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Abstract Even-spin glueball resonances in AdS/QCD are here studied using the configurational entropy (CE). The concept of CE
Regge trajectories, associating the CE of the even-spin glueball resonances with both their spin J PC and to their mass spectra,
is used to derive the mass spectra of higher J PC resonances with J even. For it, the linear, the exponential modified, and the
anomalous quadratic dilatonic models, each one with linear and logarithmic anomalous corrections, are employed. Several methods
are implemented, hybridizing AdS/QCD and established data of lattice QCD.

1 Introduction

The configurational entropy (CE) displays the compression rate of all information flowing through a system, in the limit where
no losses are regarded. Information is compressed into momentum space modes that comprise a given physical system, as firstly
proposed by Shannon [1]. In this sense, the CE constitutes a bound on the transmission rate of information sources. In Ref. [1],
Shannon promoted information, from a previous concept that had not been established yet, to a very precise theory, consisting of the
theory underlying any present-day digital setup. Shannon’s seminal work was the foundation of developing algorithms with data-
compression codes that are error-correcting, likewise. To estimate the information that underlies the system, a probability distribution
is employed using the momentum space. In this scenario, distinct wavelengths enforce the creation of correlations among all the
system constituents [2–7]. The CE can probe and also measure the information that composes the correlations among these modes,
thus converting into a coded form the complexity of shape in the studied system [2,3]. Both informational and dynamical aspects
of the studied system are interplayed by the CE [3]. The CE was also employed to discern the set of dynamical systems among
chaotic, random, and regular, also evaluating the chaotic progression in several QCD setups. This method brings additional tools
to make out physical phenomena in QCD [8]. Localized solutions of PDEs are examples of non-trivial spatial complexity, as well
as the correlation of thermal fluctuations in systems that go through phase transitions. For computing the CE, a spatially localized
integrable scalar field is necessary. The energy density, taken as the time component of the energy-momentum tensor, is a prime
scalar field candidate [9]. However, other localized scalar fields, like the nuclear cross-section and scattering amplitudes, have been
used in different QCD contexts [10–13]. The CE has been demonstrated to consist of a very useful apparatus to study and predict
the prevalence, abundance, and dominance of physical states and their resonances. The recently obtained results, in the literature,
mainly in QCD and AdS/QCD setups, match and corroborate to phenomenological data in PDG [14], as well as provide relevant
predictions for future experiments, mainly in LHC.

The CE has been playing important role in scrutinizing AdS/QCD (both hardwall and softwall) models, studying relevant properties
in QCD, and its phenomenology. Several new methods and procedures, also involving the existence of CE Regge trajectories, have
been employed to investigate diverse families of light-flavor mesonic states and excitations, in chiral-gluon condensates and dilaton-
graviton backgrounds [4,15–18], also including tachyonic ones [19]. Besides, tensor mesons [20] and scalar glueballs [21] were
explored under CE tools. Quarkonia states, both at zero temperature [22] and at finite temperature, [23], were investigated, with
relevant physical features regarding phenomenology and the configurational stability of bottomonium and charmonium resonances.
Besides, quarkonia and plasmas with finite density were studied, from the CE point of view, in Ref. [24]. Refs. [10–13,25–28] studied
gluons and quarks in the color glass condensate regime of QCD, exhibiting new features and applications of CE, and providing a
theoretical explanation for diverse parameters, previously used in the literature to best fit experimental data. More on the use of CE
in QCD was studied in Ref. [8]. Standard and exotic baryonic excitations were scrutinized in Ref. [29], also in a finite temperature
setup [30]. The configurational stability of boson stars and black holes were also explored, using the CE, in Refs. [31–36]. Also,
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phase transitions [6], topological defects [37–41] and aspects of particle physics [42,43] were discussed with the use of the CE. The
quantum version of the classical Shannon entropy is detailedly exposed in Ref. [44].

The AdS/QCD setup has been proved to be an important tool to investigate non-perturbative aspects of QCD, as, for example,
confinement [45–50]. The hard and the softwall models represent thriving approaches of AdS/QCD that match data in PDG [51–54].
In the gauge/gravity duality dictionary, fields in the AdS5 bulk represent dual quantities to operators of QCD on the boundary.

Several phenomenological approaches to scrutinize non-perturbative features of QCD consist in probing particle states, and their
resonances. QCD predicts gluonic bound states, comprising glueballs, to exist. Therefore the quest for the glueball content of hadrons
plays an important role. One of these approaches is based on the construction of phenomenological Lagrangians capable of taking
into account gluonic processes in hadronic interactions [55]. Lattice QCD computations derived the glueball spectrum in many setups
[56]. When one employs solutions of the equations of motion for massive gluons, glueball masses can be derived, in full compliance
with QCD lattice phenomenology. Then, the complex pomeron trajectory can be obtained, whose real projection regards the soft
pomeron, with support of HERA data [57]. Among prominent topics in the physics of hadrons, the relationship between the pomeron
and even-spin glueballs plays a prominent role [58]. Our main aim here is to use techniques of CE, already well succeeded in QCD
applications, to study even-spin glueball resonances, also in the context of AdS/QCD. Configurational-entropic Regge trajectories
are the main tool to derive the mass spectra of higher even-spin glueball resonances, in different dilaton models. Both AdS/QCD
and lattice QCD data are going to be used, for it. This paper is organized as follows: Sect. 2 briefly reviews the holographic setup
used in this work, namely, the background geometry and glueball spectra. Sect. 3 discusses the results concerning the CE applied
to even-spin glueball resonances, including a comprehensive analysis of the CE Regge trajectories and the derivation of the mass
spectra of even-spin glueball family resonances, in six dilaton models. The conclusions and more discussion are comprised of Sect.
4.

2 Holographic setup

Here the holographic model in Refs. [59,60], based on the dynamical softwall model, will be used. Next, the results for the quadratic
dilaton profile are reviewed. Then, this holographic model is applied to the linear and exponential dilaton profiles. The dynamical
softwall model is characterized by an Einstein-dilaton action, in the Einstein frame, given by

S= 1

16πG5

∫
d5x

√−g

(
R− 4

3
gμν∂μφ∂νφ+V (φ)

)
, (1)

where G5 is the 5-dimensional Newton’s constant, g = det(gμν), R denotes the Ricci scalar, φ is the dilaton field and V (φ) stands
for the dilaton potential. The equations of motion, derived from the action (1), are given by

Eμν − 4

3

(
∂μφ∂νφ − 1

2
gμν(∂φ)2

)
− 1

2
gμνV (φ) = 0, (2)

gμν∂μ∂νφ + 3

8

∂V (φ)

∂φ
= 0, (3)

with the Einstein tensor Eμν defined as

Eμν = Rμν − 1

2
gμνR. (4)

To solve the equations of motion, the metric ansatz to be considered here is given by1 [61]

ds2 = 1

ζ(z)2

(
dz2 − dt2 + d �x2) , (5)

φ = φ(z). (6)

Plugging this ansatz in Eqs. (2, 3) yields

ζ ′′(z)
ζ(z)

= 4

9
φ′(z)2, (7)

V (φ) = 12 ζ ′(z)2 − 4

3
ζ(z)2φ′(z)2. (8)

The advantage of this dynamical AdS/QCD model is that the background is a consistent solution of Einstein’s equations and,
within it, one can implement confinement, characterized by an area-law for the Wilson loop, and linear Regge trajectories (see for
instance [62,63]).

