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Abstract The Szekeres system with cosmological constant term describes the evolution of the kinematic quantities for Einstein
field equations in R

4. In this study, we investigate the behavior of trajectories in the presence of cosmological constant. It has been
shown that the Szekeres system is a Hamiltonian dynamical system. It admits at least two conservation laws, h and I0 which indicate
the integrability of the Hamiltonian system. We solve the Hamilton–Jacobi equation, and we reduce the Szekeres system from R

4

to an equivalent system defined in R
2. Global dynamics are studied where we find that there exists an attractor in the finite regime

only for positive valued cosmological constant and I0 < −2.08. Otherwise, trajectories reach infinity. For I0 > 0 the origin of
trajectories in R

2 is also at infinity. Finally, we investigate the evolution of physical properties by using dimensionless variables
different from that of Hubble-normalization conducing to a dynamical system in R

5. We see that the attractor at the finite regime in
R

5 is related with the de Sitter universe for a positive cosmological constant.

1 Introduction

A Szekeres system is a system of algebraic-differential equations given by [1]

ρ̇D + θρD = 0, (1)

Ė + 3Eσ + θE + 1

2
ρDσ = 0, (2)

θ̇ + θ2

3
+ 6σ 2 + 1

2
(ρD − 2�) = 0, (3)

σ̇ − σ 2 + 2

3
θσ + E = 0, (4)

with algebraic constraint equation

θ2

3
− 3σ 2 +

(3)R

2
− � = ρD . (5)

Due to mathematical technicalities, we study three cases (i) 6E + ρD �= 0, (ii) ρD = 0, E �= 0 and (iii) 6E + ρD = 0. The especial
case where ρD = 0 corresponds to “vacuum” case. In the case 6E + ρD = 0, the evolution equation (2) is that of a dust fluid (1),
but with E < 0.

Equations (1)–(5) are the diagonal Einstein field equations Gμν − �gμν = Tμν for a gravitational model where the energy-
momentum tensor Tμν is that of a pressureless inhomogeneous fluid, � is the cosmological constant, and Gμν = Rμν − 1

2 Rgμν is
the Einstein tensor for the background space

ds2 = −dt2 + e2α(t,x,y,z)dx2 + e2β(t,z,y,z)(dy2 + dz2). (6)

Scalars α (t, x, y, z) and β (t, x, y, z) and their time derivatives are used to obtain the field equations (1)–(5), where (3)R is the spatial
curvature for the three dimensional hypersurface of the line element (6), θ and σ are the kinematic quantities known as expansion rate

and shear. For the comoving observer uμ = δ
μ
t , uμuμ = −1 they are defined as θ = ( ∂α

∂t

)+ 2
(

∂β
∂t

)
and σ 2 = 2

3

((
∂α
∂t

)−
(

∂β
∂t

))2
.

Function ρD = ρ (t, x, y, z) describes the inhomogeneous energy density for the pressureless fluid, and E = E (t, x, y, z) is the
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electric component of the Weyl tensor Eμ
ν = Eeμ

ν . The dot in Eqs. (1), (2), (3), (4), remarks derivative with respect to the time
parameter. Equation (1) is the continuous equation for the pressureless fluid, Tμν

;ν = 0, while the rest of the equations are the four
diagonal Einstein field equation. Moreover, nondiagonal components of the Einstein field equations are the propagation equations
[2]: hν

μσα
ν;α = 2

3h
ν
μθ;ν , hν

μE
α
ν;α = 1

3h
ν
μρ;ν where hμν is the projection tensor defined as hμν = gμν − uμuν .

The above gravitational model with the zero-valued cosmological term was investigated by Szekeres in [3]. It was found that
the spacetime (6) describes inhomogeneous Friedmann–Lemaître–Robertson–Walker (-like) universes with one scale factor which
satisfies the Friedmann equations, or inhomogeneous anisotropic Kantowski–Sachs (-like) with two scale factors. These spacetimes
were one of the first families of cosmological inhomogeneous exact solutions in the literature. The case with a nonzero cosmological
constant term investigated [4,5] where it was found that because of the cosmological constant inflationary solutions exist. The main
characteristic, by the construction of the Szekeres system is that their magnetic part of the Weyl tensor is zero, and there is not any
pressure term, which means that there is no information propagation through gravitational waves or sound. Consequently, Szekeres
spacetimes belong to the family of Silent universes [6]. For other extensions of the Szekeres system, we refer the reader to [7–9].
Inhomogeneous exact solutions are of special interest in cosmological studies (for a discussion we refer the reader to [10–17]).

Because of its importance in physical applications, the Szekeres system has been widely investigated in the literature. With the
use of Darboux polynomials and Jacobi’s last multiplier method, the integrability of the Szekeres system with zero cosmological
constant terms was found in [18]. Specifically, three time-independent conservation laws where derived which were used to reduce the
four-dimensional Szekeres system into a two-dimensional system. Moreover, the analytic solution for the reduced two-dimensional
system is presented in [19]. Furthermore, in [20] a Lagrangian function was derived for the Szekeres system, which means that the
system (1), (2), (3), (4), with constraint (5), follows from a variational principle. The corresponding conservation laws were derived
according to Noether’s theorem. In addition, it was found that the Szekeres system possesses the Painlevé property [21]. Because
the Lagrangian function of the Szekeres system is a point-like Lagrangian, in [22] it was used to quantize for the first time the
Szekeres system. The probability function was derived, while it was found that the singular asymptotic solution is preferred by the
quantization, on the other hand, the quantum potentiality of the Szekeres system by Lie symmetries [23] was the subject of study in
[24]. Moreover, the conservation laws for the Szekeres system with a nonzero cosmological constant term were derived recently in
[25].

In [26,27], Libre et al, performed a detailed analysis on the dynamics of the Szekeres system with a zero cosmological constant
in the Poincare disk. It was found that the orbits come from the infinity of R4 and go to infinity. In this study, we extend this analysis
by considering a nonzero cosmological constant term. As we shall see, for � > 0, it is possible to have an attractor at the finite
regime, which can be related to the de Sitter universe provided by the field equations. The plan of the paper is as follows.

In Sect. 2 we review previous results on the derivation of the Lagrangian function which describes the dynamical system (1),
(2), (3), (4), with constraint (5). Moreover, we present the conservation laws, and we solve the Hamilton–Jacobi equation to reduce
the four-dimensional system into a system of two first-order differential equations. The dynamics for the reduced two-dimensional
system are investigated in Sects. 3 and 4 . For the completeness of our analysis, we study the stationary points and the evolution of
the trajectories in the finite variables as also at the infinity by using the variables of the Poincare disk.

Furthermore, to understand the properties of the physical variables during the evolution of the cosmological history, we define
new dimensionless variables, like that of the Hubble-normalization [28]. In the new variables, the dynamical system is defined in
R

5. Every stationary point on R
5 corresponds to a specific epoch of the cosmological history, which is explicitly described by an

analytic solution. From the stability properties of the stationary points, we can infer information about the evolution of the model.
Such analysis has been applied in various gravitational models in the past, with interesting results [29–38]. For the Szekeres system
without the cosmological constant term, this analysis was performed in [6]. However, in [6] the Hubble-normalization approach was
applied, which means that in their study, the expansion rate has been limited to be only positive θ > 0, or negative θ < 0. However,
given θ can change its sign, which means that static spacetimes with θ = 0 are possible, then we require new dimensionless variables
[39] to avoid the blowing up of solutions as θ passes through zero. In “Appendix A” we present the analysis for the case with � = 0,
and we recover previously published results [26]. In Sect. 5, we present a detailed analysis of the asymptotic solutions for field
equations in dimensionless variables different from that of the Hubble normalization. We find that θ can change the sign in two
stationary points which describe the Minkowski universe and the closed Friedmann–Lemaître–Robertson–Walker (-like) spacetime.
Finally, in Sect. 6, we summarize our results and draw our conclusions.

2 Hamiltonian system

Solving equations (1) and (2) for θ and σ (assuming ρD(6E + ρD) �= 0) we obtain

θ = − ρ̇D

ρD
, (7)

σ = 2(E ρ̇D − ρD Ė)

ρD(6E + ρD)
. (8)
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Substituting expressions (7) and (8) in Eqs. (3) and (4), we obtain the second-order differential equations

ρ̈D = ρD

(
24(ρD Ė − E ρ̇D)2

ρ2
D(6E + ρD)2

+ 1

2
(ρD − 2�) + 4(ρ̇D)2

3ρ2
D

)

, (9)

Ë = 1

3ρD(6E + ρD)2

[
3EρD(6E + ρD)2(3E − � + ρD)

+ 12ρD(12E + ρD)(Ė)2 − 4E(9E + ρD)(ρ̇D)2 + 8ρD(9E + ρD)Ė ρ̇D

]
. (10)

Using the parametrization (we assume x �= y, y �= 0)

ρD (x, y) = 6

y2 (y − x)
, E (x, y) = − x

y3 (y − x)
, (11)

where the inverse transformation is [20]

x (ρD, E) = − 64/3E

ρD(6E + ρD)1/3 , y (ρD, E) = 61/3

(6E + ρD)1/3 , (12)

and replacing in Eqs. (9) and (10) we end with the system of two-second-order differential equations [25]

ẍ − �

3
x − 2x

y3 = 0, (13)

ÿ − �

3
y + 1

y2 = 0. (14)

Equation (14) can be integrated as

I0 = ẏ2 − �

3
y2 − 2

y
, (15)

which is a conservation law for the Szekeres system. In addition, for the system (13), (14) we can easily solve the inverse problem
and construct a Lagrangian function where under the variation will produce the equations of motions.

