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Abstract We present a generalization of the black hole solution with spherical symmetry already known in the literature for N -
dimensional F(R) gravity with a conformally invariant Maxwell field and constant scalar curvature R. This solution also includes
a generalization of the one corresponding to general relativity as a special case. We introduce the formalism for the construction of
a broad family of spherically symmetric thin shells in F(R) theory. We use our generalized solution in order to provide examples
of bubbles and thin layers of matter surrounding black holes. We analyze the stability of the constructions under perturbations
preserving the symmetry, finding that stable configurations are possible for suitable values of the parameters. We show that the
extension to higher dimensions does not alter the qualitative behavior of the thin shells found in four dimensions, with the main
difference being a change of scale for the different values of N .

1 Introduction

Different theories of modified gravity have been proposed with the intention to explain some cosmological features, such as the
early time inflation or the late accelerated expansion of the Universe, without the necessity of adding extra components like dark
matter and dark energy. Among these theories, F(R) gravity [1–3] appears as one of the simplest modifications to general relativity,
in which the scalar curvature R in the Lagrangian density is replaced by an arbitrary function F(R). In this theory, many solutions
have been found in four dimensions; we can mention spherically symmetric black holes [4–14] and traversable wormholes [15–19],
among them. Higher dimensional spacetimes are mainly motivated by string theory; in this context, black hole solutions in general
relativity [20–23] as well as in F(R) theories [24–27] have been explored. Black holes in lower dimensionality have also been of
interest, both in Einstein theory [28–30] and in F(R) gravity [31].

In general relativity, the formalism that allows the construction of a new spacetime by joining different geometries across a
hypersurface was developed by Darmois and Israel [32,33]. The technique provides the conditions that thin layers of matter have to
satisfy for a proper matching, allowing to study their dynamics from the analysis of the energy–momentum tensor on the hypersurface.
In particular, for highly symmetric scenarios, the stability of the configurations under perturbations that preserve the symmetry can
be studied analytically. This formalism has been used in many scenarios due to its simplicity and flexibility; examples in four
dimensions can be found in models of gravastars [34–36], wormholes [37–42], bubbles, and thin layers of matter surrounding black
holes [43–47]. There are also some studies in which the junction conditions are used to build wormholes and thin shells of matter
in N dimensions [48–51].

The Darmois–Israel formalism has been extended in recent years to F(R) theories [52–56], displaying junction conditions of
a more restrictive nature than those in general relativity, in them the continuity of the trace of the second fundamental form at the
matching hypersurface is always required. Non-quadratic F(R) gravity also demands the continuity of the scalar curvature across it,
while quadratic F(R) allows its discontinuity; in this case, extra contributions appear besides the energy–momentum tensor, in order
to guarantee local conservation [53–56]. Different physical objects have been studied within F(R) gravity in four dimensions by
using this technique [57–64] and also in lower dimensionality [65,66]. However, works considering thin shells in higher-dimensional
F(R) gravity have been scarce.

In this article, we obtain a generalization of the known spherically symmetric solution [26] for N -dimensional F(R) gravity with
a conformally invariant Maxwell field; as a byproduct, we also derive a generalization of the corresponding spacetime previously
found [20] within general relativity. We subsequently study thin shells of matter within this context. In Sect. 2, we present the
generalized black hole solution with a constant scalar curvature. In Sect. 3, we introduce the general formalism for the construction
of a class of N -dimensional spherical thin shells in F(R) gravity with constant scalar curvature. In Sect. 4, we develop the stability
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analysis of the static configurations under radial perturbations. In Sect. 5, we show examples of bubbles and thin layers of matter
surrounding black holes, in which we use our generalized solution. Finally, we present a summary in Sect. 6. We adopt units such
that c = GN = 1.

2 Black hole solutions with charge in F(R) gravity

In F(R) gravity coupled to a power law nonlinear electrodynamics, we adopt the N -dimensional action

I = 1

16π

∫
dN x

√−g
(
R + f (R) − αε|F |s) , (1)

where R+ f (R) = F(R) is the gravitational Lagrangian (the first term corresponds to general relativity) and F = FαβFαβ denotes
the Maxwell invariant, with Fμν = ∂μAν − ∂νAμ the electromagnetic tensor field defined in terms of the gauge potential Aμ. The
constant s �= 1/2 is a positive nonlinearity parameter, ε = sign(F), and the constant α can be taken as 1 or −1 with a suitable choice
of electromagnetic units, without losing generality. When s = 1, the standard linear Maxwell field term in the action is recovered,
with the usual sign for α = 1 or the opposite sign for α = −1. The field equations resulting from this action in the metric formalism
read