1 In this work the AdS radius L is set to unity.
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2.1 Quadratic Dilaton profile

Considering the quadratic dilaton profile φ(z) = ±k z2, the solution for ζ(z), and the dilaton potential, read

ζ(z) = z 0F1

(
5

4
; k

2 z4

4

)
, (9)

V (φ) = 12 0F1

(
1

4
; φ2

9

)2

− 16

3
φ2

0F1

(
5

4
; φ2

9

)2

, (10)

where 0F1 (a; z) denotes the confluent hypergeometric function. The integration constants were chosen so that ζ(z) → z in the UV
regime (z → 0). Besides, the solution for ζ(z) can be still put into the Bessel form, given by

ζ(z) =
(

3

k

)1/4

Γ

(
5

4

) √
z I 1

4

(
2

3
k z2

)
, (11)

where Iν(z) is the modified Bessel function of first kind.
The UV expansions for ζ(z) and V (φ) read

ζ(z) = z + 4

45
k2 z5 + O(z6), (12)

V (φ) = 12 + 16

3
φ2 + O(φ4). (13)

Therefore, one can see that, near the UV, the geometry is asymptotically AdS.
On the other hand, the IR expansions, i.e., z → ∞, go like

ζ(z) � e
2
3 k z2

(14)

V (φ) � e
4
3 φ. (15)

Here, it is worth pointing out that, although the full solutions for ζ(z) and V (φ), respectively, in Eqs. (9) and (10), are independent
of the sign of the dilaton profile, to get the proper IR behavior one should stick to the positive sign for the dilaton field. Otherwise
one would violate the confinement criteria, established in Refs. [64,65].

2.2 Linear Dilaton profile

Now, considering the linear dilaton profile, φ(z) = √
k z, the solutions for ζ(z) and the dilaton potential, respectively, read

ζ(z) =
3 sinh

(
2

√
k z

3

)

2
√
k

, (16)

V (φ) = 3

2

[
5 + 3 cosh

(
4 φ

3

)]
. (17)

Similar background solutions were found in [63] by using the warp factor as an input to obtain the corresponding dilaton profile.
The UV expansions, for ζ(z) and V (φ), in this case take the form

ζ(z) = z + 2

27
k z3 + O(z5), (18)

V (φ) = 12 + 4 φ2 + O(φ4). (19)

Again, the UV regime yields the geometry to be asymptotically AdS. Besides, the IR expansions yield

ζ(z) � e
2
3

√
k z (20)

V (φ) � e
4
3 φ, (21)

which looks very similar to the IR expansion for the quadratic dilaton case.

2.3 Exponential Dilaton profile

Here, the background described by the action (1) is investigated, with a modified exponential dilaton profile, given by [66]

φ(z) = k z2(1 − e−k z2
), (22)
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Fig. 1 Exponential dilaton φ(z)
(22) profile, for several values of k
in GeV2

Fig. 2 Warp factor ζ(z), for
several values of k in GeV2

Fig. 3 Dilaton potential V (φ) for
several values of k in GeV2

whose asymptotic behavior interpolates between the quadratic dilaton profile, φ(z) = k z2, in the IR regime, and a quartic dilaton
profile, φ(z) = k z4, in the UV limit. This profile was used in Ref. [66], in the context of the meson spectra and chiral phase
transitions, providing quite good results. Here we want to study the effect of this profile from the point of view of the even-spin
glueball spectra, associated with the pomeron, using the CE.

In Fig. 1 the exponential dilaton profile is shown, for several values of k in GeV2.
By using a shooting method, one can numerically solve Eqs. (7, 8), integrating from the UV boundary towards the IR one. The

boundary condition ζ(z) → z was used in the UV, i.e., one imposes the background asymptotically approaches AdS, in the UV. The
numerical solution for the warp factor ζ(z) is displayed in Fig. 2, for several values of k, including k = 0, where one recovers the
pure AdS case, i.e., ζ(z) → z.

In Figs. 3 and 4, respectively, the dilaton potential V (φ), given by (8), and its first derivative as a function of φ, are, respectively,
displayed, for several values of k.

One can see that there are some values of k for which the potential is non-monotonic. As discussed in Ref. [67], here we will
take a value of k for which the potential is a monotonically increasing function, to prevent the appearance of conformal fixed points,
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Fig. 4 First derivative of the
dilaton potential V (φ) for several
values of k in GeV2. The color
legends for each value of k in this
case are the same as in Fig. 3

making sure that the AdS is the true vacuum solution for φ = 0. For this reason we anticipate that k = 0.35 GeV2 will be fixed, for
the exponential dilaton profile in Eq. (22). A no larger value for k could be chosen, otherwise, the mass of the scalar glueball and
higher-spin resonances would be too high, in comparison with the literature [68]. .

2.4 Glueball action and mass spectra

At the classical level, QCD is a scale-invariant theory, which is broken by quantum fluctuations. The pure gluon part of QCD
Lagrangian in 4-dimensions is described by

LG = −1

4
Ga

μν(x)G
μν,a(x), (23)

where Ga
μν(x) = ∂μAa

ν(x) − ∂ν Aa
μ(x) + g f abc Ab

μ(x)Ac
ν(x), for Aμ(x) being the gluon field with a = 1, . . . , 8 color indexes.

Scalar glueballs states are interpolated by the lowest-dimensional gluonic operator O(x) = Ga
μν(x)G

μν,a(x), which carries vacuum
quantum numbers. The glueball action, in the string frame, reads [59,69]

S =
∫

d5x
√−ge−φ(z)

[
gMN ∂MG∂NG + M2

5G2
]
, (24)

where M5 is the mass of the scalar field G(x) in 5 dimensions. Action (24) is associated with the local gauge-invariant QCD boundary
operator tr(GμνGμν), whose dual string modes G(xμ, z) represent normalizable solutions of the scalar wave equation in the bulk
geometry with the UV behavior limz→0 G(x, z) = z�G(x), where � is the conformal dimension. One assumes the glueball can
be excited from the QCD vacuum and described by either the quenched dynamical holographic model, as introduced in Ref. [59],
yielding Eq. (24), or in other similar contexts, as in Ref. [69]. Eq. (25) is therefore obtained when one takes the variation of the
action (24) with regard to the scalar glueball field G. This dynamical softwall model has been used to describe the mass of scalar
glueball states and its radial excitations with good agreement with lattice data.

When one takes the variation of the action (24) with regard to the scalar glueball field G, the equations of motion from (24) read

∂M [√−gse
−φ(z)gMN ∂NG]−√−gse

−φ(z)M2
5G=0 . (25)

Using the ansatz

G(xμ, z) = eiq
μxμ+ B(z)

2 ψ(z), (26)

where

B(z)=φ + 3 ln ζs(z), (27)

one obtains a Schrödinger-like equation given by

− ψ ′′ + VSch(z) ψ = (−q2) ψ, (28)

where −q2 = m2
n , where mn are the glueball masses and n represents the radial excitations, with n = 0 being the ground state.

Note that in this section, and in the next one as well, we are going to consider only the ground state masses. Finally, VSch is the
Schrödinger potential given by

VSch(z) =
(
B ′2

4
− B ′′

2
+ M2

5 ζ−2 e
4
3 φ(z)

)
, (29)
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Table 1 Mass spectra (GeV) of even-spin glueballs as a function of J PC , for the quadratic dilaton model in the dynamical AdS/QCD model using the
anomalous dimension I (33) (second column) and II (34) (third column), in the lattice QCD (fourth column) [60], and in DP Regge model [73] (fifth and
sixth columns, respectively)

J PC MassI MassII Mass [latt] Mass73
I Mass73

II

0 1.84 0.82 1.595

2 2.64 2.11 2.39 1.76 1.758

4 3.52 3.21 3.80 3.19 3.198

6 4.42 4.25 4.48 4.25 4.249

8 5.31 5.26 5.16 5.165

10 6.21 6.27

12 7.10 7.64

14 7.99 8.64

16 8.88 9.63

18 9.77 10.6

where the relation (30) between ζs and ζ(z) was used. The relation between string frame quantities and Einstein frame ones, already
obtained in the previous subsections, is the following

ζs(z) = ζ(z) e− 2
3 φ(z), (30)

Vs(φ) = V (φ) e− 4
3 φ(z), (31)

where the subscript “s” denotes a quantity in the string frame, whereas ζ(z) and V (φ), respectively, given by (9) and (10), are in
the Einstein frame, for the quadratic dilaton case, and (16) and (17) for the linear dilaton case.