Indeed, the point-like Lagrangian which describes equations (13) and (14) is the two-dimensional Lagrangian

L (x, ẋ, y, ẏ) = ẋ ẏ + �

3
xy − x

y2 . (16)

Hence, we define the momentum px = ∂L
∂ ẋ and py = ∂L

∂ ẏ , i.e. px = ẏ and py = ẋ , such that the Hamiltonian function
h = px ẋ + py ẏ − L , to be

h = ẋ ẏ − �

3
xy + x

y2 . (17)

while the Hamilton’s equations read

ẋ = py ẏ = px , (18)

ṗy = �

3
x + 2x

y
, ṗx = �

3
y − 1

y2 . (19)

Because the Szekeres system is autonomous, the Hamiltonian function is a conservation law which gives the energy of the system,
that is, dh

dt = 0.
In the original variables the conservation laws become

I0 = 22/3
(−3� − 18ρ3

DE − 3ρ4
D + 24θσ + 16θ2 + 9σ 2

)

3 3
√

3ρ2
D(ρD + 6E)2/3

(20)

h = 22/3
(
3ρDσ(4θ + 3σ) + E

(
6� − 3ρ4

D + 42θσ − 8θ2 + 36σ 2
)− 18ρ3

DE
2
)

3
√

3ρ2
D(ρD + 6E)2/3

.

(21)

At this point we want to present another set of variables which are useful to recognize the Hamiltonian formulation of the Szekeres
system. We do the change of variables ρ = exp (�) , E = 1

6 exp (�) (exp (−Z) − 1), and consider the new variables � and Z .
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Therefore, it follows θ = −�̇ and σ = Ż . Hence, the following Lagrangian function is a solution of the inverse problem for the
Szekeres system given by the Lagrange function

L
(
�, �̇, Z , Ż

) = e−Z− 2
3 �
(
3Ż − �̇

) (
6Ż + �̇

)− 3

2
e−4Z+ 1

3 �
(

3e3Z − 1
)

. (22)

and its variation reproduces equations (1) and (2). Therefore, the four-dimensional Szekeres system is an integrable Hamiltonian
system.

2.1 Hamilton–Jacobi equation

From (17) we write the time-independent Hamilton–Jacobi equation
(

∂S

∂x

)(
∂S

∂y

)
− �

3
xy + x

y2 = h, (23)

while the conservation law I0 reads
(

∂S

∂x

)2

− �

3
y2 − 2

y
= I0. (24)

By integration we have

S (x, y) = C1(y) ± x
√

3I0y + �y3 + 6√
3
√
y

, (25)

where

C ′
1(y)

√
3I0y + �y3 + 6√

3
√
y

= ±h. (26)

Therefore, the Action reads

S (x, y) = ±
∫ √

3h
√
y

√
3I0y + �y3 + 6

dy ± x
√

3I0y + �y3 + 6√
3
√
y

. (27)

Consequently, the field equations are reduced to the following two-dimensional system by using the Hamilton–Jacobi equations
ẋ = ∂S

∂y , ẏ = ∂S
∂x , that is,

ẋ = ±
√

3
(
�xy3 − 3x + 3hy2

)

3y
√
y
(
6 + 3I0y + �y3

) , (28)

ẏ = ±
√

3

3y

√
y
(
6 + 3I0y + �y3

)
. (29)

We have to impose the reality condition y
(
6 + 3I0y + �y3

)
> 0, such that numerically we find the intervals for the free parameters

h, I0 and y, where it is possible to have real-time and give differential equations with coefficients with zero imaginary part (i.e., in
R). The detailed discussion is left to Sect. 3.

For the analysis in Sect. 3 we choose the branch ε = −1.

2.2 Special case: vacuum (ρD ≡ 0, E �= 0)

For vacuum (ρD ≡ 0) equation (1) is trivially satisfied and defining 
 = 3σ + θ Eqs. (2), (3), (4) and (5) become

Ė + 
E = 0, (30)


̇ + 
2

3
− � + 3E = 0, (31)

σ̇ + 2
σ

3
− 3σ 2 + E = 0, (32)

with algebraic constraint equation


2

3
− 2
σ +

(3)R

2
− � = 0. (33)
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Solving (31) for 
, defining F such that σ = −Ḟ/F , and defining

E = 1

Y 3 , F = 3

√
X

Y
, (34)

the system (31)–(32) transforms to

Ẍ − �

3
X − 2X

Y 3 = 0, (35)

Ÿ − �

3
Y + 1

Y 2 = 0. (36)

The previous analysis follows by setting (x, y) = (X, Y ).

2.3 Special case: (6E + ρD) ≡ 0

In the special case E = −ρD/6 Eqs. (1) and (2) are the same. Equations (2), (3) and (4) become

ρ̇D + θρD = 0 (37)

θ̇ + θ2

3
+ ρD

2
+ 6σ 2 − � = 0, (38)

σ̇ + 2θσ

3
− ρD

6
− σ 2 = 0, (39)

with algebraic constraint equation (5).
Solving (37) for θ , defining F such that σ = −Ḟ/F , and defining

ρD = − 1

2Y (X + Y )2 , F = 3

√
Y

X + Y
, (40)

the system (38)-(39) transforms to

Ẍ − �X

3
+ 1

4(X + Y )2 = 0, (41)

Ÿ − �Y

3
− 1

4(X + Y )2 = 0. (42)

Defining

x = X + Y, y = Y (43)

we obtain

ẍ − �x

3
= 0, (44)

ÿ − �y

3
− 1

4x2 = 0. (45)

Equation (44) can be integrated as

I0 = ẋ2 − �

3
x2. (46)

The point-like Lagrangian which describes equations (44) and (45) is the two-dimensional Lagrangian

L (x, ẋ, y, ẏ) = ẋ ẏ + �

3
xy − 1

4x
. (47)

Hence we define the momentum px = ∂L
∂ ẋ and py = ∂L

∂ ẏ , i.e. px = ẏ and py = ẋ , such that the Hamiltonian function
h = px ẋ + py ẏ − L , to be

h = ẋ ẏ − �

3
xy + 1

4x
. (48)

while the Hamilton’s equations read

ẋ = py ẏ = px , (49)

ṗy = �

3
x, ṗx = �

3
y + 1

4x2 . (50)
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Because the Szekeres system is autonomous, the Hamiltonian function is a conservation law, the energy of the system, that is,
dh
dt = 0, i.e., h is a constant.

Therefore, the four-dimensional Szekeres system is an integrable Hamiltonian system. From (48) we write the time-independent
Hamilton–Jacobi equation

(
∂S

∂x

)(
∂S

∂y

)
− �

3
xy + 1

4x
= h. (51)

while the conservation law I0 reads

(
∂S

∂y

)2

− �

3
x2 = I0. (52)

Therefore, the action reads

S(x, y) = C1(x) ± y
√

3I0 + �x2
√

3
, (53)

C1(x) = ±1

4

⎛

⎝
4
√

3h ln
(√

�
√

3I0 + �x2 + �x
)

√
�

+
ln
(√

3
√
I0
√

3I0 + �x2 + 3I0
)

− ln(x)
√
I0

⎞

⎠ . (54)

Consequently, the field equations are reduced to the following two-dimensional system by using the Hamilton–Jacobi equations
ẋ = ∂S

∂y , ẏ = ∂S
∂x , that is,

ẋ = ±
√

3I0 + �x2
√

3
, (55)

ẏ = ± (12hx + 4�xy − 3)

4
√

9I0 + 3�x2
. (56)

We choose the branch ε = −1 and assume 3I0 + �x2 > 0. That is, the physical cases are � > 0, x2 > − 3I0
�

or � < 0, I0 >

0, x2 < − 3I0
�

. In the second case, the variable x is bounded.

3 Stability analysis at the finite regime

3.1 Case (6E + ρD) �= 0

The reduced two-dimensional Szekeres system in the finite regime is described by the following system of two first-order ordinary
differential equations

dx

dt̄
= f (x, y; h, I0) , (57)

dy

dt̄
= g (x, y; h, I0) , (58)

with

f (x, y; h, I0) = −√
3
(
x
(
y3 − 3

)+ 3hy2) , (59)

g (x, y; h, I0) = −√
3y
(
�y3 + 3I0y + 6

)
, (60)

where we have selected the new independent variable dt =
√

y(6+3I0 y+�y3)
3y dt̄ .

