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Abstract The design of future circular high-energy hadron colliders is based on the achievement of challenging magnetic fields,
needed to keep the hadron beams orbiting along the ring circumference. The strength of the dipolar magnetic field is a function
of the machine radius, beam energy, and of the fraction of the ring circumference that can be filled with dipoles. In this paper, we
propose to use a combined-function periodic cell to maximise the filling factor of the dipole magnets. The optical properties of the
proposed periodic structure are discussed in detail together with the design of the superconducting magnets needed to implement
the proposed approach.

1 Introduction

The advent of the alternating gradient (AG) paradigm, also called strong focusing, revolutionised the domain of accelerator physics
and technology [1], and the foundations of the modern field of accelerator physics are laid in the seminal papers [2–5]. The novel
principle of AG machines allowed a breakthrough in the performance of circular particle accelerators, which is testified by the jump
in beam energy, from ≈ 3 GeV of the Cosmotron [6] to ≈ 30 GeV of the first two rings designed using this principle, namely the
CERN Proton Synchrotron (PS) [7–12], and the BNL Alternating Gradient Synchrotron (AGS) [13–15]. Then, the CERN Intersecting
Storage Ring (ISR) [16], the world’s first hadron collider, followed the first two AG machines. Since then, several other hadron
circular accelerators were built around the world, with even higher beam energies. It is worth noting a major difference between
the first two rings and the others, as the normal-conducting magnets were combined-function devices, with dipolar and quadrupolar
magnetic fields superimposed. This feature has led to a compact magnet design, thus leading to relatively small machines for the
maximum beam energy possible.

The next technological jump was the advent of superconducting magnets, which pushed even further the energy frontier of circular
storage rings and colliders (see, e.g. [17] and references therein for a full account on the topic). The limit of beam energy is in the
process of being increased even more by the CERN study on the Future Circular Collider (FCC), in the form of a hadron collider
with 50 TeV beam energy [18].

Recently, it has been suggested to the authors [19] to consider whether the quest for high energy could be made more efficient
by resuming the old concept of combined-function magnets. This could lead to a couple of important improvements: the removal
of the arc quadrupoles, which represents a non-negligible saving in the cost of the accelerator, plus the resources needed for the
magnet developments, etc. Today, the nominal layout of the FCC-hh, based on the LHC arc, considers having a group of correctors
(orbit dipole correctors, tuning quadrupoles, skew quadrupoles, chromatic sextupoles, Landau octupoles) gathered in the cryostat
hosting the cell quadrupole. The filling factor of the accelerator could be further increased if one could spread these correctors in the
combined-function dipoles. This possibility will be explored in a forthcoming paper, and this advantage could be used to reduce the
dipole field, always at constant beam energy, whose marginal cost is extremely high in the 15–16 T range. It is also worth mentioning
that in the framework of the Muon Accelerator Program (MAP), superconducting combined-function magnets have been studied
[20]. However, the design principle is to have nested dipolar and quadrupolar coils (in any of the configurations possible, i.e. dipole
as inner or outer coils), which is not what is proposed in this article, where a unique set of coils generates a superposition of dipole
and quadrupole fields.

In this paper, the features of a combined-function periodic cell are considered in detail in order to sketch a design of a possible
periodic structure for a high-energy collider. The properties of the combined-function superconducting magnets are then studied
and a possible design is presented, which complies with the capabilities of the current magnet technology, i.e. assuming a peak field
of 16 T, which is the nominal value assumed for the FCC-hh design [18]. It is worth mentioning [21] that a periodic cell based on
combined-function magnets had been considered in the early days of the LHC design [22], but it was not retained. The option of
using a combined-function optics for a partial energy upgrade of the CERN LHC ring was mentioned in [23], but not evaluated

a e-mail: massimo.giovannozzi@cern.ch (corresponding author)

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjp/s13360-022-02583-0&domain=pdf
http://orcid.org/0000-0002-2093-9395
mailto:massimo.giovannozzi@cern.ch


  361 Page 2 of 20 Eur. Phys. J. Plus         (2022) 137:361 

Fig. 1 Top: sketch of the layout of a periodic FODO cell. In the case of the thin-lens approximation, the quadrupoles are replaced by thin elements located
at 0, Lc/2, Lc, whereas the thin dipoles are located at Lc/4, 3Lc/4. Bottom: sketch of the layout of a periodic combined-function cell. The type of the
magnetic field generated by each element is also shown

in any detail. On the other hand, in [24], in the framework of a full energy upgrade of the LHC, the so-called HE-LHC [25], a
combined-function cell had been considered. However, in that case, the term combined-function optics has a different meaning from
that used in this paper. The proposed HE-LHC periodic cell had a standard FODO structure i.e. with separated-function quadrupoles,
but the superconducting dipoles featured a nonzero quadrupolar component. In this paper, we focus on a pure combined-function
periodic cell to push for the maximum possible benefits for the ring design and its performance.

The plan of the paper is as follows: In Sect. 2, the basic properties of a FODO cell are recalled, with particular emphasis on the
correction of chromatic effects. In Sect. 3, the properties of the optical parameters of a generic combined-function cell are presented
and discussed in detail, with Sect. 3.2 detailing a comparison of the optical parameters of the two cell types, and Sect. 3.3 discussing
in detail the essential topic of chromaticity correction. In Sect. 4, a possible cell layout, based on the combined-function concept, is
presented. The properties of the superconducting magnets needed to implement the proposed concept are discussed in Sect. 5, and
based on this discussion, an optimised layout is shown in Sect. 6. Finally, conclusions are drawn in Sect. 7. A collection of results
on the optical properties of a periodic FODO cell is presented in “Appendix A”, and the impact on the longitudinal dynamics of the
optical parameters of the proposed combined-function periodic cell is discussed in “Appendix B”, and some considerations on an
asymmetric combined-function cell design are presented in “Appendix C”.

2 Generalities on the FODO periodic cell

A FODO cell1 is the standard periodic structure that constitutes the building block of modern circular storage rings and colliders.
In its essence, it is made of magnets generating dipolar and quadrupolar fields, the dipoles being located in between the two main
quadrupoles that feature fields of opposite type, i.e. focusing and defocusing to implement the AG principle (see Fig. 1, top, for a
sketch of a system of length Lc).

The key properties of this lattice structure have been derived in the seminal paper [5] in which the principles of strong focusing
have been studied in detail. The optical properties of such a structure can be derived by using the so-called thin-lens approximation,
where the quadrupoles are located at positions 0, Lc/2, Lc, while the dipoles are at positions Lc/4, 3Lc/4. The main results for
such a structure are collected in “Appendix A”.