Rμν(1 + f ′(R)) − 1

2
gμν(R + f (R)) + (gμν∇γ ∇γ − ∇μ∇ν) f

′(R) = 8πTμν, (2)

∇μ

(
Fμν |F |s−1) = 1√−g

∂μ

(√−gFμν |F |s−1) = 0. (3)

The energy–momentum tensor associated with the electromagnetic field has the form

Tμν = α

4π

[
sFμγF γ

ν |F |s−1 − 1

4
gμνε|F |s

]
, (4)

so its trace is

Tμ
μ = αε

4π
|F |s

(
s − N

4

)
. (5)

The case s = N/4 gives a traceless Tμν , corresponding to a conformally invariant Maxwell field as a source; then, we adopt s = N/4
in what follows. When N = 4 results in s = 1, so in this case, we recover the linear Maxwell field; otherwise, the electromagnetic
field is nonlinear. We adopt the spherically symmetric ansatz

ds2 = −A(r)dt2 + A(r)−1dr2 + r2d	N−2, (6)

with t the time coordinate, r > 0 the radial coordinate, 0 ≤ θi ≤ π (1 ≤ i ≤ N − 3) and 0 ≤ θN−2 < 2π the angular coordinates,
so that

d	2
N−2 = dθ2

1 +
N−2∑
i=2

i−1∏
j=1

sin2 θ jdθ2
i . (7)

We consider a radial purely electric field E(r) = Ftr ; then, F = −2(Ftr )
2 is negative and ε = −1 in this case. By substituting all

this in Eq. (3), we find that Ftr = Q/r2, with Q the electric charge, is independent of the dimension N . After some calculations we
obtain, for a constant scalar curvature R0, that Eq. (2) admits a solution where the metric function reads

A(r) = −M + α|Q|3/2

21/4(1 + f ′(R0))r
− R0r2

6
if N = 3 (8)

and

A(r) = 1 − 2M

rN−3 + α2N/4|Q|N/2

2(1 + f ′(R0))r N−2 − R0r2

(N − 1)N
if N ≥ 4, (9)

where the constant M represents the mass. The spacetime has a curvature singularity at r = 0 since the Kretschmann scalar diverges
at this point. The trace of the field equations gives

R0
(
1 + f ′(R0)

) − N

2
(R0 + f (R0)) = 0, (10)

which allows us to define the effective cosmological constant �e

R0 = N f (R0)

2 f ′(R0) + 2 − N
≡ 2N

N − 2
�e. (11)
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On the other hand, the traceless energy–momentum tensor of the electromagnetic field (5) has an energy density in the associated
orthonormal frame given by Tt̂ t̂ , which in our case results

Tt̂ t̂ = α

32π
(2F2

tr )
N/4(N − 2) = α

32π
2N/4|Q|N/2(N − 2); (12)

this quantity is positive for N ≥ 3 if and only if α > 0. Then, there are two branches in our solution, but the one with α < 0 has a
negative energy density, so in what follows we take α = 1.

A particular case of interest results from taking f (R) = −2�, with � the cosmological constant,1 corresponding to general
relativity. In this scenario, if N = 3 from Eq. (8), we retrieve the geometry found in Refs. [29,30]; for N = 4, we recover from
Eq. (9) the Reissner–Nordström (� = 0), the Reissner–Nordström-de Sitter (� > 0), and the Reissner–Nordström-anti-de Sitter
(� < 0) solutions; while for N > 4, we obtain a generalization to arbitrary N of the geometry introduced in Ref. [20], in which
the dimension N of the spacetime is restricted to a set of particular values, that is N = 4 + 4p, with p ∈ N. The introduction of the
absolute value of the Maxwell invariant F in our Lagrangian is the key point to overcome this restriction on N ; in our treatment,
the sign of F is taken into account by the presence of the factor ε outside the power law exponent s. The absolute value of F in
the Lagrangian has been previously used within general relativity by other authors [22,30], but the extra factor ε adopted in our
work seems to be novel. Note the different nature of the constants α and ε: the first one represents the coupling between gravity and
electrodynamics, while the second one only depends on the characteristics of the electromagnetic field (in our case purely electric).