The stationary points P = (x (P) , y (P)) for the dynamical system (57), (58) are given by the roots of the algebraic equations
f (x, y, h, I0) = 0 and g (x, y; h, I0) = 0. Hence, for a nonzero cosmological constant � and nonzero value for the conservation
law I0, the stationary points are derived
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P0 = (0, 0) ,

P1 =

⎛

⎜⎜
⎝

3hy2 (P1)

�y3 (P1) − 3
,

(√
�3
(
I 3
0 + 9�

)− 3�2
) 1

3

⎛

⎜⎜
⎝

1

�
− I0
(√

�3
(
I 3
0 + 9�

)− 3�2
) 2

3

⎞

⎟⎟
⎠

⎞

⎟⎟
⎠ ,

P2 =

⎛

⎜⎜
⎝

3hy2 (P2)

�y3 (P2) − 3
,
I0
(
� + i

√
3�
)

+
(
−1 + i

√
3
) (√

�3
(
I 3
0 + 9�

)− 3�2
) 2

3

2�
(√

�3
(
I 3
0 + 9�

)− 3�2
) 1

3

⎞

⎟⎟
⎠ ,

and

P3 =

⎛

⎜⎜
⎝

3hy2 (P3)

�y3 (P3) − 3
,
I0
(
� − i

√
3�
)

−
(

1 + √
3
) (√

�3
(
I 3
0 + 9�

)− 3�2
) 2

3

2�
(√

�3
(
I 3
0 + 9�

)− 3�2
) 1

3

⎞

⎟⎟
⎠ .

Stationary point P0 is always real. However, that is not always true for points P1, P2 and P3. Thus for various values of the free variables
{h, I0}, the number of stationary points can be two or four. We proceed by assuming that the cosmological constant is positive, say � = 1,

or negative, e.g., � = −1.

3.1.1 Positive �

Let us assume now that � = 1. Then, the stationary points read

P0 = (0, 0) ,

P1 =

⎛

⎜
⎜
⎝

3hy2 (P1)

�y3 (P1) − 3
,

(√(
I 3
0 + 9

)− 3

) 1
3

⎛

⎜
⎜
⎝1 − I0

(√(
I 3
0 + 9

)− 3
) 2

3

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ ,

P2 =

⎛

⎜⎜
⎝

3hy2 (P2)

�y3 (P2) − 3
,
I0
(

1 + i
√

3
)

+
(
−1 + i

√
3
) (√(

I 3
0 + 9

)− 3
) 2

3

2
(√(

I 3
0 + 9�

)− 3
) 1

3

⎞

⎟⎟
⎠ ,

and

P3 =

⎛

⎜
⎜
⎝

3hy2 (P3)

�y3 (P3) − 3
,
I0
(

1 − i
√

3
)

−
(

1 + √
3
) (√(

I 3
0 + 9

)− 3
) 2

3

2
(√(

I 3
0 + 9�

)− 3
) 1

3

⎞

⎟
⎟
⎠ .

Consequently, for I0 we find three intervals A = (−∞,−2.08), B = (−2.08, 0) and C = (0,+∞). Thus, in the interval A, points
P1, P2, P3 are real, that is {P1, P2, P3} ∈ R. For I0 ∈ B, P2 ∈ R while {P1, P3} ∈ C with � (P1)� (P3) �= 0, were we use the operator
�(z) for the imaginary part of z ∈ C. Finally, for I0 ∈ C the only real point is P1, while {P2, P3} ∈ C. So, for values of the integration
constant in the interval A, Eqs. (57) and (58) admit four real stationary points {P0, P1, P2, P3} while for I0 ∈ B or I0 ∈ C, the stationary
points are two, that is, the set of points {P0, P2} and {P0, P1}, respectively.

In Fig. 1 we present the imaginary and real parts for the variables y (P1), y (P2) and y (P3). Because y should be positive, then the
only physically accepted points in the finite regime are P0 for arbitrary I0 and P1, P3 for I0 < −2.08.

To understand the stability properties of the stationary points, we linearize the system (57), (58) around P + δP . We derive the
eigenvalues of the two-dimensional matrix, namely e1 (P) and e2 (P), that we use to investigate the stability of the point.

For point P0 the eigenvalues are e1 (P0) = −6
√

3 and e2 (P0) = 3
√

3 where we infer that the P0 is a saddle point. For the
stationary point P1 the eigenvalues of the linearized system are e1 (P1) = 3

√
3e (I0) and e1 (P1) = 6

√
3e (I0) with e (I0) =⎛

⎜⎜
⎜
⎝

3 +
I0

⎛

⎝
(√(

I 3
0 +9

)−3

) 2
3 −I0

⎞

⎠

(√(
I 3
0 +9

)−3

) 1
3

⎞

⎟⎟
⎟
⎠

. Thus, for I0 < −2.08 we derive 	 (e (I0)) < 0 from where we infer that P1 is an attractor. We use

the operator 	(z) for the real part of z ∈ C. Finally, for point P3 we find that the two eigenvalues have always positive real part for
I0 < −2.08, which means that P3 is always a source.
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Fig. 1 Imaginary (solid lines) and real parts (dashed lines) for the variables y (P1), y (P2) and y (P3) are represented. We observe that points {P1, P2, P3} ∈ R

for I0 < −2.08. Moreover, when −2.08 < I0 < 0, only P2 is real, while for I0 > 0, P1 is a real point. By definition y > 0, hence, points P1 and P3 are
physically accepted points for I0 < −2.08. Finally, for I0 > −2.08 no stationary points in the finite regime are physically accepted

In Fig. 2 we present the phase-space portraits for the dynamical system (57), (58) in the finite regime for various values of the free
variables I0 and h. We observe that for I0 < −2.08, point P1 is the unique attractor while for I0 > −2.08 there is not any attractor in the
finite regime and the unique stationary point is the saddle point P0. The value of parameter h changes only the location of the stationary
point on the x−direction and does not change the stability of the stationary points.

3.1.2 Negative �

In Fig. 3 we present the real and imaginary parts of the three stationary points P1, P2 and P3 for � = −1. We have three intervals
A(−1)= (−∞, 0), B(−1)= (0, 2.08) and C(−1) = (2.08,+∞) for the values of I0. Thus, for I0 ∈ A(−1), P1 ∈ R and {P2, P3} ∈ C. When
I0 ∈ B(−1), P2 ∈ R and {P1, P3} ∈ C. Finally, when I0 ∈ C(−1), {P1, P2, P3} ∈ R. However, because y is positive defined, it follows
that for I0 ∈ A(−1), the stationary points are two, {P0, P1} while for I0 ∈ B(−1) ∪ C(−1) there are two physical accepted stationary points,
namely {P0, P2}.

We investigate the stability properties for the stationary points, and we find that P0 is always a saddle point, while the stationary point
P1 for I0 < 0, and P2, for I0 > 0, have positive eigenvalues when they are physically accepted. Consequently, attractors do not exist in
the finite regime for a negative cosmological constant. Phase-space portraits of Eqs. (57), (58) for the variables (x, y) and for � = −1
are presented in Fig. 4, from where we observe no attractor exists in the finite regime.

We repeat the calculations for I0 = 0 and � = 1. We find that there is not any physically accepted stationary point except the saddle
point P0, while for negative cosmological constant, i.e. � = −1, there exist two physically accepted stationary points {P0, P1}. Point P0

is a saddle point, while P1 is a source.

3.2 Stability analysis at the finite regime (6E + ρD) = 0

The reduced two-dimensional Szekeres system in the finite regime is described by the following system of two first-order ordinary
differential equations

dx

dt̄
= f (x, y; h, I0) , (61)

dy

dt̄
= g (x, y; h, I0) , (62)

with

f (x, y; h, I0) = −3I0 − �x2 (63)

g (x, y; h, I0) = −3hx − �xy + 3

4
, (64)

where we have selected the new independent variable dt = √
3
√

3I0 + �x2dt̄ . However, by definition in order ρD > 0, it follows that
y < 0.