For higher spin fields in AdS, the following mass relation will be considered [70]

M2
5 = J (J + 4) − J + γ (J ), (32)

where one already considers twist-4 (� − J = 4) even-spin glueball operators O4+J ≡ J PC , with P = C = +1, where P is the
parity and C the charge conjugation. Besides, a contribution coming from the anomalous dimension γ (J ) is also included, for the
glueball operator.

Concerning the anomalous dimensions, we are going to consider it depending on the spin J in two different forms, which we
will call by anomalous I and anomalous II, respectively, given by:

γ I (J ) = γ0 J (anomalous I) (33)

γ I I (J ) = γ0 ln (1 + J ) (anomalous II) (34)

so that for J = 0, γ I I (J ) reduces to γ I (J ).

2.4.1 Quadratic Dilaton

For the quadratic dilaton profile, Eq. (28) was solved numerically in [59,71,72] in different contexts. In Ref. [60], Eq. (28) was
analytically solved, giving glueball masses in good agreement with QCD lattice data.

The mass spectra of the even-spin glueball family, for both the lattice QCD and the dynamical AdS/QCD model, and taking into
account both the anomalous dimensions I and II, given by (33) and (34), respectively, are displayed in Table 1. The values of k and
γ0 were chosen to better fit low J PC even-spin glueball resonances with lattice QCD data (for more details see [60] and references
therein).

The results presented in Table 1 were taken from Ref. [60], for the anomalous I and II cases. For the anomalous II case, we have
just used the analytically mass spectra obtained therein and computed the glueball masses, substituting the anomalous dimension I
by II, given by (34).

As an example, with the data in the second column of Table 1 one can reproduce the Regge trajectory of the even-spin glueball
family, illustrated by Fig. 5 in the dynamical AdS/QCD model. Besides, using data in the third column of Table 1, the Regge
trajectory of the even-spin glueball family, is depicted in Fig. 5 in lattice QCD.

2.4.2 Linear Dilaton

Now, we turn to the linear dilaton profile. Despite the fact that the linear dilaton is simpler, compared to the quadratic one, we
could not find any analytical solution for Eq. (28), as obtained in [60]. In this way, we had to solve it numerically, through the
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Fig. 5 (Squared) mass spectra of
even-spin glueballs as a function
of J PC , in both in lattice QCD
(purple points), containing just
even-spin glueballs, for
J PC = 0, 2, 4, 6; and in the
AdS/QCD model (magenta
points), for J PC = 0, 2, . . . , 10,
with the respective error bars

Table 2 Mass spectra (GeV) of even-spin glueballs as a function of J PC , for the linear dilaton model in the dynamical AdS/QCD model using the anomalous
dimension I (33) (second column) and II (34) (third column), in the lattice QCD (fourth column) [60], and in DP Regge model [73] fifth column)

J PC MassI MassII Mass [latt] Mass73
I/II

0 0.88 0.82 1.595

2 1.90 1.95 2.39 1.758

4 3.18 3.18 3.80 3.198

6 4.50 4.40 4.48 4.249

8 5.83 5.62 5.165

10 7.17 6.83

12 8.51 8.04

14 9.86 9.25

16 11.2 10.4

18 12.5 11.6

NDEingensystem routine in Mathematica, to obtain the mass spectra from (28). The best fit parameters were found to be

(
√
k, γ0) = (0.505 GeV,−1.995), anomalous I, (35)

(
√
k, γ0) = (0.445 GeV,−1.5), anomalous II. (36)

The results, for the obtained mass spectra, are displayed in Table 2, for both the anomalous I and anomalous II cases, respectively.

2.4.3 Exponential Dilaton

For the exponential dilaton profile (22), we also had to solve numerically Eq. (28), to obtain the mass spectra. The best fit parameters
read

(k, γ0) = (0.35 GeV2,−5), anomalous I, (37)

(k, γ0) = (0.35 GeV2,−9.1), anomalous II. (38)

The results for the mass spectra obtained are displayed in Table 3 for both the anomalous I and II cases.
Interestingly, for the exponential dilaton, in both cases (anomalous I and II) the best fit parameters (k and γ0) provided a mass

spectrum with degenerate scalar and tensorial glueballs, i.e.,

m2++

m0++
= 1. (39)

Similar findings were first observed in Ref. [74], and then in [70,75], in the context of twist-2 operators, wherein the transversal and
traceless part of the spin-2 field hμν satisfy the same field equation as the scalar field, explaining this degeneracy.

Finally, for the sake of completeness Figs. 6 and 7 show the Schrödinger potentials (29), for several values of spin J up to J = 10,
for both the anomalous I and II cases, respectively.
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Table 3 Mass spectra (GeV) of even-spin glueballs as a function of J PC , for the exponential dilaton model in the dynamical AdS/QCD model using
the anomalous dimension I (33) (second column) and II (34) (third column), in the lattice QCD (fourth column) [60], and in DP Regge model [73]
(fifth column)

J PC MassI MassII Mass [latt] Mass73
I/II

0 2.05 2.05 1.595

2 2.05 2.05 2.39 1.758

4 3.37 3.80 4.00 3.198

6 5.00 4.48 5.93 4.249

8 6.69 7.80 5.165

10 8.40 8.71

12 8.80 9.03

14 9.08 9.28

16 9.32 9.49

18 9.51 9.67

Fig. 6 Schrödinger potential (29)
for the anomalous I case, Vlinear ,
for several values of spin J , up to
J = 10

Fig. 7 Schrödinger potential (29)
for the anomalous II case, Vlog,
for several values of spin J , up to
J = 10

3 CE Regge trajectories of even-spin glueball resonances and mass spectra

The fundamental concept underlying the CE regards a measure of the correlations among scalar field fluctuations that describe the
physical system to be studied. To portray the system, the energy density – the time component of the stress-energy-momentum
tensor T00(�r) = ρ(�r) – is the essential ingredient, where �r ∈ R

n . The well-known 2-point function ϒ(�r) = ∫ ··· ∫
Rn ρ(�r+ �r)ρ(�r) d�r

defines a probability distribution [23] that makes the CE to be precisely the (Shannon) information entropy of correlations.
For computing the CE, one first calculates the Fourier transform

ρ(�k) = 1

(2π)n/2

∫
· · ·

∫
Rn

ρ(�r)e−i �k·�r dnx, (40)
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Table 4 The CE of even-spin glueballs as a function of J PC , taking into account lattice QCD data, up to J PC = 6, and AdS/QCD, for J PC = 8, 10

J PC CEAQDI CEAEDI CEALDI CEAQDII CEAEDII CEALDII

0 1.00 1.10 0.88 1.30 0.92 0.81

2 2.98 3.35 2.43 3.66 2.62 2.30

4 7.82 8.72 6.02 9.32 6.62 5.42

6 18.32 22.72 13.32 25.81 15.21 14.39

8 34.78 40.92 27.72 43.99 31.08 29.18

10 62.34 72.55 48.90 76.94 53.14 51.01

12 94.62 111.16 79.95 117.46 86.11 82.12

14 138.27 162.59 121.99 170.59 129.91 124.05

16 192.92 227.17 176.83 236.96 186.82 178.27

18 259.71 306.28 317.90 246.16 258.46 246.38

The second [fifth] column displays the even-spin glueballs CE for the anomalous quadratic dilaton I [II] (AQD I [II]) model; the third [sixth] column shows
the even-spin glueballs CE computed from the anomalous exponential dilaton I [II] (AED I [II]) model; the fourth [seventh] column illustrates the CE of the
even-spin glueball family in the anomalous linear dilaton I [II] (ALD I [II]) model

whose squared norm is the power spectrum. With it in hands, another important quantity, representing the correlation probability
distribution in the momentum space, is defined by the so-called modal fraction, as [3]

f(�k) =
∣∣∣ρ(�k)