An important concept in the design of a periodic structure and of a circular accelerator is the dipole filling factor, i.e. the fraction
of the cell length that is occupied by dipole magnets. This parameter is essential due to its link with the energy reach of the circular
particle accelerator, as it provides the value of the integrated dipolar field that can be used to bend the particles and keep them on
the reference orbit. If Lb stands for the total length of the dipoles installed in the FODO cell, then the filling factor χ is given by
χ = Lb/Lc, and typical values are χLHC ≈ χFCC−hh ≈ 0.8. Note that this definition disregards any engineering detail, such as the
need of free longitudinal spaces to ensure the interconnection of the various superconducting magnets installed in the cell. In this
sense, χ is an upper bound on the actual filling factor achievable in the tunnel. The importance of the quantity χ is that it enters in
the fundamental relation

Bmax χ ρc = e

c
pbeam (1)

connecting the maximum dipolar field Bmax, which is a function of the technology used for the superconducting magnets, the bending
radius ρc, which is proportional to the dimension of the tunnel, and the beam momentum pbeam, so that χ → 1 is the goal of any
high-energy collider.

1 This standard acronym stands for Focusing, Off, Defocusing, Off, to indicate that the sequence of quadrupolar fields along the cell is interspersed by
regions without any focusing field.
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Another key feature of a periodic structure is its chromatic properties. These have to do with the off-momentum dynamics of the
charged particles, which have to be compensated for by a set of dedicated sextupolar magnets (see, e.g. [26]). At the lowest order,
the off-momentum dynamics has an impact on the betatron tunes that are moved from their nominal values due to the so-called
chromaticity (see “Appendix A”). For this reason, it is customary to locate two independently powered sextupole magnets close to
the focusing and defocusing quadrupoles of the FODO cell, respectively. The mathematical detail of the chromaticity correction is
reported in “Appendix A”, and here we would like to stress that the required strength of the sextupoles is obtained by solving a linear
system of equations that involve the beta- and dispersion-functions of the FODO cell. In particular, given the standard location of
the sextupoles, the difference between βmax and βmin plays an essential role in determining the strength of the sextupoles, in the
sense that a reduction of such a difference increases the required strength.

The chromatic sextupoles are a source of nonlinearity in the beam dynamics, which perturbs the beam behaviour. The global
impact of nonlinearities can be estimated by means of the so-called resonance driving terms (RDT) (see [27–32] for a selected list
of references), which are expressed, for the case of sextupole magnets and in first order with respect to their strength as
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where |m| + |n| = 3 is the order of the resonance under consideration and

K̃2(s) = 1

B0ρc

∂2By(s)

∂x2 (3)

is the strength of the sextupolar field (B0ρc being the magnetic rigidity). Under the assumption that the sextupoles are represented
as thin lenses, the integral can be replaced by a finite sum, and when the strength of the chromatic sextupoles is connected to the
chromaticity value and the FODO cell properties (see, “Appendix A”, Eq. (35)) with

K2 = �

B0ρ

∂2By

∂x2 (4)

being the integrated sextupolar strength (� being the magnetic length of the sextupoles), and one obtains the following expressions
for the main sextupolar RDTs [33]
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where the dependence of the FODO-cell characteristics, namely Lc, φc, μc, and the chromaticity change ΔQ′ is clearly visible.

3 The combined-function periodic cell

3.1 General properties

The layout of the proposed combined-function cell is shown in Fig. 1 (bottom). It is made of magnets in which the dipolar component
is superimposed on a quadrupolar one, either of focusing or defocusing type. For this periodic structure, the thin-lens approximation
is not appropriate and will never be used in the following. The structure is fully symmetric with respect to the length of the focusing
and defocusing magnets, although it is worth mentioning that asymmetric designs could be envisaged and some of their properties
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are reported in “Appendix C”. The first comment about the proposed layout is that this periodic cell features χ = 1, under the same
assumptions used for the FODO cell, i.e. no space for interconnections is considered, which is an essential advantage with respect
to its FODO counterpart.

Neglecting the weak focusing generated by the dipoles, which is always an excellent approximation given the target application
of high-energy rings, the 4 × 4 cell transfer matrix M(λF, λD) can be written, using λF,D = √

KF,DLc, where KF,D stand for the
normalised quadrupolar gradient, as

M =
(
Mx 0
0 My

)
(6)

with Mz (note that in the paper the variable z is used to indicate generically the variable x or y) being 2 × 2 matrices given by
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(7)
where the subscript indicates the type of quadrupole that has been considered as the first element to compute the matrix. Based on
these expressions, one obtains the following relationship between the quadrupolar gradients and the phase advances over the cell
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In the results presented in the rest of the paper, these relationships have been used to express the quadrupolar gradients as a function
of the cell phase advances, which are the most convenient physical observables to describe the properties of the combined-function
periodic structure. This is possible by using Eq. (8) to determine the functions λF = fF(μc,x , μc,y) and λD = fD(μc,x , μc,y), e.g.
by expressing fF, fD as truncated power series.

The first point to consider is the stability of the transfer matrix [5], which corresponds to determining when

|Tr (Mx (λF, λD)) | ≤ 2 and |Tr
(
My(λF, λD)

) | ≤ 2 . (9)

Figure 2 shows the domain in the space (λF, λD) in which the conditions (9) are satisfied. In the left graph, the regions corresponding
to the stable conditions for each of the two matrices Mx , My independently are depicted, whereas in the right graph, a zoom in is
reported, in which the intersection of the two regions is shown. The practical area of stability lies in the domain 0 ≤ λF, λD ≤ 4
as outside this there are only tiny regions in which the stability is ensured for both horizontal and vertical matrices. Such outlying
regions are to be discarded for two main reasons, namely because the magnetic gradients needed are unnecessarily large, and because
the size of the regions is too small to enable stable operation of a particle accelerator.

It is instructive to derive the relationship between the integrated gradients for a FODO cell (using the thin lens approximation)
and those for a combined-function cell, under the simplifying assumption of equal phase advances in both transverse planes. Indeed,
one finds by using Eqs. (29) and (8) that
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where the symbol K is used to indicate the integrated normalised gradients 2. Therefore, one finds
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which indicates a nonlinear relationship between the integrated normalised gradients of the FODO and the combined function cell
with a sizeable increase in the latter with respect to the former, as all neglected terms are of even power and of negative sign.

2 The length of the quadrupoles in the FODO and in the combined-function cells are not the same.
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Fig. 2 Stability region in the (λF, λD) space (left) and a zoom-in view of the intersection region (right)

The standard parametrisation of the cell matrix by means of the Twiss parameters [5] allows determining the values of the
beta-function and dispersion at key locations, namely at the beginning of the cell and at Lc/2, which are selected for the sake of
comparison with the corresponding Twiss parameters of the FODO cell. Noting that for symmetry reasons, the alpha function is
zero at these locations, one obtains

βx,F = (Mx,F)1,2

sin μc,x
βy,F = (My,F)1,2

sin μc,y
(12)

βx,D = (Mx,D)1,2

sin μc,x
βy,D = (My,D)1,2

sin μc,y
, (13)

where Mx,D and My,D represent the cell matrices in the horizontal and vertical planes, respectively, computed using as starting
point of the cell, the mid-point of the defocusing quadrupole. Clearly, the trigonometric functions of the cell phase advance can
be replaced by the solutions of Eq. (8) in order to provide the beta-functions dependent only on the quadrupole gradients. A first
observation is that from the expression of the matrix element, one obtains βz,F/D = Lc g(λF, λD) = Lc ĝ(μc,x , μc,y).