Returning to the general F(R) theory, for N = 3, the existence of the black hole requires R0 < 0, that is, an anti-de Sitter
asymptotics. When N = 3 and α = −1, we easily recover the spacetime2 found in Ref. [31]. If N ≥ 4, the geometry is
asymptotically anti-de Sitter, Minkowski, or de Sitter, depending on R0 < 0, R0 = 0, or R0 > 0, respectively. For R0 ≤ 0, when |Q|
is small enough the spacetime has an event horizon with a radius given by the largest real positive solution of the equation A(r) = 0,
while for large |Q|, there is a naked singularity. For R0 > 0, the largest real positive solution of the equation A(r) = 0 gives the
radius of the cosmological horizon, while for small enough |Q|, the second largest one gives the radius of the event horizon; again
for large |Q| the singularity is naked. When N = 4 and α = 1, it is straightforward to see that the geometry obtained in Ref. [6,7]
is recovered. For N > 4, our solution generalizes the one found in Ref. [26], for which the same considerations stated above in the
case of Ref. [20] also applies, i.e., there are no restrictions on the possible values of N .

3 Thin shell construction

In this section, we describe the formalism for spherical thin shells in N -dimensional F(R) gravity. The manifold M is crafted as
the union of two different ones M1 and M2, each of them with a constant scalar curvature R1,2. We paste these manifolds on a
spherical hypersurface � with radius a, where there is a thin layer of matter. The original manifolds M1,2 are described by two
different spherically symmetric metrics of the form shown in Eq. (6), with generic metric functions A1,2(r1,2) and coordinates
(t1,2, r1,2, θ1, . . . , θN−2). We define the inner manifold M1 by taking 0 ≤ r1 ≤ a and the outer manifold M2 by r2 ≥ a, and we
paste them at the hypersurface � to create a new manifold M = M1 ∪ M2. We have mutually identified the angular coordinates
of both original spacetimes since our construction takes into consideration the spherical symmetry. A new global radial coordinate
can be defined as r ∈ [0,+∞) by identifying r with r1 in M1 and with r2 in M2. The global coordinates are denoted by
Xα

1,2 = (t1,2, r, θ1, . . . , θN−2) while the coordinates on the hypersurface � are ξ i = (τ, θ1, . . . , θN−2), with τ the proper time there.
In order to analyze the dynamics of this hypersurface, we take its radius as a(τ ). The proper time should be the same when obtained
from each side of �. Then, the different coordinate times of the original manifolds can be related with τ via

dt1,2

dτ
=

√
A1,2(a) + ȧ2

A1,2(a)
, (13)

where the signs are determined by choosing t1,2 and τ to run into the direction of the future. We also denote ȧ as the time derivative
of a. To continue with our construction, we need to calculate the first fundamental form for each original manifold

h1,2
i j = g1,2

μν

∂Xμ
1,2

∂ξ i

∂Xν
1,2

∂ξ j

∣∣∣∣∣
�

(14)

and the second fundamental form, also named extrinsic curvature,

K 1,2
i j = −n1,2

γ

(
∂2Xγ

1,2

∂ξ i∂ξ j
+ �

γ
αβ

∂Xα
1,2

∂ξ i

∂Xβ
1,2

∂ξ j

)∣∣∣∣∣
�

, (15)

1 Note that from Eq. (11) one obtains that �e = �.
2 Note that in this case is Tt̂ t̂ < 0, but our solution also allows to adopt α = 1, so that Tt̂ t̂ > 0.
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where the unit normals (nγ nγ = 1) can be obtained from

n1,2
γ =

⎧⎨
⎩

∣∣∣∣∣g
αβ
1,2

∂G

∂Xα
1,2

∂G

∂Xβ
1,2

∣∣∣∣∣
−1/2

∂G

∂Xγ
1,2

⎫⎬
⎭

∣∣∣∣∣∣
�

, (16)

with G(r) ≡ r − a = 0 on �. We will work in the orthonormal basis at the hypersurface � defined by

eτ̂ = eτ , e
θ̂1

= a−1eθ1 , e
θ̂i

=
⎛
⎝a

i−1∏
j=1

sin θ j

⎞
⎠

−1

eθi if 2 ≤ i ≤ N − 2,

because it facilitates the physical interpretation of the results. Once we have all these elements well-defined, we can calculate them
for the metric given by Eq. (6). In this case, by using Eq. (13), we find that the first fundamental form is

h1,2
ı̂ ĵ = diag(−1, 1, . . . , 1), (17)

the unit normals are given by

n1,2
γ =

(
−ȧ,

√
A1,2(a) + ȧ2

A1,2(a)
, 0, . . . , 0

)
, (18)

while the non-null elements of the second fundamental form read

K 1,2
τ̂ τ̂

= − A′
1,2(a) + 2ä

2
√
A1,2(a) + ȧ2

, (19)

and

K 1,2
θ̂i θ̂i

= 1

a

√
A1,2(a) + ȧ2, (20)

where the prime on A1,2(r) represents the derivative with respect to r . It is also worth defining that a prime on F(R) corresponds
the derivative with respect to the curvature scalar R and the jump of any quantity ϒ across � is denoted by [ϒ] ≡ (ϒ2 − ϒ1)|� .