∣∣∣2

∫ ··· ∫
Rn |ρ(�k)|2dnk . (41)

The modal fraction is the normalized Fourier transform of the 2-point correlation function of the field fluctuations. Therefore,
low-power modes are less likely to occur, when compared to higher power modes. The modal fraction also carries the input of all
modes with momentum �k that contribute to the energy density profile. The quantity in (41) measures the contribution of wave modes
to the power spectral density associated to the energy density. In fact, standing wave excitation modes can influence all the system
components at a fixed frequency associated with these modes. Being the total energy finite, the power spectral density regarding the
specific mode k, enclosed in the measure dnk, is given by P (k | dnk) ∼ |ρ(k)|2 dnk [6], referring to the spectral energy distribution
found in dnk, also measuring how the density spatially fluctuates. As the power spectrum describes the fluctuation of the scalar field
spatial profile, the modal fraction measures the contribution of a range of modes for the description of the shape of the scalar field.
Therefore, the differential CE reads

CEρ = −
∫

· · ·
∫
Rn

f�(�k) ln f�(�k) dnk , (42)

where f�(�k) = f(�k)/fmax(�k).
For studying even-spin glueball resonances, one can consider n = 1, corresponding to the z bulk dimension. Using the Lagrangian,

L , of the glueball action (24), into the stress-energy-momentum tensor

Tμν = 2√−g

[
∂gμν (

√−gL)−∂xα ∂ ∂gμν
∂xα

(
√−gL)

]
, (43)

and the ρ(z) energy density, to be used in Eqs. (40–42), is given by the following expression,

ρ(z) = T00(z) = 1

ζs(z)2

[
(G′(z))2 + M2

5 (G(z))2] . (44)

Since the even-spin glueball family has an energy density associated with, given by Eq. (44), another method for computing the
even-spin glueball mass spectra, using the CE, can be then implemented. For it, a hybrid model, that takes into account both the
lattice QCD model and AdS/QCD, will be employed to derive the mass spectra of higher even-spin glueball resonances.

3.1 Hybridizing lattice QCD data, up to J PC = 6, and AdS/QCD

The CE of even-spin glueballs, for the six dilaton models, can be numerically computed. As a first analysis, the CE of even-spin
glueballs can be derived as a function of J PC , by Eqs. (40 – 42), when one considers lattice QCD data, up to J PC = 6, and including
for J PC = 8, 10 the even-spin glueballs mass spectra (32). The results are compiled in Table 4.

Data in Table 4 can be then interpolated, to obtain the first type of configurational-entropic (CE) Regge trajectory, relating the CE
of even-spin glueballs resonances to their J PC spin. Firstly, the expression of the CE Regge trajectory, for the anomalous quadratic
dilaton I model, reads
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Fig. 8 CE of the even-spin glueballs as a function of J PC . The anomalous quadratic [exponential] dilaton I (AQD I) [(AED I)] model is shown by the red
[blue] points, whose interpolation continuous curve is given by Eq. (45) [(46)]. The anomalous linear dilaton I (ALD I) [quadratic dilaton II (AQD II)] model
is described by cyan [black] points, and inset by the light-gray dotted [dot-dashed light-gray] curve, described by Eq. (47) [(48)]. The anomalous exponential
[linear] dilaton II (AED II) model is illustrated by the gray [orange] points, with large-dashed [black dotted] interpolation curve plot by Eq. (49) [(50)]

CEAQDI(J
PC ) = 0.02329

(
J PC

)3 + 0.39750
(
J PC

)2

−0.34629 J PC + 1.27524. (45)

It corresponds to the dashed interpolating curve in Fig. 8. Cubic interpolation suffices to delimit accuracy within 0.42%. Besides, a
similar CE Regge trajectory can be derived, in the anomalous exponential dilaton I model, representing the continuous interpolating
curve in Fig. 8, as

CEAEDI(J
PC ) = 0.028715

(
J PC

)3 + 0.43693
(
J PC

)2

−0.22849 J PC + 1.36214, (46)

within 0.37% of accuracy. Analogously, the light-gray dotted CE Regge trajectory, for the anomalous linear dilaton I model,
interpolates the cyan points in Fig. 8, and is given by

CEALDI(J
PC ) = 0.0328785

(
J PC

)3 + 0.15853
(
J PC

)2

+0.12701 J PC + 0.98093, (47)

with accuracy within 0.23%.
The expression of the CE Regge trajectory, for the anomalous quadratic dilaton II model, interpolates the black points in Fig. 8,

and yields

CEAQDII(J
PC ) = 0.0354513

(
J PC

)3 + 0.13899
(
J PC

)2

+0.31736 J PC + 0.95238, (48)

having accuracy within 0.18%. Moreover, the CE Regge trajectory in the anomalous exponential dilaton II model, is represented by
the large-dashed light-gray curve that interpolates gray points, in Fig. 8,

CEAEDII(J
PC ) = 0.028021

(
J PC

)3 + 0.47771
(
J PC

)2

−0.09083 J PC + 1.34452, (49)

within 1.83% of accuracy. The black dotted CE Regge trajectory for the anomalous linear dilaton II model interpolates the orange
points in Fig. 8, reading

CEALDII(J
PC ) = 0.035483

(
J PC

)3 + 0.10871
(
J PC

)2

+0.17159 J PC + 0.91878. (50)

Cubic interpolation delimits accuracy within ∼ 0.2%.
Both data in Table 4 and the first type of CE Regge trajectories (45 – 50) are together displayed in Fig. 8.
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Fig. 9 CE of the even-spin
glueball family, with respect to the
squared mass spectra, taking into
account exclusively lattice QCD
data, up to J PC = 6, and
including, for J PC = 8, 10, the
even-spin glueballs mass spectra
(32). The anomalous quadratic
dilaton I [II] model is shown by
the red [black] boxes, whereas the
anomalous exponential dilaton I
[II] model is illustrated by the blue
[gray] boxes; the anomalous linear
dilaton I [II] model is depicted by
cyan [orange] boxes

Higher J PC even-spin glueballs resonances can, thus, have their CE extrapolated from the CE Regge trajectories (45 – 50),
respectively, for each dilaton model.

Among the six dilaton models, Fig. 8 shows that the anomalous exponential dilaton II model represents more configurationally
unstable states, whereas the anomalous linear dilaton II model regards even-spin glueballs resonances that are more stable, from the
configurational point of view.

For deriving the even-spin glueballs mass spectra in the six dilatonic models, we will first use, for the even-spin glueballs mass
spectra up to J PC = 6, the third column of Table 1. In fact, it encompasses an average derivation from lattice QCD, including both
a finite range of Nc and Nc → ∞. Therefore, we use just the available data up to J PC = 6, from QCD lattice setups, completing
for J PC = 8, 10 the even-spin glueballs mass spectra obtained from AdS/QCD (32). This is displayed in the second column of
Table 1. Therefore, the interpolation fitting of the point, representing the CE as a function of the even-spin glueballs mass spectra,
will provide the mass spectra of the next generation of even-spin glueballs resonances, with J PC = 12, 14, 16, 18, . . ..

The CE Regge trajectory, relating the CE to the even-spin glueballs (squared) mass spectra, is shown in Fig. 9.
Higher J PC even-spin glueballs resonances will have their CE extrapolated from the CE Regge trajectories (45, 51) and (48, 66),
for the anomalous quadratic dilaton I and II models, respectively; from the CE Regge trajectories (46, 56) and (49, 71), respectively,
for the anomalous exponential dilaton I and II models; and from Eqs. (47, 61) and (50, 76), respectively, for the anomalous linear
dilaton I and II models.