The dispersion function can be determined using the formalism of 3 × 3 matrices to deal with the off-momentum dynamics (see
e.g. [26]), and it reads
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Also in this case, it is worth noting that the dispersion can be expressed as Dz,F/D = Lcφch(λF, λD) = Lcφcĥ(μc,x , μc,y).
Finally, the chromaticity can be computed by simply applying its definition to Eq. (8), and one obtains
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A discussion of the optical parameters that have an impact on the longitudinal beam dynamics is reported in Appendix B

3.2 Comparison of optical parameters for FODO and combined-function cells

A better understanding of the properties of the combined-function periodic cell can be obtained by carrying out a direct comparison
of the optical parameters and of the dispersion function. To this aim, a simplification has been introduced by setting λF = λD,
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Fig. 3 Ratio of the optical
parameters, dispersion, and
chromaticity of the
combined-function periodic cell
with respect to the corresponding
parameters of the FODO cell as a
function of the cell phase advance

which is not a serious limitation for the analysis performed, given that in most cases, the horizontal and vertical phases advances of
the FODO cells of modern colliders are indeed the same. The comparison is made by looking at the cell parameters as a function
of the cell phase advance, and the results are summarised in Fig. 3, where the ratios of the parameters for the combined function
periodic cell to the corresponding parameters of the FODO cell are shown as a function of the cell phase advance. The ratios of the
key optical parameters of the proposed cell show some nice features. Both βF and DF are smaller than the corresponding values
for the FODO cell. When μc/(2π) = 1/4, i.e. for a 90◦ degrees phase advance, a very common value in accelerator design, βF is
about 10% smaller, whereas DF is about 5% smaller than for the case of a FODO cell. Although this reduction is not spectacular,
it goes in the right direction, reducing the needs in terms of beam aperture. At the same time, βD and DD are a bit larger than in
the case of a FODO cell. Globally, this means that the beta function varies less than in a FODO cell, and this has an impact on
the chromatic properties of the proposed combined-function cell. This observation is connected with the ratio of the chromaticities,
which is slightly below unity over the whole range of phase advances considered in this study. These properties have implications
for the chromaticity correction and deserve a detailed discussion that is presented in the next section.

3.3 Chromaticity correction

In “Appendix A”, the topic of chromatic corrections for a FODO cell is considered, and the main formulas are derived in detail
(see Eqs. (32)–(35)). A similar approach can also be applied to the combined-function cell, by assuming that two sextupoles are
installed at the beginning and midpoint of the cell, respectively. A direct comparison of the strength of the two sextupoles is shown
in Fig. 4, where the ratio of the sextupole strength for the combined-function cell to that of the FODO cell is shown for three values
of the target chromaticity and in dependence of the cell phase advance. The sextupole strength required for chromaticity correction
in the combined-function cell is different from the standard FODO cell, showing decreasing or increasing trends for defocusing
or focusing sextupoles, respectively. This is not a major issue, as around the 90◦ degrees phase advance value, the extra strength
only reaches a value of about 20%, for the focusing sextupoles, and about 10% for the defocusing sextupoles. Note that the large
value of Q′ used in the simulations is justified by the LHC experience [34], in which the machine is operated with 15 ≤ Q′ ≤ 20
between the injection and collision stages, to stabilise the beam. Hence, this value is considered typical for future hadron colliders
[18]. Alternative scenarios have been considered, which are based on an asymmetric combined-function cell, to assess whether a
lower strength of the sextupole magnets can be obtained. The asymmetric combined-function cell layout has been considered in
detail in “Appendix C” and consists of sections of focusing and defocusing magnets with different total lengths. This introduces an
additional parameter that can be used to control the optical properties of the cell. Of course, this implies that the combined-function
magnets are of two types featuring different nominal quadrupolar fields.

The results of the simulations of the chromaticity corrections are summarised in Fig. 5, in which the ratios of the quantities
for asymmetric combined-function cell layouts to the same quantities for a FODO cell layout are depicted. In the upper plots, the
strength of the focusing (left) and defocusing (right) sextupoles are shown as a function of the cell phase advance, which is set equal
in the horizontal and vertical planes. Several values of the parameter κ , characterising the asymmetry of the cell layout, have been
considered and it is clear that the solutions for κ > 0.5 are the most interesting ones as they feature a reduced need of sextupoles
strength. In the lower plot, the case of κ = 0.6, which is the most promising, is shown. The ratio of strength of the focusing and
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Fig. 4 Ratio of the strength of the
sextupoles used for the correction
of the chromaticity for the
combined-function periodic cell to
the FODO cell as a function of the
cell phase advance

Fig. 5 Upper: ratio of the strength of the focusing (left) and defocusing (right) sextupoles for an asymmetric combined-function to the corresponding values
for a FODO cell layout as a function of the phase advance. For this particular case, the target chromaticity value is set to 10 and the phase advance is the
same for the two transverse planes. Lower: ratio of strength of the focusing and defocusing sextupoles for an asymmetric cell layout to the corresponding
values for a FODO cell layout with κ = 0.6 and for different values of the target chromaticity all as a function of the phase advance
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Fig. 6 Upper: sextupolar RDTs for the standard FODO cell (left) and the symmetric combined-function cell (right) as a function of the cell phase advance
and for two values of the chromaticity. Lower: ratio of the sextupolar RDTs of the combined-function to FODO cells. The RDTs have very similar values
for the value of the cell phase advance up to 0.3, which covers most of the cases relevant for applications

defocusing sextupoles are shown for three different values of the target chromaticity and over the whole interval of the cell’s phase
advance. The defocusing sextupoles feature a strength that is rather close, less than 1% stronger, to that of the FODO cell for the
phase advance close to 90◦ degrees. The focusing sextupoles are about 20% stronger than the corresponding elements of the FODO
cell, but feature a peculiar behaviour as a function of the target chromaticity, namely a rather important increase in strength is
observed when correcting towards a low value of chromaticity. This is linked with the asymmetric layout that generates a preferred
interval of chromaticity values. This is not a serious issue in itself, given that for beam stability considerations, these values are not
needed in routine operation. Still, this observation means that the proposed alternative solution, although effective in reducing the
strength of the chromatic sextupoles with respect to the symmetric combined-function layout, might limit the optics flexibility of
the periodic cell.