The stationary points Q = (x (Q) , y (Q)) for the dynamical system (61), (62) at the finite regime are

Q± =
(

±
√

−3I0
�

,−3h

�
± 1

4

√

− 3

I0�

)

.
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Fig. 2 Phase-space portraits for the dynamical system (57), (58) in the x − y plane, for different values of the free parameters I0 and h and positive
cosmological constant, � = 1. For I0 = −3 we observe that the unique attractor is point P1 while for I0 = 1 there is not any attractor in the finite regime,
and the unique stationary point is the saddle point P0

From hypothesis 3I0 + �x2 > 0 we have the physical cases � > 0, x2 > − 3I0
�

or � < 0, I0 > 0, x2 < − 3I0
�

. In the first case

Q± exist for I0 < 0 and the allowed region is x2 > − 3I0
�

, y < 0. In the second case, the variable x is bounded and Q± always exist

and the allowed region is x2 < − 3I0
�

, y < 0. Easily from the linearized system around the stationary points we derive the eigenvalues
e1 (Q±) = ±√−3�I0 and e1 (Q±) = ±2

√−3�I0, which means that point Q− is always a source and Q+ is a sink.
When I0 ≥ 0,� ≥ 0 there are no stationary points at the finite region.
The choice I0 < 0,� < 0 give differential equations with coefficients in C. Therefore, the choice of these parameters is forbidden.
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Fig. 3 Imaginary (solid lines) and real parts (dashed lines) for the variables y (P1), y (P2) and y (P3) are represented. We observe that points {P1, P2, P3} ∈ R

for I0 > −2.08. Moreover, when 0 < I0 < 2.08, only P2 is real, while for I0 < 0, P1 is a real point. Due to y > 0, hence, points P1 and P2 are physically
accepted points for I0 < 0 and I0 > 0, respectively

4 Compactification

4.1 Poincare disk: (6E + ρD) �= 0

To investigate the dynamics at the infinity regime, we define the new compactified variables x = ρ√
1−ρ2

cos � and y = ρ√
1−ρ2

sin �, in

which � ∈ [0, π] and ρ ∈ [0, 1] . As x, y take infinite values we have ρ → 1. In the set of variables {ρ,�} the field equations (57) and
(58) read

ρ′ =
√

3

2
ρ

(
2ρ cos2 �

(
cos �

(
(3I0 − �)ρ2 − 3I0

)− 2h sin �
(
1 − ρ2))− 3

(
1 − ρ2) 3

2 (1 + 3 cos (2�))

)
, (65)

�′ = 3
√

3 cos �
(

cos � (I0 sin � − h cos �)ρ + 3 sin �
√

1 − ρ2
)

, (66)

where �′ = d�
dτ

, dt = √1 − ρ2dτ .
For values of ρ near to one, Eqs. (65) and (66) become

ρ′ = −√
3� cos3 � ≡ F (�) , (67)

�′ = 3
√

3 cos2 �(I0 sin � − h cos �) ≡ G (�) . (68)

From (67) we know that when F (�) > 0, that is, ρ′ ≥ 0, the trajectories will still be at infinity, while for F (�) < 0, that is, ρ′ < 0, this
means that ρ decreases, that is we move far from the infinite regime. We observe that for � < 0, F (�) > 0, that is, the infinity regime
attracts the trajectories. It is an interesting result because as we found before for negative cosmological constant there are not attractors
at the finite regime.

The stationary points of equation (68) are � = �0 such that G (�0) = 0, that is, �1
0 = π

2 and �2
0 = arctan h

I0
for I0 �= 0. Thus, by

definition h
I0

≥ 0. In the special case h = 0, it can be found a third stationary point �3
0 = π . Moreover, we calculate F

(
�1

0

) = 0, while

F
(
�2

0

) = −√
3�

(
1 +

(
h
I0

)2
)−3

.

We continue with the study of (68).
We define the potential function VG (�) = ∫ G (�) d�, that is,

VG (�) = −
√

3

4

(
4I0 cos2 � + h (9 sin � + sin 3�)

)
. (69)

For �1
0 we derive VG

(
�1

0

) = −2
√

3h, which can be easily checked that it is not a minimum of the potential. Furthermore, dG(�)
d�

changes

sign around �1
0, which means that point �1

0 is a saddle point. However, because dG(�)
d�

|�→�1
0

= 0, we can easily define a stable manifold.
In Fig. 5 we present the qualitative analysis for the potential VG and its two derivatives for specific values of the free variables {I0, h}.
We find that for I0 < 0, �1

0 is minimum of the potential VG (�) in the interval
[
0, π

2

]
. While, for I0 > 0, �1

0 is minimum of the potential
VG (�) in the interval

[
π
2 , 0

]
. Thus, for I0 < 0, �1

0 is an attractor in
[
0, π

2

]
, i.e. x > 0. While, for I0 > 0, �1

0 is an attractor for initial
conditions in the interval � ∈ [π

2 , 0
]
, i.e. x < 0.
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Fig. 4 Phase-space portraits for the dynamical system (57) and (58) in the x − y plane, for different values of the free parameters I0 and h and negative
cosmological constant, � = −1. For I0 = −3 and I0 = 1 we observe that P1 and P2 points are sources, respectively, while P0 is a saddle point. Thus,
attractors do not exist in the finite regime for negative �

As far as point �2
0 is concerned, we observe that dG(�)

d�
|�→�2

0
= 3

√
3I0√

1+
(

h
I0

)2
, which means that the point is physically accepted and it is

an attractor in the surface with ρ = 1, when I0 < 0, h < 0. On the other hand, for h = 0, it follows that �2
0 is an attractor when I0 > 0,

while for I0 < 0 the attractor is h < 0.
In Figs. 6 and 7 we present the phase-space diagrams of the field equations in the compactified variables (ρ,�) for various values of

the free variables. The main results are summarized in the following proposition.
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Fig. 5 Qualitative evolution of potential function VG (�) and its derivatives dVG
d�

and d2VG
d�2 in the interval [0, π ]

Proposition For Szekeres system (57), (58) with a positive cosmological constant, that is, � = 1, the trajectories can be originated at
the finite or infinite regime with attractor point at the finite regime given by P1 if I0 < −2.08. When I0 > −2.08, the trajectories reach
the infinity regime. On the contrary, for negative cosmological constant, � = −1, the trajectories may start at the finite or infinity regime
and end at the infinity regime.

In order to understand better the evolution of the trajectories, in Figs. 8 and 9 we present the phase space portrait in the compactified
variables (X, Y ) which are defined as x = X√

1−X2−Y 2 and y = Y√
1−X2−Y 2 in which |X | ≤ 1 and 0 ≤ Y ≤ 1.

4.2 Poincare disk: (6E + ρD) = 0

The reduced two-dimensional Szekeres system in the finite regime is described by the system of two first-order ordinary differential
equations (61) and (62) with f (x, y; h, I0) defined by (63) and g (x, y; h, I0) defined by (64) where we have selected the new independent
variable dt = √

3
√

3I0 + �x2dt̄ .
Recall,
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Fig. 6 Phase-space portraits for the dynamical system (65), (66) in the compactified variables (ρ,�) for different values of the free parameters I0 and h
and positive cosmological constant, � = 1

(1.) From hypothesis 3I0 + �x2 > 0 we have the physical cases:

(a.) � > 0, x2 > − 3I0
�

, y < 0

(b.) � < 0, I0 > 0, x2 < − 3I0
�

, y < 0.

(2.) When I0 ≥ 0,� ≥ 0 there are no stationary points at the finite region.
(3.) The choice I0 < 0,� < 0 give differential equations with coefficients in C. Therefore, the choice of these parameters is forbidden.
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Fig. 7 Phase-space portraits for the dynamical system (65), (66) in the compactified variables (ρ,�) for different values of the free parameters I0 and h
and negative cosmological constant, � = −1

4.2.1 Case a.1: � > 0, I0 > 0, y < 0

In this case, the phase-plane is the lower half-plane

H− := {(x, y) ∈ R
2, x ∈ R, y ≤ 0}, (70)

where we have attached the boundary set y = 0. There are not stationary points in H−. To investigate the dynamics at the infinity regime,
we define the new compactified variables x = ρ√

1−ρ2
cos � and y = ρ√

1−ρ2
sin �, in which � ∈ [−π, π] and ρ ∈ [0, 1] . Since the

physical region is the lower half plane y ≤ 0, we have the physical interval � ∈ [−π, 0]. As x, y take infinite values we have ρ → 1. In
the set of variables {ρ,�} the field equations (61) and (62) with f (x, y; h, I0) defined by (63) and g (x, y; h, I0) defined by (64) become
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Fig. 8 Phase-space portraits for Szekeres system associated to (57) and (58) in the compactified variables (X, Y ) for different values of the free parameters
I0 and h and positive cosmological constant, � = 1

dρ

dt̄
= 3hρ

(
ρ2 − 1

)
sin(�) cos(�)

+ 1

4

√
1 − ρ2

(−4 cos(�)
(
ρ2(� − 3I0) + 3I0

)− 3
(
ρ2 − 1

)
sin(�)

)
, (71)

d�

dt̄
= −3h cos2(�) + 3

√
1 − ρ2(4I0 sin(�) + cos(�))

4ρ
. (72)

The leading terms as ρ → 1− are

dρ

dt̄
= −√

2� cos(�)
√

1 − ρ − 6h cos(�) sin(�)(1 − ρ) + O
(
(1 − ρ)3/2) , (73)
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Fig. 9 Phase-space portraits for Szekeres system associated to (57) and (58) in the compactified variables (X, Y ) for different values of the free parameters
I0 and h and negative cosmological constant, � = −1

d�

dt̄
= −3h cos2(�) + 3

√
1 − ρ2(4I0 sin(�) + cos(�))

4ρ
+ O

(
(1 − ρ)3/2) . (74)

The points at infinity satisfy cos(�) = 0 for h �= 0.
In terms of the Poincaré variables