According to the junction formalism in F(R) gravity [53–56], there is a set of conditions that should be satisfied for a proper
matching at the hypersurface �. The continuity of the first fundamental form is always required, that is, [hμν] = 0. Due to the
nature of our construction, this is satisfied automatically, as we can see from Eq. (17). It also demands the continuity of the trace of
the second fundamental form, that is [Kμ

μ] = 0, which can be written, after manipulating Eqs. (19) and (20), as

2ä + A′
2(a)

2
√
A2(a) + ȧ2

− 2ä + A′
1(a)

2
√
A1(a) + ȧ2

+ (N − 2)

a

(√
A2(a) + ȧ2 −

√
A1(a) + ȧ2

)
= 0. (21)

The formalism divides into two branches that, depending on the third derivative F ′′′(R), in one case demands an extra condition
[53–56] for a proper matching at �.

3.1 Case F ′′′(R) �= 0

When F ′′′(R) �= 0, the continuity of R across � is also required [53–56], that is, [R] = 0. In this case, the field equations at �

[53–56] read
κSμν = −F ′(R)[Kμν] + F ′′(R)[ηγ ∇γ R]hμν, nμSμν = 0, (22)

with κ = 8π and Sμν the energy–momentum tensor at �. Since [R] = 0, the values of the scalar curvature at both sides of � should
be the same, i.e., R1 = R2 = R0, and these equations for constant R0 simplify to give

κSμν = −F ′(R0)[Kμν], nμSμν = 0. (23)

Using the orthonormal basis, the energy–momentum tensor takes the diagonal form Sı̂ ĵ = diag(σ, p, . . . , p), with σ the hyper-
surface energy density and p ≡ p

θ̂i
(1 ≤ i ≤ N − 2) the transverse pressure. Then, we obtain

σ = − F ′(R0)

κ

(
− 2ä + A′

2(a)

2
√
A2(a) + ȧ2

+ 2ä + A′
1(a)

2
√
A1(a) + ȧ2

)
(24)

and

p = −F ′(R0)

aκ

(√
A2(a) + ȧ2 −

√
A1(a) + ȧ2

)
. (25)

By algebraically working with Eqs. (21), (24), and (25), we can see that the equation of state has the form σ − (N − 2)p = 0.
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3.2 Case F ′′′(R) = 0

When F ′′′(R) = 0, we are in the presence of quadratic F(R) theory, i.e., F(R) = R − 2� + γ R2 and therefore F ′(R) = 1 + 2γ R.
In this case, the condition of the continuity of the scalar curvature at the matching hypersurface is no longer required [53–56]. The
field equations at � [53–56] have the form

κSμν = −[Kμν] + 2γ
([nγ ∇γ R]hμν − [RKμν]

)
, nμSμν = 0; (26)

which, for constant values R1 and R2 of the scalar curvature at the sides of �, reduce to

κSμν = −[Kμν] − 2γ [RKμν], nμSμν = 0. (27)

The presence of three extra contributions [53–56] is needed to guarantee that the energy–momentum tensor is divergence-free and,
therefore, locally conserved. These contributions are: an external scalar pressure or tension

κT = 2γ [R]K γ
γ , (28)

an external energy flux vector
κTμ = −2γ ∇̄μ[R] = 0, nμTμ = 0, (29)

with ∇̄ the intrinsic covariant derivative on �, and a two-covariant symmetric tensor distribution

κTμν = ∇β

(
2γ [R]hμνn

βδ�
)
, (30)

with δ� the Dirac delta on �. This last contribution has resemblance with classical dipole distributions. Then, in this case, the
singular part at the shell of the energy–momentum tensor reads (Sμν + Tμnν + Tνnμ + T nμnν)δ

� + Tμν ; for further details, we
suggest to read Ref. [53–56]. Since we are adopting constant values of the scalar curvature at both sides of the shell, the external
energy flux vector is always null, i.e., Tμ = 0.

