BCP1. The critical line is only Tt type for Dz = −3.0. The next one, Fig. 2b1–b2 is
obtained for �m = 0.5. The first one shows that only the Tc-lines exist for −1.0 ≤ Dz ≤ 2.0. When Dz = −2.0, the Tr -line is
also seen at low H and T in addition to Tc-line at higher H and T . The latter exhibits not only the BCP1 but also the CEP3 for
Dz = −2.5. The lower portion of the Tt -line for �m = 0.25 is now turned into a Tr -line for �m = 0.5. For Dz = −2.56, one
sees two separated lines with Tc- and Tt -lines combined at TCP1 and only a Tr -line. The lines are only the Tr -lines for other values
of Dz . The reentrant behavior at higher H for all the Tr -lines is also clear. Figure 2c is obtained for �m = 0.75 shows again the
Tc-lines exist from Dz = 2.0 to −1.0. The reentrant behavior is also seen for these Tc-lines except for −1.0. When Dz = −2.0
and −2.5 the BCP2 is observed. Only the Tr -lines are seen when Dz = −3.0 and −3.5 which display reentrant behavior also. In
Fig. 2d, we see that the Tc-lines terminate at TCP1 for Dz = 2.0, 0.0 and 1.0, the Tt -line for 1.0 also merges with a Tr -line at TCP3.
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(a) (b)

(c) (d)

Fig. 3 The phase diagrams on the (Dz/|Jz |, T/|Jz |) planes for given values of H when a �m = 0.25, b �m = 0.5, c �m = 0.75 and d �m = 1.0

For Dz = −0.5, we see all the phase lines with a BCP2, a TCP1 and CEP3. When Dz = −1.0, we see TCP1. BCP2 is observed for
Dz = −2.0. Again only a Tr -line is seen for Dz = −3.0. The Tc-lines always present some reentrant behavior. It is clear from these
figures that as �m increases the critical lines persist to higher H values.

The next phase diagrams are calculated on the (Dz/|Jz |, T/|Jz |) planes for given values of H when �m = 0.25, 0.5, 0.75 and
1.0. Figure 3a is obtained for �m = 0.25. Only the Tc-lines are observed for H = 3.0 and 4.0 which start from lower Dz for lower
H at zero T and they become constant temperature lines for higher Dz values. When H = 2.0, we see the combination of Tc- and
Tt -lines combined at the TCP1. The BCP1 is seen for H = 1.0. The Tc-, Tt and Tr -lines emerge at the critical point indicated with
a star for H = 0.5. For �m = 0.5, the Tc-lines for H = 3.0 and 4.0 moves to lower Dz values at zero temperature. This means
increasing �m shifts the Tc-lines to lower Dz . For H = 2.0, critical lines are the same as in Fig. 3b but now a bulging towards
negative Dz values appears. The Tc- and Tr -lines combine at the BCP2 for both H = 0.5 and 1.0. The case with �m = 0.75 is
shown in Fig. 3c. Now for H = 2.0 we see that TCP1 transforms into BCP2. When H = 3.0, all types of the phase lines exit which
are combined at BCP2 and BCP3. The bulging in Tc-line for H = 4.0 is also apparent. The last plot on this plane is calculated for
�m = 1.0 exhibits BCP2 for H = 0.5 − 3.0. Now H = 4.0 case is very complicated with half closed loops of Tt - and Tr -lines
located around Dz = 0.0 as seen in Fig. 3d. The other parts of the critical lines consist of Tc-line terminating at BCP2, then the
Tr -lines enclose a region before combining and afterward the Tc-, Tt - and Tr -lines combine at the critical point indicated with the
star.

The final phase diagrams, i.e., Fig. 4, are mapped on the (�m/|Jz |, T/|Jz |) planes for given values of Dz when H = 0.5, 1.5, 3.0
and 4.0. In these figures, we always see the Tc-lines for Dz = 2.0 and 1.0 whatever the values of other parameters are. The
temperatures of these lines decrease as H increases. They are not disturbed when H is small, i.e. for 0.5 and 1.5, since the Tc-lines
stay straight. When H = 3.0, the temperatures of these lines are further lowered at small �m values. They are further lowered when
H = 4.0. Actually, Dz = 1.0 curve makes a deep at lower �m but as �m increases it’s temperature rises. Thus, the magnetic field
is strong enough to overcome when �m is small but it eventually surrender to the effects of �m . For Dz = 0.0 line we see that the
Tc-lines behave as in the Dz = 2.0 and 1.0 cases. When H = 4.0, the Tc-line starts from zero temperature at about �m = 0.63,
then rises as �m increases. The Tt - and Tr -lines are also observed for higher �m with Tc > Tt > Tr . The Tc-lines for Dz = −1.0
and −2.0 are similar with the previous Tc-lines, but now they terminate on their BCP2’s. For Dz = −2.0, we also see Tt -line
merged together with the Tr -lines at BCP3 for lower �m . The case with Dz = −3.0 and −4.0 starts with the Tt -lines at nonzero
temperatures then combine at the CEP3 with their Tr -lines, which starts from zero temperatures at some mid-values of �m and
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(a) (b)

(c) (d)

Fig. 4 The phase diagrams on the (�m/|Jz |, T/|Jz |) planes for given values of H when a H = 0.5, b H = 1.5, c H = 3.0 and d H = 4.0

increase with increasing �m . As H increases they move to higher �m and disappear for H = 4.0. Figure 4b also shows the phase
lines for Dz = −2.5 in which the Tr -lines are similar with the previous case. In addition, we see a Tc-line emerging from BCP2 and
terminating at the BCP1. Then the Tt -line terminates on CEP3. Finally, in the last figure we see the Tc- and Tt -lines combine at the
TCP1, the Tc- and Tt -lines terminate on the same point on a Tr -line indicated with a cross at higher �m .

After having given all the details of the thermal variations of the net magnetization and the phase diagrams on possible planes,
we are now ready to conclude this work in the last section.

5 Summary and conclusions

As a result of our investigation for the AFM spin-1 XYZ model by using a mean-field approach with the introduction of the spin
operators on the model for the simple cubic lattice have revealed compelling behaviors for the total magnetization. It includes three
different types of phase lines including the Tc-, Tt - and Tr -lines with three different phase regions, i.e., AFM, PM and random phase.
In addition, various combinations of these lines have led to eleven types of critical points including the TCP, BCP and CEP, each
of which are obtained in triples, and the critical points indicated with star and cross. The reentrant behavior was also observed in
the Tc- and Tr -lines. It should be noted that negative crystal field values lead to interesting critical behaviors for our model as in the
well-known Blume–Capel model. As we mentioned earlier as Dz becomes more negative the spin zero state of spin-1 is favored at
lower temperatures. The external magnetic field tries to align the spins ferromagnetically by competing with Dz and with Jz , which
favors AFM phase leading to zero magnetization, thus interesting critical behaviors are observed. It is also clear that as �m increases
toward the value of 1.0, the ordered phase regions move to higher magnetic field values as seen from the bulging of the phase lines
which causes the existence of reentrant behavior. It should be noted that this is an approximate approach to the spin-1 XYZ model
and it was inspired by the two-dimensional works mentioned in the references, thus, it only leaves us finding the eigenvalues of the
model to calculate the partition function. This model has not been investigated so far; therefore, we cannot give any quantitative
comparisons. As a last word, we hope that this work gets the attention of scientists for its deeper studies.
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