X = x
√

1 + x2 + y2
, Y = y

√
1 + x2 + y2

, X ∈ [−1, 1], Y ∈ [−1, 1] (75)

we obtain

dX

dt̄
= 3hX2Y +

√
1 − X2 − Y 2

(
3I0
(
X2 − 1

)− 1

4
X (4�X + 3Y )

)
, (76)
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Fig. 10 Phase-space portraits for Szekeres system associated to (76) and (77) in the compactified variables (X, Y ) for positive values of the free parameters
I0 and � and h = 1 corresponding to Case a.1

dY

dt̄
= −3hX

(
1 − Y 2)+ 1

4

√
1 − X2 − Y 2(Y (12I0X − 4�X − 3Y ) + 3). (77)

The physical region is X2 + Y 2 ≤ 1, Y ≤ 0.
In Fig. 10 the phase-space portraits for Szekeres system associated to (76) and (77) is presented in the compactified variables (X, Y )

for positive values of the free parameters I0 and � and h = 1 corresponding to Case a.1.
In Fig. 11 the phase-space portraits for Szekeres system associated to (76) and (77) is presented in the compactified variables (X, Y )

for positive values of the free parameters I0 and � and h = −1 corresponding to Case a.1.
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Fig. 11 Phase-space portraits for Szekeres system associated to (76) and (77) in the compactified variables (X, Y ) for positive values of the free parameters
I0 and � and h = −1 corresponding to Case a.1

4.2.2 Case a.2: � > 0, I0 ≤ 0, x2 > − 3I0
�

, y < 0

The dynamics is given also by (71)-(72) in terms of (ρ,�) or by (76)-(77) in terms of (X,Y ). The points at infinity satisfy cos(�) = 0
for h �= 0, but also we have the stationary points at the finite region Q±.

In Fig. 12 the phase-space portraits for Szekeres system associated to (76) and (77) is showed in the compactified variables (X, Y ) for
I0 ≤ 0 and � > 0 and h = 1 corresponding to Case a.2. The gray region is the forbidden region x2 ≤ − 3I0

�
.

In Fig. 13 the phase-space portraits for Szekeres system associated to (76) and (77) is showed in the compactified variables (X, Y ) for
I0 ≤ 0 and � > 0 and h = −1 corresponding to Case a.2. The gray region is the forbidden region x2 ≤ − 3I0

�
.
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Fig. 12 Phase-space portraits for Szekeres system associated to (76) and (77) in the compactified variables (X, Y ) for I0 ≤ 0 and � > 0 and h = 1

corresponding to Case a.2. The gray region is the forbidden region x2 ≤ − 3I0
�

4.2.3 Case b: � < 0, I0 > 0, x2 ≤ − 3I0
�

, y < 0.

In this example the variable x is bounded. Since y < 0 we propose the bounded variable

Y = y

y − 1
(78)

when y → −∞, Y → 1.
The dynamical system becomes

dx

dt̄
= −3I0 − �x2, (79)
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Fig. 13 Phase-space portraits for Szekeres system associated to (76) and (77) in the compactified variables (X, Y ) for I0 ≤ 0 and � > 0 and h = −1

corresponding to Case a.2. The gray region is the forbidden region x2 ≤ − 3I0
�

dY

dt̄
= 3

4
(Y − 1)2(4hx − 1) + �xY (Y − 1). (80)

The stationary points at infinity are

I− : (x, Y ) =
(

−√
3

√

− I0
�

, 1

)

and

I+ : (x, Y ) =
(√

3

√

− I0
�

, 1

)
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with eigenvalues

{
2
√

3�

√
− I0

�
,−√

3�

√
− I0

�

}
and

{
−2

√
3�

√
− I0

�
,
√

3�

√
− I0

�

}
, respectively. Hence, they are saddles because � < 0

and I0 > 0.
For � < 0, the points at the finite region are

Q− : (x, y) =
⎛

⎝
√

3
√−I0�

�
,

144h2 I0 + 48hI0� + �
(

4
√

3
√−I0� + 3

)

16I0(3h + �)2 + 3�

⎞

⎠

and

Q+ : (x, y) =
⎛

⎝−
√

3
√−I0�

�
,

144h2 I0 + 48hI0� + �
(

3 − 4
√

3
√−I0�

)

16I0(3h + �)2 + 3�

⎞

⎠ .

The eigenvalues of Q± are
{
±2

√
3
√−I0�,±√

3
√−I0�

}
, respectively, which means that point Q− is always a source and Q+ is a

sink.
In Fig. 14 some phase-space portraits for the dynamical system (79)–(80) are presented.

5 Asymptotic behavior

In this section, we investigate the evolution of the kinematic and dynamical variables for the field equations (1)–(5) by using dimensionless
variables. Such an approach has been widely studied in the literature and can give us important information about the physical behavior of
the exact solutions at stationary points. The dynamics of the Szekeres system in the θ -normalization, known also as Hubble normalization,
were studied by [6] for the case with zero-valued cosmological constant. Recently, in [25] the case of a nonzero cosmological constant
was considered. However, in the θ -normalization, the expansion rate cannot change sign, that is, it cannot take the value θ = 0. But, from
the analysis in [3,4] we know that because a family of solutions describes Kantowski–Sachs universes, the expansion rate can change
sign.

Thus, in this work we define new dimensionless variables, different from that of the θ -normalization, say,

ωD = 3ρD(
1 + θ2

) , � = σ√
1 + θ2

, α = E

1 + θ2 , (81)

ω� = �

1 + θ2 , η = θ√
1 + θ2

, ωR =
(3)R

(
1 + θ2

) . (82)

Therefore, the field equations read

ω′
D = 1

3
ηωD

(
2η2 − 3 + 36�2 + ωD − 6ω�

)
, (83)

�′ = 1

6

(
�
(
2η3 + 6� + η

(
36�2 − 4 + ωD − 6ω�

))− 6α
)
, (84)

α′ = 1

6

(
2α
(
2η3 − 9� + η

(
36�2 − 3 + ωD − 6ω�

))− ωD�
)
, (85)

ω′
� = 1

3
ηω�

(
2η2 + 36�2 + ωD − 6ω�

)
, (86)

η′ = 1

6

(
η2 − 1

) (
2η2 + 36�2 + ωD − 6ω�

)
, (87)

with algebraic constraint

η2 − 9�2 − ωD + 3

2
ωR − 3ω� = 0, (88)

where we have defined the new derivative f ′ = 1√
1+θ2 ḟ .

Every stationary point of the dynamical system (83)-(87) with constraint (88) describes an asymptotic solution for the inhomogeneous
background space (6). The physical properties of the background spaces follow from the values of the anisotropic parameter � and of
the curvature scalar ωR . Indeed, for a stationary point with � = 0 the background space is isotropic, which means that the asymptotic
solution at the point will belong to the Friedmann-Lemaître-Robertson-Walker (-like) family of solutions, while for � �= 0 to the Bianchi
I, Kantowski-Sachs or to the Bianchi III (-like) universes depend on the sign of the curvature scalar. Moreover, η > 0 remarks θ > 0
which correspond to an expanding universe. While η < 0, i.e. θ < 0, corresponds to a shrinking universe. Finally, η = 0 describes static
spacetimes with θ = 0.
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Fig. 14 Phase-space portraits for the dynamical system (79)–(80)

Additionally, we study the stability properties of the stationary points. This information is essential because we extract important
information about the evolution of the solution near the stationary points, as we can also construct the evolution of the cosmological
history provided by the specific model.

The stability of stationary points for the system (83)–(87) with constraint (88) for the following set of points P = (ωD, �, α, ω�, η, ωR)

is classified. We give the value of ωR , for stability analysis coordinates (ωD, �, α, ω�, η) are considered. Points A±
1 = (1, 0, 0, 0,±1, 0)

describe singular solutions where only the pressureless matter fluid dominates. The background space is isotropic with zero valued
spatial curvature, which means that it is reduced to the spatially flat Friedmann-Lemaître-Robertson-Walker background space. Points
A±

2 = (0, 0, 0, 0,±1,− 2
3

)
provide asymptotic solutions in an isotropic background space with negative curvature. Indeed, the exact solu-

tions at the points are the (inhomogeneous) Milne universes. The asymptotic solutions at the stationary points A±
3 = (0,± 1

3 , 2
9 , 0,±1, 0

)

correspond to anisotropic universes with zero valued spatial curvature, that is, they describe (inhomogeneous) Bianchi I vacuum

solutions, i.e. Kasner (-like) universes. Moreover, the background space at the stationary points A±
4 =

(
0,∓ 1

12 , 1
32 , 0,±1,− 5

8

)
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Table 1 The stationary points for the system (83)–(87) with constraint (88)

Point (ωD, �, α, ω�, η, ωR) Spacetime Eigenvalues Stability

A±
1 (1, 0, 0, 0, ±1, 0) Flat FLRW ±1,±1, ∓ 1

2 , ± 1
3 ,± 1

3 Saddle points

A±
2

(
0, 0, 0, 0,±1, − 2

3

)
Milne ± 2

3 ,± 2
3 , ∓ 1

3 ,∓ 1
3 , ∓ 1

3 Saddle points

A±
3

(
0, ± 1

3 , 2
9 , 0, ±1, 0

)
Kasner ±2, ±2, ± 5

3 , ±1,± 2
3 A+

3 source

A−
3 attractor

A±
4

(
0, ∓ 1

12 , 1
32 , 0, ±1,− 5

8

)
Kantowski-Sachs ± 3

4 , ± 3
4 , ∓ 5

8 , ∓ 1
4 , ± 1

4 Saddle points

A±
5

(
0, ± 1

3 , 0, 0, ±1, 0
)