As it was stated in the previous case, working in the orthonormal basis allows us to have a diagonal energy–momentum tensor
Sı̂ ĵ = diag(σ, p, . . . , p), in which the hypersurface energy density and the pressure are given by

σ = 1 + 2γ R2

κ

(
2ä + A′

2(a)

2
√
A2(a) + ȧ2

)
− 1 + 2γ R1

κ

(
2ä + A′

1(a)

2
√
A1(a) + ȧ2

)
, (31)

and

p = −1 + 2γ R2

κ

(√
A2(a) + ȧ2

a

)
+ 1 + 2γ R1

κ

(√
A1(a) + ȧ2

a

)
. (32)

By using Eqs. (21) and (28), the external scalar pressure or tension can be written as

T = 2γ R2

κ

(
2ä + A′

2(a)

2
√
A2(a) + ȧ2

+ (N − 2)

√
A2(a) + ȧ2

a

)

−2γ R1

κ

(
2ä + A′

1(a)

2
√
A1(a) + ȧ2

+ (N − 2)

√
A1(a) + ȧ2

a

)
, (33)

while the double layer tensor distribution Tı̂ ĵ is proportional to 2γ [R]hı̂ ĵ /κ . From Eqs. (31), (32), and (33), with the help of Eq.
(21), we find that the equation of state is σ − (N − 2)p = T in this case.

In both scenarios, we say that the matter at the shell is normal when satisfies the weak energy condition (WEC), that is, σ ≥ 0
and σ + p ≥ 0; otherwise, it is exotic. On the other hand, within F(R) gravity, the inequality F ′(R) > 0 is required in order to
have a positive effective Newton constant Gef f = G/F ′(R0), and therefore, prevent the graviton from being a ghost [67].

4 Stability analysis

Let us consider the static configurations, which has to satisfy the static version of Eq. (21), that is,

A′
2(a0)

2
√
A2(a0)

− A′
1(a0)

2
√
A1(a0)

+ (N − 2)

a0

(√
A2(a0) − √

A1(a0)
)

= 0, (34)

with a0 denoting the constant radius of the shell. Considering the matter content at the shell, in the case that F ′′′(R) �= 0, the energy
density σ0 and the pressure p0 at � take the form

σ0 = − F ′(R0)

κ

(
− A′

2(a0)

2
√
A2(a0)

+ A′
1(a0)

2
√
A1(a0)

)
(35)
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and

p0 = −F ′(R0)

a0κ

(√
A2(a0) − √

A1(a0)
)

, (36)

which satisfy the equation of state is σ0 − (N − 2)p0 = 0. When F ′′′(R) = 0, we obtain that the expressions for the energy density
and the pressure read

σ0 = 1 + 2γ R2

κ

(
A′

2(a0)

2
√
A2(a0)

)
− 1 + 2γ R1

κ

(
A′

1(a0)

2
√
A1(a0)

)
(37)

and

p0 = −1 + 2γ R2

κ

(√
A2(a0)

a0

)
+ 1 + 2γ R1

κ

(√
A1(a0)

a0

)
. (38)

The external scalar pressure or tension results

T0 = 2γ R2

κ

(
A′

2(a0)

2
√
A2(a0)

+ (N − 2)

√
A2(a0)

a0

)
− 2γ R1

κ

(
A′

1(a0)

2
√
A1(a0)

+ (N − 2)

√
A1(a0)

a0

)
, (39)

and the equation of state now is σ0 − (N − 2)p0 = T0. The other non-null extra contribution that appears in this case is the
double-layer tensor distribution T (0)

ı̂ ĵ , proportional to 2γ [R]hı̂ ĵ /κ .

The stability analysis of the static shells under radial perturbations is facilitated by Eq. (21). If we use ä = (1/2)d(ȧ2)/da and
define z = √

A2(a) + ȧ2 − √
A1(a) + ȧ2, we can rewrite this equation in the form

az′(a) + 2z(a) = 0. (40)

We can solve the equation above to obtain an expression for ȧ2 in terms of a, that is,

ȧ2 = −V (a), (41)

where

V (a) = −a2N−4
0

(√
A2(a0) − √

A1(a0)
)2

4a2N−4 + A1(a) + A2(a)

2
− a2N−4 (A2(a) − A1(a))2

4a2N−4
0

(√
A2(a0) − √

A1(a0)
)2 , (42)

can be interpreted as an effective potential. This potential satisfies that V (a0) = 0 and, by using Eq. (34), V ′(a0) = 0 as well. The
second derivative of the Eq. (42) evaluated at the radius a0 results

V ′′(a0) = − (N − 2)(2N − 3)
(√

A2(a0) − √
A1(a0)