As an additional verification, and to compare the performance of the FODO and symmetric combined-function cell designs, the
RDTs have been evaluated and are shown in Fig. 6 for the FODO (top-left) and symmetric combined function (top-right) cells, along
with their ratio (bottom). The comparison was carried out using MAD-X [35] and PTC [36] to evaluate the RDTs using two sample
cells of 200 m length, one implementing a thin-lens version of a standard FODO cell and one the proposed combined-function cell.

Both FODO and combined-function cell configurations feature RDTs that are very similar for values of the cell phase advance
μc/2π < 0.3, which covers the interesting values for applications. This consideration holds for both chromaticity values tested with
the numerical simulations. Therefore, we conclude that there are no sizeable differences in terms of key optical properties between
the standard FODO and the proposed combined-function cells.

4 A possible combined-function cell for a high-energy collider

The concepts developed in the previous sections can be used to propose a periodic-cell design for a high-energy circular collider.
To this aim, we will use the case of the FCC-hh ring. In Fig. 7 (left), the optical parameters of the nominal FCC-hh cell, according
to the layout described in [18] are shown. Above the plot, the cell layout is visible: the boxes centred around the horizontal line
represent the twelve main dipoles, each of 14.187 m of magnetic length, whereas the boxes placed above or below the horizontal
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Fig. 7 Optical parameters of the standard FODO cell of the FCC-hh ring (left) and of the proposed combined-function cell (right)

line represent the two main quadrupoles, each of 6.4 m of magnetic length. All ancillary devices, such as beam position monitors
and corrector magnets are also included, but not used in these studies.

For this realistic design, including the length of the interconnections, one obtains χFODO = 0.80 with the non-normalised and
non-integrated strength of the main quadrupoles K̂1,F/D and of the chromatic sextupoles K̂2,F/D given by

K̂ FODO
1,F = 353.6 T/m K̂ FODO

2,F = 27848.3 T/m2 (17)∣∣∣K̂ FODO
1,D

∣∣∣ = 353.6 T/m
∣∣∣K̂ FODO

2,D

∣∣∣ = 55823.9 T/m2 . (18)

Note that the absolute strength of the main quadrupoles has been computed to set μc = π/2, whereas the absolute strength of
the chromatic sextupoles has been determined by correcting the chromaticity to Q′ = 10. Furthermore, all values quoted here are
non-normalised and refer to operation at 50 TeV, i.e. the nominal single beam energy for the 100 TeV collision energy of the FCC-hh.

In the right plot of Fig. 7, the optical parameters of the proposed combined-function cell are shown. The layout has been designed
using twelve dipoles with the same magnetic properties as those of the FCC-hh cell, with a superimposed quadrupolar component
making a sequence of three focusing, six defocusing, and three focusing combined-function magnets. The distance between the
combined function dipoles is the same as that of the nominal FCC-hh cell, i.e. 1.5 m, for the sake of comparison. The chromatic
sextupoles are located at the extremities and in the middle of the cell. Under these assumptions, the combined-function cell is shorter
than the standard cell, because of the removal of the main quadrupoles and the ancillary magnets that would be located in the same
cryostat, and one obtains χCF = 0.90, which corresponds to an improvement of almost 13%. The observations made about the
features of the optical parameters for a combined function cell are fully confirmed, i.e. smaller beta- and dispersion functions than
for a FODO cell are achieved. Of course, this is due partly to the reduced cell length and partly to the special optical design. In terms
of strength of the quadrupolar components in the dipoles and the strength of the chromatic sextupoles, one obtains

K̂CF
1,F = 51.2 T/m K̂CF

2,F = 40263.5 T/m2 (19)∣∣∣K̂CF
1,D

∣∣∣ = 51.2 T/m
∣∣∣K̂CF

2,D

∣∣∣ = 75831.4 T/m2 . (20)

It is worth noting that while the direct comparison of the absolute sextupolar strengths for the FODO and combined-function cells
reveals an increase of about 40% for the latter, whenever the comparison is carried out with a FODO cell of the same length as that
of the combined-function cell, then the increase is much more modest, in the order of 20% and 10% for the focusing and defocusing
sextupoles, respectively.

The required quadrupolar strength is expressed as a derivative of the field in a form that is more suitable for normal-conducting
magnets. Indeed, in the case of superconducting magnets, it is customary to express the magnetic field in terms of multipolar
components according to [37]

By + i Bx = Bref

∞∑
n=1

(bn + ian)

(
x + iy

Rref

)n−1

, (21)

where Bref is the reference field of the magnet for which the multipolar expansion is computed (for the FCC-hh it is 16 T); bn and
an are the so-called normal and skew components, respectively; Rref is the reference radius at which the multipolar components are
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Fig. 8 Optical parameters of the 12-dipole (top) and 16-dipole (bottom) variants of the combined-function cell. Layouts with 90◦ degrees (left) and 60◦
degrees phase advance (right) are also shown. Note the upper-left plot corresponds to the right one in Fig. 7

given (for the FCC-hh and the LHC it is 17 mm); and n = 1 represents dipolar components, n = 2 quadrupolar components, and
so on. It is easy to derive that

b2 = K̂1

Bref
Rref (22)

and using the LHC convention, i.e. with bn and an expressed in units of 10−4, then b2,CF = 544.
It is worth stressing that at this point of the analysis, no further optimisation of the cell layout has been carried out. However, it

is clear that increasing the cell length would allow reducing b2,CF, as well as the strength of the chromatic sextupoles, although this
would be achieved with a corresponding increase in the values of the optical functions.

The combined function layout considered so far is the one that can be directly compared with the nominal FCC-hh cell, as the
number of dipoles and the phase advance is the same. However, one could consider an increased number of dipoles, or a different
phase advance. Examples of alternative layouts are shown in Fig. 8, where the optical parameters for combined function cells with
twelve (top row) or 16 (bottom row) dipoles are shown for a phase advance of 90◦ degrees (left column) and 60◦ degrees (right
column).

The increase in beta function and dispersion due to the increased cell length is clearly visible, but rather modest, and could still
be acceptable in terms of beam aperture. The change of phase advance also has an impact on the beta-functions as the layout with
60◦ degrees phase advance is further away from the value that generates the minimum beta-functions. However, the impact on the
dispersion function is much more relevant, indicating that chromatic aberrations would be more important. This value of phase
advance has been tested as it requires a lower quadrupolar gradient and behaves better in terms of dynamic aperture [24,38]. The
main features of the four variants of combined-function cell layout considered are summarised in Table 1.
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Table 1 Summary of the main features of the four variants of the combined-function periodic cell. All variants feature χ = 0.90. The target value of the
chromaticity is Q′ = 10

μc degrees Number of dipoles

12 (Lc = 188.246 m) 16 (Lc = 250.995 m)

βmax Dmax γtr K̂1 K̂2,F/|K̂2,D| βmax Dmax γtr K̂1 K̂2,F/|K̂2,D|
(m) (m) T/m T/m2 (m) (m) T/m T/m2

90 287.71 1.96 88.39 51.2 40263.5/75831.4 383.92 3.49 66.29 28.8 16960.2/31965.4

60 302.49 3.68 62.23 36.1 25889.0/40177.5 403.53 6.54 46.67 20.3 10907.1/16935.0

Fig. 9 Cross section of the single-aperture magnet for the transfer lines of J-PARC (left) and detail of the upper half coil (right) (courtesy T. Nakamoto)

The trend of the strength of the quadrupolar component in the combined function dipoles and in the strengths of the chromatic
sextupoles is very clear: longer cells allow a reduction in the required K̂1 and K̂2 as does changing the phase advance from 90◦
degrees to 60◦ degrees. Although it is not in the scope of this article to perform a full optimisation of the proposed combined-function
periodic cell, these considerations are nevertheless relevant to guide future studies in view of an optimised cell layout.