The dashed CE Regge trajectory in Fig. 9 corresponds to Eq. (51), that interpolates the mass spectra of even-spin glueballs for
the anomalous quadratic dilaton I model,

CEAQDI(m)=−0.0004947m6+0.0719030m4

−0.4808326m2 + 2.3348292, (51)

within 0.25% standard deviation. This hybrid model, taking into account lattice QCD data up J PC = 6 and including, for J PC =
8, 10, the even-spin glueballs mass spectra (32), yields the mass spectra of the P12,P14,P16 and P18 even-spin glueballs resonances,
by employing Eqs. (45, 51). In fact, for J PC = 12, Eq. (45) yields CE = 94.6198. Then substituting this value in the CE Regge
trajectory (51), and solving the resulting cubic algebraic equation, the solution is the mass of the P12 even-spin glueball, given by

mP12 = 7.0334 GeV. (52)

Similarly for the next even-spin glueball resonance P14, substituting J PC = 14 into Eq. (45) implies that the corresponding CE
equals to 138.269. Hence, replacing this value into the CE Regge trajectory (51) yields

mP14 = 8.0445 GeV. (53)

Besides, the same protocol can be accomplished for the P16 even-spin glueball, when Eq. (45) implies that CEP16 = 192.926. When
reinstated in Eq. (51), it produces the mass, for the P16 even-spin glueball,

mP16 = 9.7421 GeV. (54)

Analogously, for the P18, we compute CEP18 = 259.712, and reinstating into Eq. (51), it produces the P18 even-spin glueball mass

mP18 = 10.1372 GeV. (55)

Besides, the continuous curve in Fig. 9, that interpolates the blue boxes that fit the mass spectra of even-spin glueballs, when the
anomalous exponential dilaton I model is employed, is given by

CEAEDI(m)=−0.00079069m6+0.09515m4

−0.69436m2 + 3.08280, (56)
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within 0.98% standard deviation. For J PC = 12, Eq. (46) yields CEP12 = 111.1588. Then substituting this value into the CE Regge
trajectory (56), solving the resulting equation yields the solution

mP12 = 7.1628 GeV, (57)

for the P12 even-spin glueball mass. Similarly, for the even-spin glueball P14, substituting J PC = 14 into Eq. (46) implies that
CEP14 = 162.597. Hence, replacing it into the CE Regge trajectory (56) yields

mP14 = 8.8109 GeV. (58)

Employing a similar procedure for the P16 even-spin glueball, Eq. (46) for J PC = 16 yields CEP16 = 227.179. When replaced into
Eq. (56), it produces the mass, for the P16 even-spin glueball,

mP16 = 9.2062 GeV, (59)

and, respectively, for the P18 element, CEP18 = 306.284, and reinstating into Eq. (56), it produces the P18 even-spin glueball mass

mP18 = 9.5809 GeV. (60)

Now we analyze the anomalous linear dilaton I model, whose CE Regge trajectory is given by

CEALDI(m)=−0.000708092m6+0.078713m4

−0.73749m2 + 3.05330, (61)

within 0.83% standard deviation. When one fixes J PC = 12, Eq. (47) yields CE = 82.117. Therefore, this value is reinstated in the
CE Regge trajectory (61), and solving the resulting equation, the solution is the mass

mP12 = 7.3861 GeV, (62)

for the P12 even-spin glueball. It yields the range 7.35 GeV � mP12 � 7.42 GeV. Similarly for the next even-spin glueball
resonance, P14, substituting J PC = 14 into Eq. (48) implies that the CE equals 124.049. Replacing it into the CE Regge trajectory
(61) yields

mP14 = 8.6039 GeV, (63)

being the range 8.58 GeV � mP14 � 8.62 GeV trustworthy. A similar procedure is used for the P16 even-spin glueball, when Eq.
(47) implies that CEP16 = 178.267, for J PC = 16. When reinstated in Eq. (61), it yields the mass

mP16 = 9.0158 GeV. (64)

Now, replacing J PC = 18 in Eq. (47) implies that the corresponding CE has value 246.378. Therefore, solving for it, Eq. (66) yields

mP18 = 9.4091 GeV. (65)

The CE Regge trajectory interpolating curve, corresponding to the anomalous quadratic dilaton II model reads

CEAQDII(m)=−0.00078764m6+0.083448m4

−0.74445m2 + 3.01507, (66)

within 0.79% standard deviation. The mass spectra for the P12,P14,P16 and P18 even-spin glueballs resonances can be straight-
forwardly deduced, when one uses Eqs. (48, 66). In fact, for J PC = 12, Eq. (48) yields CE = 86.035. Then substituting this value
in (66), and solving the resulting equation, the solution is the mass

mP12 = 7.5618 GeV. (67)

It yields the range 7.54 GeV � mP12 � 7.58 GeV. Similarly for the next even-spin glueball resonance P14, substituting J PC = 14
into Eq. (48) implies the CE equals 129.916. Hence, replacing this value into the CE Regge trajectory (66) yields

mP14 = 8.4893 GeV, (68)

being the mass range 8.51 GeV � mP14 � 8.47 GeV a sound one. A similar procedure is used for the P16 even-spin glueball, when
Eq. (48) implies that CEP16 = 186.8200. When reinstated in Eq. (66), it yields the mass

mP16 = 8.8991 GeV. (69)

Now, replacing J PC = 18 in Eq. (48) implies that the corresponding CE has value 258.4495. Therefore, solving Eq.(66) with this
value yields

mP18 = 9.2907 GeV. (70)
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Table 5 Mass spectra (GeV) of even-spin glueballs as a function of J PC , taking into account exclusively lattice QCD data up to J PC = 6, and including
for J PC = 8, 10 the even-spin glueballs mass spectra (32).

J PC mAQDI mAEDI mALDI mAQDII mAEDII mALDII

12 7.03 7.16 7.38 7.56 7.25 7.35

14 8.04 8.81 8.60 8.48 8.60 8.72

16 9.74 9.21 9.01 8.90 8.98 9.15

18 10.14 9.58 9.40 9.29 9.34 9.56

The second and fifth columns display the CE of the anomalous quadratic dilaton I and II (AQD I and II) models; the third and sixth columns show the
even-spin glueballs CE computed from the anomalous exponential dilaton I and II (AED I and II) models; the fourth and seventh columns depict the CE
computed from the anomalous linear dilaton I and II (ALD I and II) models

The CE Regge trajectory interpolating curve, corresponding to the anomalous exponential dilaton II model reads

CEAEDII(m)=−0.000929376+0.103323m4

−0.688707m2 + 3.01135, (71)

within 0.89% standard deviation. Now, for J PC = 12, Eq. (49) yields CE = 117.46. Therefore, when one replaces it into (71), it
yields mass

mP12 = 7.2542 GeV. (72)

In a similar way, for the next even-spin glueball resonance P14, substituting J PC = 14 into Eq. (49) implies that the CE has value
170.593. Hence, replacing this value into (51) yields

mP14 = 8.60425 GeV. (73)

An analogous procedure is used for the P16 even-spin glueball, when Eq. (49) implies that CEP16 = 236.957. When reinstated in
Eq. (71), it yields the mass

mP16 = 8.98653 GeV. (74)

Now, replacing J PC = 18 in Eq. (49) implies that the CE has value 317.905. Therefore, solving for it Eq. (71) yields

mP18 = 9.3489 GeV. (75)

Now, the last model to be analyzed is the anomalous linear dilaton II model, whose CE Regge trajectory is given by

CEALDII(m)=−0.00064434m6+0.0743293m4

−0.71216m2 + 2.85792, (76)

within 0.83% standard deviation. When one fixes J PC = 12, Eq. (50) yields CE = 79.945. Therefore, Eq. (76) yields

mP12 = 7.3589 GeV. (77)