Kasner ±2, ±2, ±2,±1,±1 A+
5 source

A−
5 attractor

A±
6

(
0, ± 1

6 , 0, 0, ±1,− 1
2

)
Kantowski-Sachs ±1,±1, ∓ 1

2 , ± 1
2 , 0 Saddlepoints

A±
7

(
−3,∓ 1

3 , 1
6 , ±1, 0

)
Not physically

acceptable

B1

(
0, 0, 0,

η0
2

3 , η0, 0

)
de Sitter −η0,−η0, − 2

3 η0, − 2
3 η0, 0 stable for η0 > 0

B2

(
0, − η0

3 ,
η0

2

3 , η0
2, η0, 2η0

2
)

Bianchi III −2η0, −η0, −η0, η0, 0 Saddle point

B3

(
0, 2

3 η0, 0, 3η0
2, η0, 8η0

2
)

Bianchi III −3η0, −2η0, −η0, 2η0, 0 Saddle point

C1
(
ωD, 0, 0,

ωD
6 , 0, ωD

)
Closed FLRW −

√
ωD
6 , −

√
ωD
6 ,

√
ωD
6 ,

√
ωD
6 , 0 Saddle point

C2 (0, 0, 0, 0, 0, 0) Minkowski 0, 0, 0, 0, 0 Unstable

is anisotropic with negative valued spatial curvature, thus, the solution is that of the vacuum Kantowski-Sachs (-like) spacetime.
Furthermore, inhomogeneous Kasner solutions are described also by the stationary points A±

5 = (
0,± 1

3 , 0, 0,±1, 0
)
. The two of

stationary points A±
6 = (

0,± 1
6 , 0, 0,±1,− 1

2

)
describe vacuum Kantowski-Sachs spacetimes. Moreover, the two stationary points

A±
7 = (−3,∓ 1

3 , 1
6 ,±1, 0

)
are not physically accepted because they provide negative energy density for the pressureless fluid source ρD .

These stationary points satisfy η2 = 1 which indicates that θ reaches infinite. Indeed the asymptotic solutions described by the
stationary points A±

I , I = 1, 2...7, correspond to singular solutions in which θ ∝ t−1. There exist the additional stationary points

with η0
2 �= 1 which provide an exponential expansion rate θ ∝ eH0t . There are curves of stationary points, B1 =

(
0, 0, 0,

η0
2

3 , η0, 0
)

,

B2 =
(

0,− η0
3 ,

η0
2

3 , η0
2, η0, 2η0

2
)

and B3 = (
0, 2

3 η0, 0, 3η0
2, η0, 8η0

2
)
. The curve of stationary points B1 describes the asymptotic

solution for a spatially flat Friedmann–Lemaître–Robertson–Walker (FLRW) (-like) spacetime dominated by the cosmological constant,
that is, it describes de Sitter universe. One the other hand, the curves of stationary points B2 and B3 describe Bianchi III (-like) spacetimes.

Finally, there exist two lines of stationary points withη = 0, they areC1 = (ωD, 0, 0, ωD
6 , 0, ωD

)
andC2 = (−18�2, �, �2, 3�2, 0, 0

)
.

The asymptotic solution at the line of stationary pointsC1 describes an isotropic universe with positive spatially curvature, that is, it describes
the closed Friedmann-Lemaître-Robertson-Walker (-like) spacetime and exists only for positive cosmological constant. Furthermore, points
over line C2 are physically accepted only when � = 0, and in such case we have the physical stationary point C2 = (0, 0, 0, 0, 0, 0).
Therefore, C2 describes the Minkowski solution. It is very interesting that there are two stationary points in which the expansion rate θ

changes sign, and the trajectories for the field equations can go from the region which describes an expanding universe, θ > 0, to the
region which the universe shrinks, i.e. θ < 0. In Table 1, the above discussion is summarized. Additionally, the eigenvalues around the
stationary points for the linearized system (83)–(87) are presented. From the eigenvalues, we infer that points A±

1 , A±
2 , A±

4 , B2, B3 andC1

are always saddle points. Meanwhile, Points A+
3 , A+

5 are sources describing unstable solutions, while A−
3 and A−

5 are attractors. The line
of stationary points B1 has five negative eigenvalues and a zero eigenvalue. Thus, it has a 4D stable manifold and a 1D center manifold,
which can be determined by applying the center manifold theorem (CMT). As far as the line of stationary points C2 is concerned the
five eigenvalues are all zero. However, from the phase-space diagrams presented below it follows that the point C2 always describes the
unstable Minkowski universe.

In Figs. 15, 16, 17 and 18 we present phase-space portraits for the field equations (83)–(87) in the two-dimensional planes (ωD, �) ,
(ωD, α), (ωD, ω�), (�, α) for η = 1 (Fig. 15), η = −1 (Fig. 16) and η = 0 (Fig. 17). In Fig. 18 the phase-space portraits are in the
two-dimensional planes (η,�) , (η, α), (η, ω�) and (η, ωD) .

The set of stationary points B1 can be parametrized as the curve s(η) =
(

0, 0, 0,
η2

3 , η, 0
)

. Fixing a point of B1 with η = η0 the

eigensystem at the stationary point fixed is given by
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Fig. 15 Phase-space portraits for the dynamical system (83)–(87) in the two-dimensional planes (ωD, �) , (ωD, α), (ωD, ω�), (�, α) for η = 1
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Fig. 16 Phase-space portraits for the dynamical system (83)–(87) in the two-dimensional planes (ωD, �) , (ωD, α), (ωD, ω�), (�, α) for η = −1
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Fig. 17 Phase-space portraits for the dynamical system (83)–(87) in the two-dimensional plane (�, α) for η = 0

⎧
⎨

⎩

0 −η0 −η0 − 2η0
3 − 2η0

3(
0, 0, 0,

2η0
3 , 1

) (
− 2η0

η2
0−1

, 0, 0,
2η3

0
3
(
η2

0−1
) , 1

) (
0, 3

η0
, 1, 0, 0

) (
0, 0, 0,

2η3
0

3
(
η2

0−1
) , 1

)
(0, 1, 0, 0, 0)

⎫
⎬

⎭
. Since the eivenvector associated to

the zero eigenvalue,
(

0, 0, 0,
2η0
3 , 1

)
is parallel to the tangent vector v = ds(η)

dη
|η=η0 =

(
0, 0, 0,

2η0
3 , 1

)
at the given point with coordinates

(
0, 0, 0,

η0
2

3 , η0, 0
)

in the curve B1. Then, the line of stationary points B1 is normally hyperbolic. A set of non-isolated stationary points

is said to be normally hyperbolic if the only eigenvalues with zero real parts are those whose corresponding eigenvectors are tangent to
the set. Since by definition any point on a set of non-isolated stationary points will have at least one eigenvalue which is zero, all points
in the set are non-hyperbolic. However, a set that is normally hyperbolic can be completely classified as per its stability by considering
the signs of eigenvalues in the remaining directions (i.e., for a curve, in the remaining n − 1 directions) (see [40], pp. 36). When these
arguments are applied to B1, it follows that the line of stationary points is stable.

Another way to see this is using the Center Manifold Theorem. The center manifold of a dynamical system ẋ = f(x) is based upon an
equilibrium point of that system. A center manifold of the equilibrium then consists of those nearby orbits that neither decay exponentially
quickly, nor grow exponentially quickly. The first step when studying equilibrium points of dynamical systems is to linearize the system,
and then compute its eigenvalues and eigenvectors. The eigenvectors corresponding to eigenvalues with negative real parts form a basis
for the stable eigenspace. The eigenvectors corresponding to eigenvalues with positive real parts form the unstable eigenspace. However,
if the equilibrium has eigenvalues whose real part is zero, then the corresponding eigenvectors form the center eigenspace. Going beyond
the linearization, when we account for nonlinear perturbations in the dynamical system, the center eigenspace deforms to the nearby center
manifold. If the eigenvalues are precisely zero, rather than just real-part being zero, then the corresponding eigenspace more specifically
gives rise to a slow manifold. The behavior on the center (slow) manifold is generally not determined by the linearization and thus may
be difficult to construct.

The center manifold existence theorem states that if the right-hand side function f(x) is Cr (r times continuously differentiable), then
at every equilibrium point there exists a neighborhood of some finite size in which there is at least one of a unique Cr stable manifold,
a unique Cr unstable manifold, and a (not necessarily unique) Cr−1 center manifold [41, Theorem 3.2.1]. In the case when the unstable
manifold does not exist, center manifolds are often relevant to modeling. The center manifold emergence theorem then says that the
neighborhood may be chosen so that all solutions of the system staying in the neighborhood tend exponentially quickly to some solution
y(t) on the center manifold. That is, x(t) = y(t) + O(e−βt ) as t → ∞ for some rate β [42]. This theorem asserts that for a wide variety
of initial conditions the solutions of the full system decay exponentially quickly to a solution on the relatively low-dimensional center
manifold.