5 Superconducting magnets for a combined-function cell

Superconducting magnets usually aim at generating a pure multipolar component of the magnetic field, e.g. a dipole (for bending), a
quadrupole (for focusing/defocusing), or a sextupole (for chromatic correction). This choice is due to an operational wish, i.e. having
independent hardware providing each functional requirement. However, from the point of view of design, nothing prevents one from
building a magnet that provides several components of field harmonics at the same time. This is routinely done for low-energy
machines, relying on resistive magnets, where combined-function magnets can represent a considerable simplification and cost
saving. There are also a few cases of combined-function superconducting magnets. For example, in the J-PARC [39–41] transfer
line, superconducting magnets providing both a dipolar (2.6 T) and a quadrupolar component (19 T/m) have been successfully built.
Their cross section and details of the coil are shown in Fig. 9.

The simplest way to compare the two components is to compute them at the aperture radius. For the dipole, the value is the same
as that in the centre of the magnet, while for the quadrupole, the value is the gradient times the aperture radius. For example, in the
J-PARC magnets [40,41] having a 173 mm aperture diameter, the quadrupolar component gives a peak field at the bore aperture of
1.64 T, i.e. smaller than the dipolar component of 2.6 T, but of the same order of magnitude. For this reason, the coil is strongly
left-right asymmetric, as shown in Fig. 9. An additional constraint is given by the fact that a superconducting magnet is limited by
the combination of the current density and peak field in the coil; adding a quadrupolar component to a dipole will increase the peak
field Bp in the coil by a quantity that is proportional to the gradient G times the aperture radius r :

ΔBp = λGr , (23)
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Fig. 10 Cross section of the double-aperture recombination dipole D2 in HL-LHC (left) and detail of the upper half coil of the left aperture of D2 (right)

where the parameter λ depends on the ratio between the coil width w and the aperture radius according to (see [42])

λ = a−1
r

w
+ 1 + a1

w

r
, (24)

and a1 = 0.11, a−1 = 0.042. In the case of the J-PARC combined-function dipole, the coil width is 15 mm, aperture radius is 86 mm
and therefore λ = 1.25, i.e. there is a 25% overshoot of the quadrupolar field in the coil with respect to the product G r . Therefore,
the peak field in the coil is not simply the peak field of the dipole increased by 1.64 T, but it is the peak field of the dipole increased by
2.05 T. In our example of a combined function lattice of a hadron collider, the quadrupolar component is obviously a second-order
effect with respect to the main field. Among the cases shown in Sect. 4, if we consider the 90◦ degrees phase advance cell, having
the same beta function as the FCC-hh baseline lattice, this corresponds to adding a quadrupolar component of 28.8 T/m in a 16 T
magnet with a 50 mm diameter aperture. This provides an additional field at the edge of the aperture of 0.72 T, i.e. twenty times
less than the dipolar field. The overshoot can be smaller than in the J-PARC magnet since the larger ratio between coil width and
aperture radius allows to have a λ as small as 1.15. Therefore, only 0.80 T are removed from the dipole in terms of superconductor
efficiency, i.e. the dipole field has to be reduced from 16 T to 15.2 T. However, since the quadrupole magnets are removed from the
layout, this allows recovering about 7 m (magnetic length of 6.4 m plus the magnet heads) every 100 m of half cell, i.e. 7% of filling
factor. Assuming an unchanged beam energy, we can therefore reduce the field of the dipoles to 14.8 T, have a peak field in the
combined-function dipole still lower than the peak field in the 16 T dipole, and remove the need of building cell lattice quadrupoles.

Coil layouts giving a dipolar field as the main component and having a second-order quadrupolar component were also proposed
for separation dipoles for future accelerators [43]. In these double-aperture magnets, the distance between the beams can be similar
to the aperture radius, and therefore a considerable magnetic cross-talk between the two bores occurs. In order to remove this
component, it was proposed to have the coils slightly left-right asymmetric, to create, in a stand-alone configuration, the same
quadrupolar component due to magnetic coupling, but with the opposite sign. Since the quadrupolar component is in this case of
the order of a few percent of the main field, the coil is just slightly (i.e. order of 1 mm) left-right asymmetric. This solution has been
adopted in the case of the D2 HL-LHC separation dipole [44] (see Fig. 10 showing the double-aperture magnet cross section (left),
and the asymmetric coil (right)), providing a dipolar field of 4.5 T and having a gradient times the aperture radius of 0.135 T [45].
A short-model magnet has been built in 2020, and magnetic measurements validated the design of the asymmetric coil.

6 Final considerations on the proposed combined-function periodic cell

The discussions carried out in the previous sections show that replacing the present FCC-hh cell with a combined-function periodic
cell needs a distributed quadrupole gradient of 51.2 T/m, which adds 1.2 T to the peak field of the dipole, corresponding to 7.5% of
the 16 T dipolar field. This, therefore, produces a reduction in the dipole field effectively available to bend the beam. However, such
a reduction is close to the increase in the filling factor, obtained by removing the two 7 m-long quadrupoles from the 200 m FODO
cell. Therefore, in this configuration, one would end up with a magnet requiring the same peak field, but with the main advantage
of having removed all cell quadrupoles.

There is an additional positive side effect that should be taken into account: the maximum beta function in the combined function
cell is 20% lower than the corresponding FODO cell. Therefore, a fair comparison should involve lattices with the same peak beta
function, which increases the combined-function cell length from 188 m to 250 m, as shown in Table 1. In this case, the requirement
on the gradient drops by 25%, allowing one to recover another 2% of integrated dipole field that could be used to reduce the main
dipolar field, always at constant beam energy.
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A third advantage can be gained by spreading the lattice correctors (chromatic, orbit, tune, and Landau octupoles) in the dipoles.
In this case, one could remove the need of a cryostat (and a 1-m-long interconnection), plus the dedicated space needed for these
correctors. This possibility will be explored in a future paper and could bring another few percent increase in the filling factor. The
estimates derived for the chromatic correction show that the combined-function lattice with longer cell, and with the same beta peak
as the nominal FCC-hh FODO cell, would require about 30% lower strength.