Similarly for the next member P14 of the even-spin glueball family, substituting J PC = 14 into Eq. (50) implies that the CE equals
121.990. Consequently, replacing this value into (76) yields

mP14 = 8.7266 GeV. (78)

A similar protocol is utilized for the P16 even-spin glueball, when Eq. (50) implies that CEP16 = 176.836. When reinstated in Eq.
(76), it yields the mass

mP16 = 9.1537 GeV. (79)

Now, replacing J PC = 18 in Eq. (50) implies that the corresponding CE has value 246.161. Therefore, solving for it Eq. (76) yields

mP18 = 9.5615 GeV. (80)

The mass spectra of even-spin glueballs as a function of the even-spin glueball mass m (GeV), taking into account exclusively
lattice QCD data up to J PC = 6, and including for J PC = 8, 10 the even-spin glueballs mass spectra (32) of AdS/QCD, in the six
dilaton models, are summarized in Table 5.
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Fig. 10 CE of the even-spin
glueball family with respect to
J PC , taking into account
exclusively lattice QCD data, up
to J PC = 6. The anomalous
quadratic dilaton I [II] model is
shown by red [black] triangles,
whereas the anomalous
exponential dilaton I [II] model is
illustrated by blue [gray] triangles;
and the anomalous linear dilaton I
[II] model is depicted by cyan
[orange] triangles

3.2 Using just lattice QCD data up to J PC = 6

Now, using exclusively the available data up to J PC = 6, from lattice QCD data, the CE of the even-spin glueball family can be
computed by Eqs. (40 – 42).

For the anomalous quadratic dilaton I model, the first type of CE Regge trajectory, when one considers exclusively the available
lattice QCD data up to J PC = 6 from lattice QCD, reads

CEAQDI(J
PC ) = 0.05333

(
J PC

)3 + 0.05750
(
J PC

)2

+0.62166 J PC + 0.99999. (81)

It is the dashed light-gray curve in Fig. 10, that interpolates red triangles with accuracy within 0.11%. Besides, the expression of
the CE Regge trajectory for the anomalous exponential dilaton I model, representing the continuous curve, that interpolates blue
triangles in Fig. 10, is given by

CEAEDI(J
PC ) = 0.11479

(
J PC

)3 − 0.29874
(
J PC

)2

+1.26333 J PC + 1.09999. (82)

The formula of the CE Regge trajectory, for the anomalous linear dilaton I model, reads

CEALDI(J
PC ) = 0.05352

(
J PC

)3 − 0.05850
(
J PC

)2

+0.66241 J PC + 0.88099. (83)

It corresponds to the dotted curve, interpolating cyan triangles in Fig. 8, with accuracy within 0.21%.
The expression of the CE Regge trajectory, for the anomalous quadratic dilaton II model, reads

CEAQDII(J
PC ) = 0.046875

(
J PC

)3 + 0.008749
(
J PC

)2

+0.645 J PC + 0.900. (84)

It corresponds to the light-gray dot-dashed curve, interpolating black triangles in Fig. 8. Cubic interpolation suffices to delimit
accuracy within ∼ 0.19%. Besides, the expression of the CE Regge trajectory for the anomalous exponential dilaton II model,
representing the large-dashed light-gray interpolating curve in Fig. 10, is given by

CEAEDII(J
PC ) = 0.15625

(
J PC

)3 − 0.5225
(
J PC

)2

+1.5950 J PC + 1.300. (85)

It has accuracy of 0.13%. Finally, the formula of the CE Regge trajectory, for the anomalous linear dilaton II model, reads

CEALDII(J
PC ) = 0.0660208

(
J PC

)3 − 0.1935
(
J PC

)2

+0.86741 J PC + 0.81100. (86)

It corresponds to the black dotted curve, interpolating orange triangles, in Fig. 8, with accuracy within ∼ 0.8%.
It is worth to mention that, for the anomalous linear models, there are several possibilities that best fit the QCD lattice even-spin

glueballs mass spectra, for low J PC . Hence, some appropriate choices for 2-tuple (k, γ0) can be employed for matching QCD
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Fig. 11 CE of the even-spin
glueball family with respect to
J PC , for different values of k and
γ0, in the anomalous linear model
I. Cyan points represent k = 0.255
and γ0 = −1.995; orange points
depict the case k = 0.2 and
γ0 = −1.25; and brown points
represent k = 0.235 and
γ0 = 1.595

Table 6 The CE of even-spin glueballs as a function of J PC , taking into account exclusively lattice QCD data up to J PC = 6

J PC CEAQDI CEAEDI CEALDI CEAQDII CEAEDII CEALDII

0 1.00 1.10 0.88 0.92 1.30 0.81

2 2.99 3.35 2.30 2.62 3.66 2.43

4 7.82 8.72 5.42 6.62 9.32 6.02

6 18.32 22.73 13.32 15.21 25.81 14.31

8 36.96 50.86 28.97 30.62 60.62 27.41

10 66.34 98.65 50.98 55.12 121.25 48.99

12 108.93 171.63 82.14 90.94 215.20 79.94

14 167.32 275.22 124.05 140.27 349.97 121.99

16 244.13 415.02 178.26 205.46 533.06 176.83

18 341.87 596.52 246.38 288.72 771.97 246.16

The second and fifth columns display the CE of the anomalous quadratic dilaton I and II (AQD I and II) models; the third and sixth columns show the
even-spin glueballs CE computed from the anomalous exponential dilaton I and (AED I and II) models; the fourth and seventh columns show the CE,
respectively, computed from the anomalous linear dilaton I and II (ALD I and II) models

Fig. 12 CE of the even-spin
glueball family with respect to
their mass spectra, taking into
account exclusively lattice QCD
data, up to J PC = 6. The
anomalous quadratic dilaton I [II]
model is shown by the red [black]
diamonds, whereas the anomalous
exponential dilaton I [II] model is
illustrated by the blue [gray]
diamonds; and the anomalous
linear dilaton I [II] model is
depicted by cyan [orange]
diamonds

lattice predictions regarding the even-spin glueball family. Some values best fit the J PC = 0++, 2++ even-spin glueballs, whereas
other values of (k, γ0) best fit higher J PC even-spin glueballs resonances. For different values of k and γ0, the CE of the even-spin
glueballs with respect to J PC is plot in Fig. 11.
Since the three appropriate choices of (k, γ0), studied and illustrated in Fig. 11, generate the respective CEs, with a maximum
variance of 1.1%, it indicates that they present approximately equal configurational stability. Hence, this is the reason we chose
k = 0.255 and γ0 = −1.995 in all the analysis regarding the anomalous linear dilaton I model.

When one attributes values J PC = 8, 10, . . . , 18 in the CE Regge trajectories (81, 82, 84), respectively, for the six dilaton
models, the CE of the even-spin glueball family are compiled, in the second to the seventh columns of Table 6.

Similarly for the hybrid model shown in Fig. 8, also Fig. 10 illustrates that the anomalous exponential dilaton I model regards
even-spin glueballs resonances that are configurationally more unstable states when compared with other dilaton models. Again,
the anomalous linear dilaton I model does designate even-spin glueballs resonances that are more stable, from the configurational
point of view.
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Now, with the even-spin glueball family mass spectra, for J PC = 0, 2, 4, 6, obtained from lattice QCD, higher spin even-spin
glueballs resonances can have their masses determined, when the second type of CE Regge trajectories is considered. They interpolate
the plot of the even-spin glueball family, for J PC = 0, 2, 4, 6, with respect to their mass spectra, for the six dilaton models, and
displayed in Fig. 12. Higher J PC even-spin glueballs resonances will have their mass spectrum, therefore, extrapolated from Eqs.
(81, 87), for the anomalous quadratic dilaton I model; from Eqs. (82, 94), for the anomalous exponential dilaton I model; from Eqs.
(84, 98), for the anomalous quadratic dilaton model; and from Eqs. (83, 96) and (86, 102), respectively, for the anomalous linear
dilaton I and II models.