)2

2a2
0

− (N − 2)(2N − 5)
(√

A1(a0) + √
A2(a0)

)2

2a2
0

−
(
A′

2(a0) − A′
1(a0)

)2

2
(√

A2(a0) − √
A1(a0)

)2

− 2(N − 2)
(√

A1(a0) + √
A2(a0)

)2 (
A′

2(a0) − A′
1(a0)

)
a0 (A2(a0) − A1(a0))

+ A′′
1(a0) + A′′

2(a0)

2
−

(√
A1(a0) + √

A2(a0)
)2 (

A′′
2(a0) − A′′

1(a0)
)

2 (A2(a0) − A1(a0))
. (43)

If V ′′(a0) > 0, we can guarantee that the static configuration with radius a0 is stable under radial perturbations.

5 Examples

We present two different examples, in which we adopt the geometry (6) with the metric function given by Eq. (9), in order to
describe both the inner M1 and the external M2 regions of the spacetime M. One corresponds to bubbles and the other to thin
shells surrounding black holes. The radius of the shell of matter in these constructions is determined by the static solution a0 of Eq.
(34). The configuration is stable under radial perturbations when the second derivative of the effective potential, given by Eq. (43),
is positive. The results, chosen among the most representative ones, are shown graphically in Figs. 1, 2, 3 and 4. In all these plots,
the solid lines represent the stable solutions, while the dashed lines the unstable ones. The meshed regions indicate zones where
the matter satisfies the WEC condition, therefore the solution is made of normal matter, while the gray regions have no physical
meaning. We limit the presentation of the results to N = 4 and N = 5, since the bigger the dimension of the spacetime, the larger
the scales needed, showing no change in the overall behavior of the static solutions. We are interested in the higher-dimensional
case, the scenario with N = 4 was previously studied [62–64], and it is shown here only for comparison.
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Fig. 1 Bubbles for R1 = R2 = R0. The dimensionality N is indicated in each column, stable configurations are displayed by solid lines and unstable ones
by dashed lines, while in the meshed regions the matter is normal. The first row corresponds to the plots with R0M

2/(N−3) = − 0.2 and the second row
with R0M

2/(N−3) = 0.2

5.1 Bubbles

In the construction of bubbles, we use the metric function given by Eq. (9), where we take M1 = 0 and Q1 = 0 for the inner zone
M1, that is

A1(r) = 1 − R1r2

(N − 1)N
, (44)

while we adopt M2 = M , Q2 = Q, and α = 1 for the external one M2, so that

A2(r) = 1 − 2M

rN−3 + 2N/4|Q|N/2

2F ′(R2)r N−2 − R2r2

(N − 1)N
. (45)

In this way, a vacuum region with scalar curvature R1 is joined by a thin shell to an external one with scalar curvature R2, mass M ,
and charge Q. The inner geometry has a cosmological horizon if R1 > 0, otherwise it has no horizons. In the case of the external
geometry, there is a critical value of charge Qc: when |Q| ≤ Qc it has an event horizon and if |Q| > Qc the singularity at the
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Fig. 2 Bubbles for R1 �= R2. The meaning of N , the solid and the dashed lines, and the meshed regions are the same as in Fig. 1. The first row shows
the plots for R1M

2/(N−3) = − 0.1 and R2M
2/(N−3) = − 0.3, the second row for R1M

2/(N−3) = − 0.2 and R2M
2/(N−3) = 0.2, and the third row for

R1M
2/(N−3) = 0.3 and R2M

2/(N−3) = 0.1
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origin is naked; for R2 > 0, there is also a cosmological horizon. The radius a0 should be large enough to avoid the presence of the
event horizon when |Q| ≤ Qc and it also has to be smaller than any of the cosmological horizon radii when R1 > 0 or R2 > 0.
There is a null electric field in the inner region and a radial electric field E(r) = Ftr = Q/r2 in the outer one; this field has a jump
[Ftr ] = Q/a2

0 at �, so we can interpret Q as the charge of the shell. Then, the spacetime consists of a vacuum region surrounded by
a charged thin shell, embedded in a region with a non-null electromagnetic field and de Sitter (R2 > 0) or anti-de Sitter (R2 < 0)
asymptotics. For this spacetime, we present the results in Figs. 1 and 2. In them, the columns display the dimension of the spacetime,
N = 4 and N = 5, respectively, while the rows correspond to different values of the constant scalar curvature R. The value of the
mass M establishes the scale of length and charge, so all quantities have been adimensionalized with M .