7 Conclusions

In this paper, the analysis of a periodic combined-function cell for a high-energy circular storage ring or collider has been presented.
The performance of this periodic lattice structure has been considered in detail, performing an in-depth comparison with the standard
FODO cell. For the same cell length, deflection angle, and phase advance, the combined-function structure features smaller values
of the beta and dispersion function, which is an advantage in terms of the needs of the beam aperture. Particular attention has been
paid to the performance of the periodic cell in terms of chromatic properties and their compensation. The analyses carried out show
that a mild increase in the strength of the chromatic sextupoles has to be expected for the combined function cell with respect to the
reference structure, i.e. the FODO cell. Nonetheless, thanks to the smaller values of the optical functions, the resonant driving terms
of the combined function cell are almost the same at those of the FODO cell in the interval μc/2π < 0.3 that covers the needs of
most applications. It is also worth mentioning that the change of momentum compaction factor for the combined function cell with
respect to the FODO one is very small and no major impact on the longitudinal beam dynamics has to be expected.

In view of finding a periodic lattice structure with favourable chromatic properties, a variant of the combined-function cell has
been studied in detail. Such a structure is based on an asymmetric arrangement of the magnets, so that the lengths of the focusing
and defocusing blocks of magnets are not equal. Although this configuration has some interesting features, it does not bring any
reduction in terms of strength of the chromatic sextupoles and has been disregarded.

The main advantage of the combined-function cell with respect to the FODO one is the possibility of eliminating the quadrupoles
for the arcs of a circular storage ring or collider, which is a considerable simplification. For the considered cell length, the larger
filling factor due to the removal of the quadrupoles perfectly compensates the peak field increase required in the dipole magnet.
Therefore, the combined-function cell layout is neutral in terms of energy versus dipole field.

Some variants of the proposed combined-function cell have been considered, in which the number of dipoles and the phase
advance have been varied. The expected trends in terms of optical parameters are confirmed, i.e. that the strength of the quadrupolar
component in the combined function elements as well as of the chromatic sextupoles scale with the inverse of the cell length. This
information will be crucial in the process of optimisation of the cell layout.

Since the combined-function cell option provides smaller peak beta-function values, one can increase the cell length so to carry
out a fair comparison, in terms of optical parameters, with the FODO lattice. In this way, the quadrupole gradient can be reduced,
which provides another 2% increase in the integrated dipole field that can be used to reduce the dipole field, for the same proton
energy.

Another interesting option, not explored in this paper, is to distribute the lattice correctors in the dipoles. This would allow to
further increase the filling factor of few more percent. Among the possible use of this additional margin, i.e. to reduce the dipole
field or to reduce the overall ring length at constant energy, or to increase further the beam energy at constant ring circumference,
the first option appears to be the more attractive one since the marginal cost of the dipole field in the 15–16 T region is extremely
high and nonlinear. In the scenario of a complete removal of the short straight section (both quadrupole and the various magnetic
correctors), one also would end up with only one cold mass type in the arc, namely the combined-function dipole plus a corrector,
with an important simplification of the ring design and the industrial process required to build, which, in the end, may lead to a
non-negligible cost reduction. The development of this option will open a broad range of novel studies, of which the most important
one is the assessment of the performance of the combined-function cell in terms of dynamic aperture. To carry out such a relevant
investigation, a realistic estimate of the field quality of the combined-function magnet is needed, as well as an optimised layout of
the corrector circuits that might be used to mitigate the field quality of the combined-function magnets.
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A Collection of beam dynamics properties of a FODO-cell structure

In this appendix, some useful properties of the optical parameters of a FODO cell have been collected.
A FODO cell layout is characterised by three parameters: the cell length, Lc, the total deflection angle, φc, and the total phase

advance, μc. The first two parameters are related to the geometrical layout of the periodic cell, the second parameter is linked to the
integrated magnetic strength of the dipoles, while the phase advance is linked to the integrated magnetic strength of the quadrupoles
and is related to the optical properties of the cell.

In terms of optical parameters, the maximum and minimum values of the β- and dispersion-function are of paramount importance
and feature some interesting scaling laws in terms of cell parameters. Both the β- and dispersion-functions are linear in Lc, and the
dispersion-function is also linear in φc.

The main hypothesis is that the quadrupoles are assumed to be represented as thin lenses. For the sake of simplicity, the properties
are assumed to be the same for the two transverse planes, i.e. the phase advance is assumed to be the same, but generalisations to
the case of different phase advances are straightforward. The cell bending radius is given by ρc sin φc/2 = Lc/2 or ρc ≈ Lc/φc.
Obviously, one has that Q = μc/(2π).

The main relations are found for the minimum and maximum values for the β- and dispersion-function, namely

βmax =
1 + sin

μc

2
sin μc

Lc Dmax = 2 + sin μc

sin2 μc

Lcφc

8
(25)

βmin =
1 − sin

μc

2
sin μc

Lc Dmin = 2 − sin μc

sin2 μc

Lcφc

8
, (26)

from which the scaling properties of the geometrical characteristics of the FODO cell, i.e. total length and bending angle, are
explicitly shown, and the plots are shown in Fig. 11. Note the expressions for Dmax and Dmin are based on the assumption that all
the cell is filled with a dipolar field, which is consistent with the thin-lens approximation of the quadrupoles.

While βmin does not feature a maximum or minimum, the other functions do and it is possible to find the special values of the
phase advance for which the minimum is reached and this is given by

dβmax

dμc
= 0 ⇒ μc

2π
= 1

π
arctan

√√
5 − 1

2
≈ 0.2121

dDmax

dμc
= 0 ⇒ μc

2π
≈ 0.2392

dDmin

dμc
= 0 ⇒ μc

2π
≈ 0.2709, (27)

Fig. 11 Behaviour of the β- and dispersion-function in dependence of μc
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so that the minimum of Dmax and Dmin is achieved close to μc/(2π) = 1/4 and the minimum of βmax is only a little further away.
In this respect, the value μc/(2π) = 1/4 provides a close-to-optimal value of the optical and dispersion parameters, in addition to
other advantages that are not relevant in this discussion.

The expressions for the ratio of the maximum and minimum values can be easily derived, giving

βmax

βmin
=

1 + sin
μc

2

1 − sin
μc

2

Dmax

Dmin
= 2 + sin μc

2 − sin μc
= 3βmax + βmin

βmax + 3βmin
. (28)

The chromaticity can be obtained starting from the fundamental relationship linking the phase advance to the quadrupole integrated
gradient, namely

1

4
K Lc = sin

μc

2
where K = Lq

Bρc

∂By

∂x
= Lq G

Bρc
, (29)

and Lq represents the length of the quadrupoles and G the magnetic gradient andK is the integrated normalised gradient. Considering
that in the presence of a momentum deviation Δp/p, the following transformations are applicable K → K (1 − Δp/p) and
μc → μc + μ′

c Δp/p, so that from Eq. (30), one obtains

μ′
c = −2 tan

μc

2
or Q′ = μ′

c

2π
= − 1

π
tan

μc

2
. (30)

From the very definition, it is possible to find an expression for the momentum compaction αc, i.e.