Therefore the CE of even-spin glueballs with respect to the (squared) mass spectra, for the anomalous quadratic dilaton I model,
is shown by the dashed curve in Fig. 12, that interpolates the red diamonds, reading

CEAQDI(m)=0.00534334m6−0.1243014m4

+1.339408m2 − 1.690979, (87)

within 0.78% standard deviation. For obtaining the mass spectra of the higher spin resonances in the even-spin glueball family,
let us first analyze the CE Regge trajectory (87), also derived from the anomalous quadratic dilaton I model. In fact, choosing for
J PC = 8, Eq. (81) yields CE = 36.961. When this value is replaced in the CE Regge trajectory (87), it yields the mass

mP8 = 4.9875 GeV (88)

It yields the range 5.00 GeV � mP8 � 4.96 GeV. Analogously, when one substitutes J PC = 10 into Eq. (81), it yields the CE
equal to 66.30. Putting back in Eq. (87) produces

mP10 = 5.4253 GeV, (89)

being the mass range 5.44 GeV � mP10 � 5.48 GeV. For the P12 even-spin glueball, the CE Regge trajectory (81) yields CEP12 =
108.98, when J PC = 12 is taken into account. When reinstated in Eq. (87), the mass

mP12 = 5.8214 GeV (90)

is then derived. Similarly, replacing J PC = 14 in Eq. (81) implies CEP14 = 167.32. Consequently, when one solves Eq.(87) for
this value, it implies that

mP14 = 6.1879 GeV. (91)

In the same way, the CE Regge trajectory (81) yields CEP16 = 244.12, when J PC = 16 is taken into account. When reinstated in
Eq. (87), the mass

mP16 = 6.5316 GeV (92)

is derived. Moreover, the value J PC = 18 is associated to CEP18 = 341.86 that can be replaced in Eq. (87), producing

mP18 = 6.8568 GeV. (93)

These results are compiled in the second column in Table 7.
The CE Regge trajectory, that interpolates the CE of the even-spin glueball family, for J PC = 0, 2, 4, 6, to the even-spin glueball

(squared) mass spectra, is shown by the continuous curve in Fig. 12, for the anomalous exponential dilaton I,

CEAEDI(m)=0.00829209 m6−0.203204 m4

+2.026744m2 − 3.142225, (94)

within 0.4% standard deviation. For the anomalous exponential dilaton I model, in fact, choosing for J PC = 8, Eq. (82) yields
CE = 50.863. When this value is replaced in the CE Regge trajectory (94), it yields the mass

mP8 = 5.0103 GeV, (95)

for the P8 even-spin glueball. It yields the range 4.99 GeV � mP8 � 5.03 GeV. Doing the same calculations analogously, for
J PC = 10, . . . , 18, the derived mass spectra for this dilaton model is displayed in the third column of Table 7.

Respectively, for the anomalous linear dilaton I model, the CE values of the even-spin glueball family, for J PC = 8, 10, . . . , 18
are displayed in the fourth column of Table 7. The CE Regge trajectory, interpolating the CE to the even-spin glueballs (squared)
mass spectra, is displayed the dotted curve in Fig. 12, being given by

CEALDI(m)=0.0048877 m6−0.12293 m4

+1.31044m2 − 1.98507, (96)
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Table 7 Mass spectra (GeV) of even-spin glueballs as a function of J PC , taking into account exclusively lattice QCD data up to J PC = 6

J PC mAQDI mAEDI mALDI mAQDII mAEDII mALDII

8 4.99 5.01 4.97 4.98 5.03 4.97

10 5.42 5.48 5.37 5.40 5.52 5.38

12 5.82 5.90 5.74 5.79 5.96 5.75

14 6.19 6.30 6.07 6.15 6.37 6.09

16 6.53 6.67 6.39 6.49 6.76 6.41

18 6.86 7.02 6.68 6.81 7.13 6.71

The second and fifth columns display the CE of the anomalous quadratic dilaton I and II (AQD I and II) models; the third and sixth columns show the
even-spin glueballs CE computed from the anomalous exponential dilaton I and (AED I and II) models; the fourth and seventh columns show the CE,
respectively, computed from the anomalous linear dilaton I and II (ALD I and II) models

within 0.1% standard deviation. Choosing for J PC = 8, Eq. (83) yields CE = 28.9767. Now, replacing this value in (96) yields the
mass

mP8 = 4.96854 GeV, (97)

for the P8 even-spin glueball. It yields the range 4.94 GeV � mP8 � 4.98 GeV. One can accomplish similar computations, for
J PC = 10, . . . , 18, obtaining the derived mass spectra for this dilaton model in the fourth column of Table 7.

Besides, the CE Regge trajectory, interpolating the CE to the even-spin glueballs (squared) mass spectra, is displayed the dot-
dashed curve in Fig. 12, for the anomalous quadratic II dilaton,

CEAQDII(m)=0.0050079 m6−0.12725 m4

+1.40438m2 − 2.20316, (98)

within 0.2% standard deviation. In fact, choosing for J PC = 8, Eq. (84) yields CE = 30.621. When this value is replaced in the
CE Regge trajectory (98), it yields the mass

mP8 = 4.9771 GeV, (99)

for the P8 even-spin glueball. It yields the range 4.94 GeV � mP8 � 4.99 GeV. The results for J PC = 10, . . . , 18 are listed in the
fifth column in Table 7.

The CE Regge trajectory, that interpolates the CE of the even-spin glueball family, for J PC = 0, 2, 4, 6, to the even-spin glueballs
(squared) mass spectra, is shown by the continuous curve in Fig. 12, for the anomalous exponential dilaton II,

CEAEDII(m)=0.00949858 m6−0.223326 m4

+2.07616m2 − 2.69281, (100)

within 0.4% standard deviation. For the anomalous exponential dilaton II model, in fact, choosing for J PC = 8, Eq. (85) yields
CE = 60.621. When this value is replaced in the CE Regge trajectory (100), it yields the mass

mP8 = 5.0289 GeV, (101)

for the P8 even-spin glueball. It yields the range 4.99 GeV � mP8 � 5.03 GeV. The derived mass spectra of the even-spin glueball
family, for the further states J PC = 10, . . . , 18, is displayed in the sixth column of Table 7.

Respectively, for the anomalous linear dilaton II model, the CE values of the even-spin glueball family, for J PC = 8, 10, . . . , 18
are displayed in the fourth column of Table 6. The CE Regge trajectory, relating the even-spin glueballs mass spectra to the CE, for
this model, reads

CEALDII(m)=0.00470485 m6−0.116337 m4

+1.17817m2 − 1.51081, (102)

within 0.4% standard deviation. Consequently, employing the same procedure using the CE Regge trajectories (86, 102), the derived
mass spectra of the even-spin glueball family, for J PC = 8, 10, . . . , 18, is displayed in the seventh column of Table 7.

One can compare the even-spin glueballs mass spectra in Tables 5 and 7, computed from the CE Regge trajectories, with the ones
purely computed from AdS/QCD in Tables 8 and 9 .