A third theorem, the approximation theorem, asserts that if an approximate expression for such invariant manifolds, say x = X(s)
satisfies the differential equation for the system up to an error of the order O(|s|p) as s → 0, then the invariant manifold is approximated
by x = X(s) to an error of the same order, namely O(|s|p).
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Fig. 18 Phase-space portraits for the dynamical system (83)–(87) in the two-dimensional planes (η, �) , (η, α), (η, ω�) and (η, ωD)
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Defining the similarity matrix

S =

⎛

⎜⎜⎜
⎜⎜
⎜⎜⎜
⎜
⎝

0 − 2η0

η2
0−1

0 0 0

0 0 3
η0

0 1

0 0 1 0 0

2η0
3

2η3
0

3
(
η2

0−1
) 0

2η3
0

3
(
η2

0−1
) 0

1 1 0 1 0

⎞

⎟⎟⎟
⎟⎟
⎟⎟⎟
⎟
⎠

, (89)

and the linear transformation

X := (x1, x2, x3, x4, x5) = S−1 ·
(

ωD, �, α, ω� − η2
0

3
, η − η0

)

(90)

such that

(ωD, �, α, ω�, η) =
(

− 2η0x2

η2
0 − 1

,
3x3

η0
+ x5, x3,

η0
(
η3

0 − η0 + 2η2
0(x1 + x2 + x4) − 2x1

)

3
(
η2

0 − 1
) , η0 + x1 + x2 + x4

)

. (91)

This transformation translates the point with coordinates
(

0, 0, 0,
η0

2

3 , η0, 0
)

at the curve B1 to the origin. The new system can be

symbolically written as
⎛

⎜⎜⎜
⎜⎜
⎜⎜
⎝

x ′
1

x ′
2

x ′
3

x ′
4

x ′
5

⎞

⎟⎟⎟
⎟⎟
⎟⎟
⎠

=

⎛

⎜⎜⎜
⎜⎜
⎜⎜
⎝

0 0 0 0 0

0 −η0 0 0 0

0 0 −η0 0 0

0 0 0 − 2η0
3 0

0 0 0 0 − 2η0
3

⎞

⎟⎟⎟
⎟⎟
⎟⎟
⎠

︸ ︷︷ ︸
=J

⎛

⎜⎜⎜
⎜⎜
⎜⎜
⎝

x1

x2

x3

x4

x5

⎞

⎟⎟⎟
⎟⎟
⎟⎟
⎠

+

⎛

⎜⎜⎜
⎜⎜
⎜⎜
⎝

g1(X)

g2(X)

g3(X)

g4(X)

g5(X)

⎞

⎟⎟⎟
⎟⎟
⎟⎟
⎠

, (92)

or

X′ = JX + g(X) (93)

where the vector g(X) contains the nonlinear terms. Hence, the local center manifold of the origin is given locally by the graph
{
X ∈ R

5 : x2 = h2(x1), x3 = h3(x1), x4 = h4(x1), x5 = h5(x1),

h′
2(0) = h′

3(0) = h′
4(0) = h′

5(0) = 0,

h2(0) = h3(0) = h4(0) = h5(0) = 0, |x1| < δ
}

(94)

for δ small enough. From the invariance of the center manifold of the origin for the flow of the dynamical systems it follows that hi satisfy
the set of differential equations

η0h2(x1) − g2(x1, h2(x1), h3(x1), h4(x1), h5(x1)) + h′
2(x1)g1(x1, h2(x1), h3(x1), h4(x1), h5(x1)) = 0, (95a)

η0h3(x1) − g3(x1, h2(x1), h3(x1), h4(x1), h5(x1)) + h′
3(x1)g1(x1, h2(x1), h3(x1), h4(x1), h5(x1)) = 0, (95b)

2

3
η0h4(x1) − g4(x1, h2(x1), h3(x1), h4(x1), h5(x1)) + h′

4(x1)g1(x1, h2(x1), h3(x1), h4(x1), h5(x1)) = 0, (95c)

2

3
η0h5(x1) − g5(x1, h2(x1), h3(x1), h4(x1), h5(x1)) + h′

5(x1)g1(x1, h2(x1), h3(x1), h4(x1), h5(x1)) = 0. (95d)

Substituting the ansatz

hi (x1) =
N−1∑

k=2

aik x
k
1 + O(xN1 ), i = 2, 3, 4, 5, (96)

in eqs. (95) and comparing coefficients of the same powers in x1 we obtain a22 = 0, a23 = 0, a24 = 0, a25 = 0, a26 = 0, a27 = 0, a28 =
0, a29 = 0, a32 = 0, a33 = 0, a34 = 0, a35 = 0, a36 = 0, a37 = 0, a38 = 0, a39 = 0, a42 = η2

0−1
2η0

, a43 =
(
η2

0−1
)2

2η2
0

, a44 = 5
(
η2

0−1
)3

8η3
0

, a45 =
7
(
η2

0−1
)4

8η4
0

, a46 = 21
(
η2

0−1
)5

16η5
0

, a47 = 33
(
η2

0−1
)6

16η6
0

, a48 = 429
(
η2

0−1
)7

128η7
0

, a49 = 715
(
η2

0−1
)8

128η8
0

, a52 = 0, a53 = 0, a54 = 0, a55 = 0, a56 = 0, a57 =
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0, a58 = 0, a59 = 0 for N = 10. This is our induction start. Assuming a2k = a3k = a5k = 0,∀k, 2 ≤ k ≤ N − 1, N ≥ 10
and equating to zero the coefficients of all orders of xki up to order N + 1, we obtain a2N = a3N = a5N = 0. That is, assuming
hi (x1) = aiN xN1 + O(xN+1

1 ), i = 2, 3, 5, we obtain from (95a), (95b) and (95d) (and by neglecting the terms O(xN+1
1 )) that

a2N P(x1, h4(x1)) = 0, a3N P(x1, h4(x1)) = 0, (97)

a3N Q(x1, h4(x1)) + a5N R(x1, h4(x1)) = 0, (98)

where

P(x1, h4) = η2
0

(
η2

0 − 1
)
Nh4

4 + η0h2
4

((
η2

0 − 3
)
x1
(
3
(
η2

0 − 1
)
N + 2

)− 2η0
(
η2

0 − 1
)
N
)

+ h3
4

(
η0
(
η4

0 − 4η2
0 + 1

)
N + 2

(
η2

0 − 1
)
x1
((

2η2
0 − 1

)
N + 1

))

+ x1h4
(−2η4

0N + η2
0(6N − 7) + 3

)− 3η0
(
η2

0 − 1
)
x1,

Q(x1, h4) = (−3
(
η2

0 − 1
)
x1h3

4 − 3η0
(
η2

0 − 3
)
x1h2

4 + (9η2
0 − 3

)
x1h4

)
,

R(x1, h4) = η2
0h

2
4

((
η2

0 − 3
)
x1
(
3
(
η2

0 − 1
)
N + 1

)− 2η0
(
η2

0 − 1
)
N
)

+ η0h3
4

(
η0
(
η4

0 − 4η2
0 + 1

)
N + (η2

0 − 1
)
x1
((

4η2
0 − 2

)
N + 1

))+ η3
0

(
η2

0 − 1
)
Nh4

4
+ h4

(
2η0x1 − 2η3

0x1
((

η2
0 − 3

)
N + 2

))− 2η2
0

(
η2

0 − 1
)
x1.

On the other hand, the function

h4(x1) = −x1 +
η0 −

√
η0
(
η0 − 2η2

0x1 + 2x1
)

η2
0 − 1

(99)

satisfies h4(0) = h′
4(0) and its series expansions around x1 = 0 has exactly the first eight coefficients a42, . . . a49 deduced at the inducting

start. Substituting (99) in (97) and (98) we obtain P(x1, h4(x1)) �= 0, Q(x1, h4(x1)) �= 0 and R(x1, h4(x1)) �= 0 for x1 �= 0 and
0 < η0 < 1, which implies a2N = a3N = a5N = 0. Using induction over N we obtain the exact solution

h2(x1) ≡ 0, h3(x1) ≡ 0, h4(x1) = −x1 +
η0 −

√
η0
(
η0 − 2η2

0x1 + 2x1
)

η2
0 − 1

, h5(x1) ≡ 0. (100)

That is, the local center manifold of the origin is

{
X ∈ R

5 : x2 = 0, x3 = 0, x4 = −x1 +
η0 −

√
η0
(
η0 − 2η2

0x1 + 2x1
)

η2
0 − 1

, x5 = 0, |x1| < δ
}

(101)

and x ′
1 = 0 at the center manifold. In the original variables the center manifold is

{
(ωD, �, α, ω�, η) ∈ R

5 : ωD = 0, � = 0, α = 0,

ω� =
η0

(
η5

0 + η0 − 2
(
η2

0 − 1
)
x1 − 2η

5/2
0

√
η0 − 2η2

0x1 + 2x1

)