αc = 1

Lc

∫ Lc

0

D(s)

ρ(s)
ds = φc

L2
c

∫ Lc

0
D(s)ds = φ2

c
8 − sin2

32 sin2 μc

2

. (31)

The correction of the linear chromaticity in a FODO cell can be performed by means of a pair of sextupoles placed at the location
of the two quadrupoles (represented in the thin-lens approximation). Let us indicate with K2,F, K2,D the integrated strength of the
sextupoles located next to the focusing and defocusing quadrupoles, respectively. Then, it is possible to write [26]

ΔQ′
x = − 1

4π

(
ΔK2,FβmaxDmax + ΔK2,DβminDmin

)

ΔQ′
y = 1

4π

(
ΔK2,FβminDmax + ΔK2,DβmaxDmin

)
,

(32)

from which the solution for the strength of the chromatic sextupoles is given by

K2,F = 4π

Dmax

βmaxΔQ′
x + βminΔQ′

y

β2
min − β2

max

K2,D = − 4π

Dmin

βminΔQ′
x + βmaxΔQ′

y

β2
min − β2

max
. (33)

Note the quantities in the denominator are pushing the strength of the sextupole up (in absolute value) if the difference between
the maximum and minimum values of the beta function is reduced. A similar effect is observed on the value of K2,F, whenever
Dmax is reduced.

By means of the relationships established between the optical parameters and the properties of the FODO cell, i.e. phase advance
μc and bending angle φc, it is possible to recast Eq. (33) in the following form:

K2,F = − 1

L2
cφc

sin2 μc

2

cos
μc

2

⎛
⎜⎝

sin
μc

2
+ 1

sin
μc

2
+ 2

ΔQ′
x −

sin
μc

2
− 1

sin
μc

2
+ 2

ΔQ′
y

⎞
⎟⎠

K2,D = 1

L2
cφc

sin2 μc

2

cos
μc

2

⎛
⎜⎝

sin
μc

2
− 1

sin
μc

2
− 2

ΔQ′
x −

sin
μc

2
+ 1

sin
μc

2
− 2

ΔQ′
y

⎞
⎟⎠ , (34)
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Fig. 12 Behaviour of the ratio of
the strength of the sextupoles used
to correct the chromaticity of a
FODO cell in dependence of μc

which can be further simplified, whenever ΔQ′
x = ΔQ′

y = ΔQ′, to give

K2,F = − 2

L2
cφc

sin2 μc

2

cos
μc

2

(
sin

μc

2
+ 2

)ΔQ′

K2,D = − 2

L2
cφc

sin2 μc

2

cos
μc

2

(
sin

μc

2
− 2

)ΔQ′

(35)

from which one deduces that

K2,F

K2,D
=

sin
μc

2
− 2

sin
μc

2
+ 2

(36)

and this ratio is plotted in Fig. 12. Note for the special value μc/(2π) = 1/4 the ratio is approximately equal to 1/2, thus revealing
a non-negligible asymmetry between the strength of the two sextupoles.

As a last comment, the condition χ → 1 might seem to be achievable by designing very long cells, but this should be balanced
by the increase of beam size for such cells. Indeed, starting from Eq. (29) and the expression of βmax it is possible to show that

Lq,min =
√

2 εN Nσ

η φc

√
tan

μc

2

(
1 + sin

μc

2

)√
Lc ∝ √

Lc , (37)

where the maximum gradient used to minimise the quadrupole length is given by Gmax rcoil = Bmax, rcoil being the radius of the
coils. The requested beam aperture is A = η rcoil, which is linked to the beam size by A = Nσ

√
εNβmax, in which the contribution

of the dispersion to the betatronic beam size has been neglected and Nσ stands for the number of beam sigma that should fit inside
the aperture A. η represents a design parameter defining the fraction of the coil aperture that is available to the beam. Therefore,
χ − 1 ∝ L−1/2

c , but the beam size increases as L1/2
c so that a trade off has to be found between cell length and magnet aperture,

which in the end prevents χ from approaching unity.

B Optical properties of a combined-function cell with impact on the longitudinal beam dynamics

The optical properties of a periodic cell have an impact on the longitudinal beam dynamics [46] via the momentum compaction αc

and the derived quantities, namely

γtr = 1√
αc

η = 1

γ 2 − 1

γ 2
tr

. (38)

The evolution of γtr for the two types of periodic cells considered in this paper is shown in Fig. 13 (left) as a function of the cell
phase advance, and the difference is small over a rather large range of phase advances and increases mildly towards large values of
the phase advance.

To compare the value of the slip factor η for the two cells one needs to assume that γ � γtr , which is certainly correct for
high-energy rings, and one obtains

ηCF

ηFODO
=

(
γ FODO

tr

γ CF
tr

)2 (
γ 2

tr − γ 2
)

CF(
γ 2

tr − γ 2
)

FODO

≈
(

γ FODO
tr

γ CF
tr

)2

. (39)
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Fig. 13 Left: γtr for the FODO and the combined-function cells as a function of the phase advance. Right: ratio of the square root of the η factor for the
FODO and the combined-function cells as a function of the phase advance

Some key quantities for the longitudinal beam dynamics are function of η, such as

Qs =
√
heVRF|η|| cos φs|

2πβ2E
Ab ∝

√
eVRF

2πβ2Eh|η| (40)

where Qs and Ab are the synchrotron tune and the bucket area, respectively. In the previous equations, e is the electron charge, φs

is the synchronous phase, VRF the voltage applied by the RF cavities, h, β, E are the harmonic number, the relativistic factor, and
the beam energy, respectively. Therefore, Qs ∝ √|η|, whereas Ab ∝ 1/

√|η| and in Fig. 13 (right) the ratio of the square root of η

for the combined function and the FODO cell (or its inverse) is shown as a function of the cell phase advance.
By considering the typical case μc = π/2, one has that the synchrotron tune of a combined function cell will be 2% higher

than that of a FODO cell, whereas the bucket area will be 2% smaller, assuming that VRF is the same for both cells. It is of course
possible to compensate such a difference by acting on VRF, which scales linearly with η for the case of Ab or inversely proportional
to η for the case of Qs. In all the cases, the variation of the RF voltage that should be applied is of the order of a few percent, hence
negligible.