The fourth column in Table 7, for the values k = 0.255 and γ0 = −1.995, represents the even-spin glueballs mass spectra
obtained purely from AdS/QCD. These values were used to derive the CE Regge trajectories (47, 61) — for the hybrid model
considering exclusively lattice QCD data, up to J PC = 6, and including for J PC = 8, 10 the even-spin glueballs mass spectra (32)
and extrapolating for J PC = 12, . . . , 18 the mass spectra — and (83, 96) — regarding exclusively lattice QCD data, up to J PC = 6,
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Table 8 Even-spin glueballs mass spectra (GeV) as a function of J PC , for the anomalous linear dilaton I model, from AdS/QCD, for several values of k
and γ0

Even-spin glueballs mass spectra: anomalous linear dilaton I model

J PC k = 0.17 k = 0.16 k = 0.13 k = 0.255

γ0 = −1.0 γ0 = −1.5 γ0 = −1.0 γ0 = −1.995

8 5.073 4.813 4.494 5.837

10 6.177 5.882 5.464 7.176

12 7.281 6.952 6.435 8.519

14 8.385 8.023 7.405 9.863

16 9.489 9.095 8.376 11.209

18 10.594 10.167 9.347 12.555

Table 9 Even-spin glueballs mass spectra (GeV) as a function of J PC , for the anomalous linear dilaton II model, from AdS/QCD

Even-spin glueballs mass spectra: anomalous linear II model

J PC k = 0.2 k=0.2 k = 0.12

γ0 = −1.5 γ0 = 1.595 γ0 = 1.233

8 5.626 5.841 4.605

10 6.838 7.032 5.538

12 8.046 8.223 6.471

14 9.252 9.415 7.404

16 10.457 10.607 8.337

18 11.660 11.800 9.271

and extrapolating for J PC = 8, . . . , 18 the mass spectra. Thence, the values k = 0.255 and γ0 = −1.995 have been employed to
compute the CE with the respect to both J PC and the even-spin glueballs mass spectra, represented by cyan [orange] points for the
anomalous linear dilaton I [II], respectively, in Figs. 8 and 9. Let us compare the even-spin glueballs mass spectra, generated from
the anomalous linear dilaton I model in the hybrid model in Table 5, to the even-spin glueballs mass spectra obtained purely from
AdS/QCD in Table 8. Let us denote by Δk the difference between the, respectively, derived masses when J PC = k. Therefore, when
J PC = 12, Δ12 = 16.5%, whereas the value J PC = 14 yields Δ12 = 14.6%. Also, Δ16 = 24.3% for J PC = 16 and Δ18 = 34.7%.
The increment of the mass difference, as k increases, is understood as the uncertainty in the models for higher even-spin glueballs
resonances. A similar reasoning can be obtained for all other dilaton models as shown in Ref. [68].

4 Concluding remarks

The CE was computed for even-spin glueballs, for six dilaton models, namely, the anomalous quadratic dilaton I and II, the
anomalous linear dilaton I and II, and the anomalous exponential dilaton I and II models. Two types of configurational-entropic
Regge trajectories were derived, for the even-spin glueballs resonances. The first CE Regge trajectory relates the CE of the even-spin
glueballs to their J PC spin, represented by Eqs. (45 – 50), respectively, for the anomalous quadratic I, the anomalous exponential
dilaton I, the anomalous linear I, the anomalous quadratic II, the anomalous exponential II, and the anomalous linear II dilaton
models. These CE Regge trajectories are interpolation curves, taking into account exclusively lattice QCD data, up to J PC = 6, and
including for J PC = 8, 10 the even-spin glueballs mass spectra (32), shown in Fig. 8. The second type of CE Regge trajectories
relates the CE of even-spin glueballs with their mass spectra, for the six dilaton models, represented by Eqs. (51, 56, 61, 66, 71, 76),
respectively, shown in the plots of Fig. 9. Consequently, the even-spin glueball family mass spectra were extrapolated from the CE
Regge trajectories. A range for the mass spectra of even-spin glueballs with higher J PC was then estimated with good accuracy.
Higher even-spin glueballs resonances, beyond J PC = 18, are not explored, since they are configurationally very unstable, with
huge values of CE. Even states with J PC > 12 are unlikely to be experimentally detected, at least with proposed experiments that
have been run in LHC.

For both the protocols adopted, (a) in Subsect. 3.1 computing the CE of even-spin glueballs as a function of J PC , taking into
account lattice QCD data up to J PC = 6, and including for J PC = 8, 10 the even-spin glueballs mass spectra (32); and (b) in
Subsect. 3.2, taking into account exclusively lattice QCD data, up to J PC = 6 — both Figs. 8 and 10 exhibit the even-spin glueballs
resonances in the anomalous exponential dilaton I as more unstable, from the configurational point of view, when compared with
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the other dilaton models approached. Besides, the linear dilaton model II encompasses more stable even-spin glueballs resonances.
More configurationally stable resonances represent quantum states that are more dominant and prevalent, from the phenomenological
standpoint [4,17,21]. Hence, this method points to even-spin glueballs resonances that may be more detectable and observable in
experiments.

From the experimental point of view, the f2(1950) resonance, with J PC = 2++ and mass 1.944 ± 0.012 GeV [14], has been
recently proposed to be a promising candidate for the even-spin glueball ground state [76]. Since there is no experimental data
available in PDG for high J PC even-spin glueballs resonances, then at least the obtained mass spectra should be compared to lattice
QCD data. However, available calculations encompass just low J PC even-spin glueballs resonances. Hence, the analysis and tables
heretofore obtained in this work, containing the even-spin glueballs mass spectra for the six dilaton models, allows us to create
a quite useful phenomenological database. The CE Regge trajectories provide the derivation of the mass spectra of higher J PC

even-spin glueballs resonances, acting as a benchmarking of AdS/QCD models.
One of the advantages of employing CE-based techniques is the straightforward computational tools, when one compares to other

approaches of AdS/QCD, comprising lattice QCD. Another goal of using the CE for even-spin glueballs is the interpolation of a
mixture of AdS/QCD and lattice QCD, as implemented in Sect. 3.1, to derive the mass spectra of the next generation of even-spin
glueball resonances. The lower the information entropy of a system, the lower the chaoticity it presents. Besides, as the CE is
equivalent to the information chaoticity carried by a message, one can shed light on the even-spin glueball families as results of
experimental particle production processes. In high-energy collisions involving gluons and quarks, chaos in QCD gauge dynamics
may set in, and only particles in final states can be measured. The chaotic profile of collisions that produce even-spin glueball
excitations can be then quantified by the loss of information at the end of the collision processes. This quantitative aspect was here
shown to be encompassed by the CE, providing phenomenological determination by the derived mass spectra of even-spin glueball
states with higher excitation numbers. This additional interpretation complies to other results in the literature, regarding chaos in
QCD and holography (see, e. g., [77–82]). Tables 1 – 3, for all dilaton models under scrutiny, compared the obtained mass spectra,
in the CE approach, to the ones derived by lattice QCD and also the DP Regge model, for J ≤ 6 and J ≤ 8, respectively. One more
relevant point of the CE approach is that the DP Regge model and lattice QCD do not derive the mass spectra for J > 8. Above it,
there is no data in the literature, up to our knowledge. One of our aims is to provide and make available a useful phenomenological
database, presenting a data bank for high-energy reactions and decays, having even-spin glueballs as a byproduct in high-energy
experiments. Since the odderon has been recently detected [83,84] at TOTEM LHC and DØ experiment at Tevatron, we expect
that data about even-spin glueballs, including the Pomeron, may be soon also evinced experimentally. The comparison between
AdS/QCD-obtained mass spectra and the CE-based procedure that here hybridizes AdS/QCD should be also analyzed with available
experimental data, of the higher excitations that are still beyond the current detection threshold as posed in Ref. [68].

Furthermore, it would be interesting to extend the analysis made in this paper considering different profiles for the dilaton field,
and also considering glueball operators of twist-2, since some works propose and consider the pomeron to be associated with a
twist-2 object [58,73,85]. Here, we considered the twist-4 approach to include the scalar glueball sector. However, there are some
shreds of evidence, within the holographic approach, which show that the mass of the scalar and tensor glueballs are degenerate.
Here, we provided one more piece of evidence for this in the case of the exponential dilaton profile. Finally, another possibility is
to extend the analysis we have made here to the odd-spin glueballs, which are associated with the odderon.
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