In the case that both regions have the same scalar curvature at the sides of the shell R1 = R2 = R0, shown in Fig. 1, the first row
has R0M2/(N−3) = −0.2, while the second one has R0M2/(N−3) = 0.2. From these plots, for fixed N and M , we can say that

• When R0 < 0, we find one solution for |Q| ≤ Qc, which is unstable and made of normal matter. For |Q| > Qc, the only
solution is stable and composed by exotic matter.

• When R0 > 0, there is one solution for |Q| ≤ Qc, which is unstable and made of normal matter. For |Q| > Qc, the solution
becomes stable and composed by exotic matter; a second solution also appears for a short range of |Q|, unstable and made of
exotic matter, which can have a large radius.

The qualitative behavior of the solutions changes with the sign of the scalar curvature R0 but it remains the same while increasing
the dimension N of the spacetime.

Within quadratic theories, i.e., F(R) = R − 2� + γ R2, the condition of continuity of the scalar curvature can be relaxed, so we
can build a bubble with different constant values R1 �= R2 across the shell. The corresponding results are shown in Fig. 2, in which
we have taken γ /M = 0.1. In the first row, we have the combination of values of R1M2/(N−3) = −0.1 and R2M2/(N−3) = −0.3,
in the second row, R1M2/(N−3) = −0.2 and R2M2/(N−3) = 0.2, and in the third row, R1M2/(N−3) = 0.3 and R2M2/(N−3) = 0.1.
The behavior of the solutions, for fixed N and M , can be summarized as:

• When R1 < R2, for |Q| ≤ Qc, we find one unstable solution made of normal matter, while for |Q| > Qc, the only solution is
stable and composed by exotic matter.

• When R1 > R2, for |Q| ≤ Qc, we find two solutions made of normal matter; the larger one is stable, while the other is unstable.
For |Q| > Qc, we obtain two solutions again: the smaller one is always made of exotic matter and stable, while the other,
depending on the value of |Q|, is stable and has normal matter, or it is unstable and has exotic matter. Given adequate values of
the parameters, we can find two non-charged solutions composed by normal matter, the larger one is stable, while the other is
unstable.

It is worth noticing that the behavior of the solutions strongly depends on the relative values of the scalar curvature. Modifying the
dimension of the spacetime only affects the scale.

5.2 Thin shells surrounding black holes

We now construct thin shells surrounding black holes, with constant values of the scalar curvature R1 and R2 at the sides of the
hypersurface �. We proceed in the same way as described in the previous subsection, with the only difference being that the inner
zone M1 in our construction has non-null mass, i.e., M1 �= 0. Its metric function reads

A1(r) = 1 − 2M1

r N−3 − R1r2

(N − 1)N
(46)

while the metric of the external region M2 is given by Eq. (45) with M replaced by M2. In this construction, a non-charged black
hole with mass M1 is surrounded by a thin shell connecting to an outer region with mass M2 and charge Q. We take the radius a0

larger than the event horizon radius of the inner region, so the black hole is always present, and when R1 > 0 also smaller than
the cosmological horizon radius for this geometry. On the other hand, when |Q| ≤ Qc, the radius a0 should be large enough to
avoid the presence of the event horizon of the geometry used for the outer region; when R2 > 0, it also has to be smaller than the
cosmological horizon radius of this zone. As in the previous example, the electric field is null in the inner region and is given by
E(r) = Ftr = Q/r2 in the outer one; having a jump [Ftr ] = Q/a2

0 at �, which allows interpreting Q as the charge of the shell.
The whole spacetime consists of a non-charged black hole surrounded by a charged shell, having de Sitter (R2 > 0) or anti-de Sitter
(R2 < 0) asymptotics. The results are shown in Figs. 3 and 4; in the plots, the magnitudes have been adimensionalized with M2 and
hold the relation M1/M2 = 0.5.

The case with the same value of the scalar curvature R1 = R2 = R0 at both sides of � is shown in Fig. 3. The first row corresponds
to R0M

2/(N−3)
2 = − 0.2, while the second row to R0M

2/(N−3)
2 = 0.2. For given N and M2, we can see that:

• When R0 < 0, we find one solution for |Q| ≤ Qc, which is unstable and made of normal matter, and two solutions that appear
from a certain value of |Q| larger than Qc, composed by exotic matter; in this case, the larger one is stable, while the other is
unstable.
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Fig. 3 Thin shell surrounding a black hole for R1 = R2 = R0. The meaning of N , the solid and the dashed lines, and the meshed regions are the same as

in Fig. 1. The first row corresponds to the plots with R0M
2/(N−3)
2 = − 0.2 and the second row with R0M

2/(N−3)
2 = 0.2

• When R0 > 0, there is one solution for |Q| ≤ Qc, which is unstable and made of normal matter. For a short range of values of
|Q| larger than Qc, there are three solutions made of exotic matter: the largest one is unstable and it can have a large radius, the
middle one is stable, and the smaller one, which remains as the only solution for large values of |Q|, is unstable.