C Some properties of an asymmetric combined-function cell

In the proposed layout of the combined-function cell, the length of the two blocks of focusing and defocusing magnets is the same.
However, it is possible to break this symmetry, considering the case in which LF = (1 − κ) Lc and LD = κ Lc, with κ ∈]0, 1[. In
this case, the 2 × 2 cell matrices become

Mx =

⎛
⎜⎜⎝

λ2
D−λ2

F
2λFλD

sinh λD
2 sin λF

2 + cosh λD
2 cos λF

2 − Lc(λ
2
D−λ2

F)

2λDλ2
F

sinh λD
2

(
cos λF

2 − λ2
D+λ2

F
λ2

D−λ2
F

)
+ Lc

λF
cosh λD

2 sin λF
2

λ2
D−λ2

F
2LcλD

sinh λD
2

(
cos λF

2 + λ2
D+λ2

F
λ2

D−λ2
F

)
− λF

Lc
cosh λD

2 sin λF
2

λ2
D−λ2

F
2λFλD

sinh λD
2 sin λF

2 + cosh λD
2 cos λF

2

⎞
⎟⎟⎠

My =

⎛
⎜⎜⎝

− λ2
D−λ2

F
2λFλD

sin λD
2 sinh λF

2 + cos λD
2 cosh λF

2 − Lc(λ
2
D−λ2

F)

2λDλ2
F

sin λD
2

(
cosh λF

2 − λ2
D+λ2

F
λ2

D−λ2
F

)
+ Lc

λF
cos λD

2 sinh λF
2

λD
Lc

sin λD
2

(
λ2

F
λ2

D
sinh2 λF

4 − cosh2 λF
4

)
+ λF

Lc
cos λD

2 sinh λF
2 − λ2

D−λ2
F

2λFλD
sin λD

2 sinh λF
2 + cos λD

2 cosh λF
2

⎞
⎟⎟⎠ ,

(41)

and the stability conditions read

2 cos μc,x = 2 cos(1 − κ)λF cosh κ λD + λ2
D − λ2

F

λFλD
sin(1 − κ)λF sinh κ λD

2 cos μc,y = 2 cos κ λD cosh(1 − κ)λF − λ2
D − λ2

F

λFλD
sin κ λD sinh(1 − κ)λF ,

(42)

which provide the stability domains shown in Fig. 14, where the impact of the additional parameter κ introduced in the layout of
the combined function cell is clearly visible.
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Fig. 14 Stability region in the
(λF, λD) space for the asymmetric
layout of the combined-function
periodic cell as a function of the
parameter κ . The symmetric case,
corresponding to κ = 0.5 is also
shown for the sake of comparison

Fig. 15 Left: solution of Eq. (42), for the focusing quadrupole strength, as a function of the cell phase advance for different values of κ . Right: ratio of the
strength of the focusing and defocusing quadrupoles

Equation (42) has to be solved numerically for the integrated gradients λF, λD to study the optical parameters of this special
configuration of the combined function cell. For the sake of comparison with the simple FODO-cell layout presented in this paper,
the condition of having the same tunes in the horizontal and vertical planes is imposed, i.e. μc,x = μc,y . This condition represents
what is used in a realistic circular accelerator design and, in any case, it would be immediate to obtain solutions for different cell
phase advances in the two transverse planes. In Fig. 15, the solution for the focusing quadrupoles strength is shown (left) together
with the ratio between the strength of the focusing and defocusing quadrupoles.

Note that the ratio is nearly constant over the full domain of the phase advance. It is also worth stressing that the solutions of
Eq. (42) satisfy the symmetry property λF(κ) = λD(1 − κ). These numerically computed solutions are the basis for the study of the
optical properties of this asymmetric combined-function cell layout. Analytical expressions for the main optical parameters can be
found using standard techniques and some are listed in the following:

μ′
c,x (κ) = λF

[
(κ + 1)λ2

D + (κ − 1)λ2
F

]
sinh κ λD cos(κ − 1)λF − λD

[
κλ2

D + (κ − 2)λ2
F

]
cosh κ λD sin(κ − 1)λF

4λDλF

μ′
c,y(κ) = −λD

[
κλ2

D + (κ − 2)λ2
F

]
cos κ λD sinh(1 − κ)λF + λF

[
(κ + 1)λ2

D + (κ − 1)λ2
F

]
sin κ λD cosh(κ − 1)λF

4λDλF

DF(κ) = −λ2
F sinh κ λD

2 − λ2
D sinh κ λD

2 cos (κ−1)λF
2 + λFλD cosh κ λD

2 sin (1−κ)λF
2 + λ2

D sinh κ λD
2

λDλ2
F

(
λD sinh κ λD

2 cos (κ−1)λF
2 − λF cosh κ λD

2 sin (1−κ)λF
2

) Lcφc
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Fig. 16 Variation of the optical parameters in dependence of μc for some values of κ . The ratio between a given optical parameter for an arbitrary value
of κ and the same parameter for κ = 0.5 is reported. In the upper-left plot βF,x (solid lines) and βF,y (dashed lines) are shown. In the upper-right plot
Q′
x = μ′

c,x/(2π) (solid lines) is shown. In the lower plots DF (left) and DD (right) are shown. Note the symmetry is clearly visible for the case of the
beta-function, whereas it is lacking for the case of the dispersion function

DD(κ) = −λ2
F cosh κ λD

2 sin (κ−1)λF
2 + λDλF sinh κλD

2 cos (κ−1)λF
2 − λ2

D sin (κ−1)λF
2 − λ2

F sin (κ−1)λF
2

λ2
DλF

(
λD sinh κ λD

2 cos (κ−1)λF
2 − λF cosh κ λD

2 sin (1−κ)λF
2

) Lcφc. (43)

It is interesting to note that thanks to the symmetry of the solutions of Eq. (42), it is possible to show that μ′
c,x (κ) = μ′

c,y(1 − κ),
whereas no symmetry is present for the case of the dispersion function.

The expressions for the beta-functions are obtained by using the element (1, 2) of the transfer matrix of the cell, e.g. Eq. (41) for
the evaluation of the beta-function at the entrance of the focusing quadrupole, and dividing it by sin μc.

The variation of the optical parameters as a function of the cell phase advance is visible in Fig. 16, where the dependence of the
main optical parameters on the cell phase advance is depicted for several values of the parameter κ . What is shown in the figure is the
ratio of the given optical parameter for arbitrary values of κ to the same parameter for κ = 0.5, which corresponds to the symmetric
combined function layout. The values of βF,z , Q′

x = μ′
c,x/(2π), DF, and DD are shown in the upper-left, upper-right, lower-left,

and lower-right plots, respectively. The existing symmetry, i.e. βD,x (κ) = βF,y(1 − κ), allows inspecting only the behaviour of the
beta function at the focusing quadrupole. Note that such a symmetry is lacking for the dispersion function. One can observe that
the parameter κ allows a fine-tuning of the optical parameters with respect to the symmetric layout to be performed. Hence, this
introduces a useful additional degree of freedom in the design of the proposed combined-function cell.
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