The behavior of the solutions depends on the sign of the scalar curvature and it remains basically the same despite the dimension,
which only alters the scale.

The scenario with R1 �= R2 is shown in Fig. 4, in which we have adopted γ /M2 = 0.1. In the first row, we take the combination
of values R1M

2/(N−3)
2 = −0.1 and R2M

2/(N−3)
2 = −0.3, in the second row, R1M

2/(N−3)
2 = −0.2 and R2M

2/(N−3)
2 = 0.2, and in

the third row, R1M
2/(N−3)
2 = 0.3 and R2M

2/(N−3)
2 = 0.1. For given N and M2, the main features are:

• When R1 < R2, there is only one solution for |Q| ≤ Qc, unstable and made of normal matter. From a certain value of |Q| larger
than Qc, we find two solutions, the larger one is stable, while the other is unstable, both are composed by exotic matter.

• When R1 > R2, from a certain value of |Q| smaller than Qc, there are two solutions, the larger one is stable and the other is
unstable, both are made of normal matter. As |Q| increases only one solution remains, which at first is stable and composed
by normal matter, and then becomes unstable and with exotic matter. For a short range of |Q|, we can find three solutions, the
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Fig. 4 Thin shell surrounding a black hole for R1 �= R2. The meaning of N , the solid and the dashed lines, and the meshed regions are the same as in Fig.

1. The first row shows the plots for R1M
2/(N−3)
2 = − 0.1 and R2M

2/(N−3)
2 = − 0.3, the second row for R1M

2/(N−3)
2 = − 0.2 and R2M

2/(N−3)
2 = 0.2,

and the third row for R1M
2/(N−3)
2 = 0.3 and R2M

2/(N−3)
2 = 0.1
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middle one is the only stable, all are made of exotic matter. Finally, for large |Q|, there is only one solution, which is unstable
and composed by exotic matter.

The characteristics of the solutions mainly depend on the relationship between the different scalar curvatures. Again, we find that
the dimension only affects the scale of the solutions.

6 Summary

In this work, we have found a generalized black hole solution with spherical symmetry for N -dimensional F(R) gravity coupled
to a conformally invariant Maxwell field, with constant scalar curvature R. It provides a generalization of the one corresponding to
general relativity as a particular case. We have compared our solution with others existing in the literature. We have also constructed
a family of spacetimes with a spherically symmetric thin shells in N -dimensional F(R) gravity with constant R, and we have studied
the stability of the static configurations under radial perturbations. In order to avoid the presence of ghosts, we have always worked
with F ′(R) > 0.

We have used our generalized solution in the two given examples of our formalism, one representing bubbles and the other thin
layers of matter surrounding black holes. These spacetimes, with charge Q and a radial electric field, have been built within general
F(R) theory, which forces us to work with the same value of the constant scalar curvature R0 across the shell, and also in quadratic
F(R), which allows different constant values R1 and R2 of the scalar curvature. In each example, we have found the expressions
for the energy density and the pressure at the shell, and the corresponding equation of state. In quadratic F(R), we have also found
the extra contributions at the shell, present when R1 �= R2. We have analyzed the stability of the configurations for the different
combinations of the parameters.

For bubbles, in the case with the same value R0 at both sides of the shell, we have obtained that stable configurations are possible,
but composed by exotic matter. The behavior of these configurations mainly depends on the sign of R0. For quadratic F(R) with
R1 �= R2, we have found stable solutions, which are made of normal matter only when R1 > R2. In this case, given a particular set
of parameters, there exist stable solutions even without charge and composed by normal matter. The relationship between R1 and
R2 is what determines the behavior of the solutions. The dimension of the spacetime modifies the scale without affecting the main
characteristics of the solutions.

In the case of thin layers of matter surrounding black holes, we have found stable configurations, but made of exotic matter
for the same value R0 across the shell, with their characteristics depending on the sign of R0. In quadratic F(R) with R1 �= R2,
the relationship between R1 and R2 is what determines the behavior of the solutions. We have found stable solutions, which are
composed by normal matter only in the case that R1 > R2. Once again, the dimension of the spacetime only changes the scale of
the solutions.
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