3
(
η2

0 − 1
)2 ,

η =
η3

0 −
√

η0
(
η0 − 2

(
η2

0 − 1
)
x1
)

η2
0 − 1

, |x1| ≤ δ
}
. (102)

In our approximation we have

ω� = η2
0

3
+ 2η0x1

3
+ η2

0x
2
1

3
+ 1

3
η0
(
η2

0 − 1
)
x3

1 + 5

12

(
η2

0 − 1
)2

x4
1 + 7

(
η2

0 − 1
)3

x5
1

12η0

+ 7
(
η2

0 − 1
)4

x6
1

8η2
0

+ 11
(
η2

0 − 1
)5

x7
1

8η3
0

+ 143
(
η2

0 − 1
)6

x8
1

64η4
0

+ 715
(
η2

0 − 1
)7

x9
1

192η5
0

+ O
(
x10

1

)
, (103)

η = η0 + x1 +
(
η2

0 − 1
)
x2

1

2η0
+
(
η2

0 − 1
)2

x3
1

2η2
0

+ 5
(
η2

0 − 1
)3

x4
1

8η3
0

+ 7
(
η2

0 − 1
)4

x5
1

8η4
0

+ 21
(
η2

0 − 1
)5

x6
1

16η5
0

+ 33
(
η2

0 − 1
)6

x7
1

16η6
0

+ 429
(
η2

0 − 1
)7

x8
1

128η7
0

+ 715
(
η2

0 − 1
)8

x9
1

128η8
0

+ O
(
x10

1

)
. (104)

Using these results we obtain that the center manifold is contained in the plane (ω�, η) whose dynamics is given by

ω′
� = 2

3
ηω�

(
η2 − 3ω�

)
, (105)
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Fig. 19 Phase portrait of the
dynamical system (105)–(106) in
the two-dimensional plane
(ω�, η) where the stability of the
de Sitter line of points
B1 : η2 − 3ω� = 0 (represented
by a solid line) it is shown

η′ = 1

3

(
η2 − 1

) (
η2 − 3ω�

)
, (106)

with constraint

− η2 + 3ω� − 3ωR

2
= 0. (107)

Then, the dynamics of the center manifold of B1 can be inferred from the dynamics of the system (105)–(106). The stability of the center
manifold is illustrated in Fig. 19 where a phase portrait of the dynamical system (105)–(106) in the two-dimensional plane (ω�, η) is
displayed. Then, the stability of the de Sitter line of points B1 : η2 − 3ω� = 0 it is shown. That is, we show that the attractor at the finite
regime in R

5 is related with the de Sitter universe for a positive cosmological constant and positive η (positive H ).

6 Conclusions

In this study, we investigated the global dynamics for the Szekeres system with a nonzero cosmological constant term. The Szekeres
system has consisted of an algebraic equation and four first-order ordinary differential equations defined in the R4. The system of ordinary
differential equations is autonomous and admits a point-like Lagrangian. Consequently, a Hamiltonian function exists and a sufficient
number of conservation laws from where infer the integrability properties of the Szekeres system. By applying the Hamilton–Jacobi
theory, we can reduce the Szekeres system into a system of two first-order ordinary differential equations.

Hence in the R
2 space, we investigate the global dynamics for the evolution of the Szekeres system in the finite and infinity regime.

We find that various values of the conservation laws, that is, of the free variables the evolution of the Szekeres system differs. Moreover,
we investigate the dynamics on specific surfaces of special interests.

Finally, for completeness of our analysis, we study the evolution of the physical variables of the Szekeres system with the nonzero
cosmological constant term, by using dimensionless variables different from that of the Hubble-normalization. In the new variables the
stationary points of the Szekeres system determined while the stability properties are provided.

In the presence of the cosmological constant, the evolution of the Szekeres system is different from that which was studied before
when � = 0. We see that for � > 0, there can exist an attractor in the finite regime which describes the de Sitter universe. Furthermore,
we investigated the origin of the trajectories, in the finite and infinite regimes, while we show that the dynamics depend on the value of
the conservation laws. Indeed, we classified the different dynamical evolution according to the specific value for the conservation law.
That is, we have examined two types of Hamiltonian systems admitting extra quadratic conservation laws:
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1. Case 1:

(6E + ρD) �= 0 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = py,
ẏ = px ,
ṗx = �

3 y − 1
y2 ,

ṗy = �
3 x − 2x

y ,

C1 := h = px py − �
3 xy + x

y2 ,

C2 := I0 = p2
x − �

3 y2 − 2
y .

(108)

2. Case 2:

(6E + ρD) = 0 :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ = py,
ẏ = px ,
ṗx = �

3 y + 1
4x2 ,

ṗy = �
3 x,

C1 := h = px py − �
3 xy + 1

4x ,

C2 := I0 = p2
y − �

3 x
2.

(109)

In both cases, the conservation laws C1 and C2 are used to eliminate the momenta px and py obtaining two-dimensional phase spaces (up
to time rescalings) given by (i) (28)-(29) (by choosing one branch we have the system (57)-(58) with f (x, y; h, I0) given by (59) and
g (x, y; h, I0) given by (60)), and (ii) (61)-(62) with f (x, y; h, I0) defined by (63) and g (x, y; h, I0) defined by (64), respectively. Then,
according to the signs of I0 and h, are obtained all the equilibrium points (equilibrium lines) of the reduced systems.

Model (108), for � positive, say, � = 1, we presented the phase-space portraits for the dynamical system (57), (58) in the finite regime
for various values of the free variables I0 and h. We observe that for I0 < −2.08, point P1 is the unique attractor while for I0 > −2.08
there is not any attractor in the finite regime and the unique stationary point is the saddle point P0. The value of parameter h changes only
the location of the stationary point on the x−direction and does not change the stability of the stationary points. For negative cosmological
constant, say � = −1, we investigated the stability properties for the stationary points, and we find that P0 is always a saddle point,
while the stationary point P1 for I0 < 0, and P2, for I0 > 0, have positive eigenvalues when they are physically accepted. Consequently,
attractors do not exist in the finite regime for a negative cosmological constant.

Related work is [43] where the Szekeres system with the cosmological constant term, that describes the evolution of the kinematic
quantities were studied for the Einstein field equations in dimension four. There, the authors consider our model (108), but only taking
into account the Hamiltonian constraint C1. That is, the dynamics of the Hamiltonian system are restricted on each one of the levels
surfaces H = h with h ∈ R. Using the Poincaré compactification on R

3 the global dynamics of the Szekeres system were analyzed.
In [43] a new proof of the finite attractor was provided (which complements our result about the existence of an attractor in the finite
regime). Additionally, the model also exhibits a repulsor in the finite regime. More precisely, the x-axis for x �= 0 has a two-dimensional

stable and a 2-dimensional unstable manifolds. While the curve Ch =
{
(x, y, py) ∈ R

3 : py = 0, x = − 3hy2

y3�−3

}
when hy(y3�−3) �= 0

has a three-dimensional stable manifold in the arc of the curve whose points satisfy 3hy2(6+y3�)

y3�−3
> 0 (i.e. this arc is an attractor), and a

three-dimensional unstable manifold in the arc of the curve whose points satisfy 3hy2(6+y3�)

y3�−3
< 0. Additionally, in [43] was proved that at

infinity there is an attractor and a repulsor. That is, in the Poincaré ball the circles z2 = ±√
�/3, z3 = 0 have a three-dimensional stable

manifold if z1 > 0 (i.e. these circles are attractors), or a three-dimensional unstable manifold z1 < 0 (i.e. these circles are repulsors).
Finally, for model (109), which leads to the dynamical system (61), (62), the stationary points at the finite regime are Q± = (x, y) =(

±
√

− 3I0
�

,− 3h
�

± 1
4

√
− 3

I0�

)
. From hypothesis 3I0 + �x2 > 0 we have the physical cases � > 0, x2 > − 3I0

�
or � < 0, I0 >

0, x2 < − 3I0
�

. In the first case Q± exist for I0 < 0 and the allowed region is x2 > − 3I0
�

, y < 0. In the second case, the variable x is

bounded and Q± always exist and the allowed region is x2 < − 3I0
�

, y < 0. Easily from the linearized system around the stationary points
we derive the eigenvalues e1 (Q±) = ±√−3�I0 and e1 (Q±) = ±2

√−3�I0, which means that point Q− is always a source and Q+ is
a sink. When I0 ≥ 0,� ≥ 0 there are no stationary points at the finite region. The choice I0 < 0,� < 0 give differential equations with
coefficients in C. Therefore, the choice of these parameters is forbidden.

In all the cases, we provided the analysis both at finite and at infinite phase space regions by using compact variables.
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Appendix A: Szekeres system with � = 0

In this “Appendix” we discuss about the global dynamics for Szekeres system with � = 0. Such analysis has been published before
for other set of variables in [26]. However, for the completeness of our analysis we summarize the main results in the following lines. The
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dynamical system (57), (58) for � = 0 reads

ẋ = −√
3y (3I0y + 6) , (A1)

ẏ = −√
3
(
x
(
y3 − 3

)+ 3hy2) . (A2)

The latter dynamical system in the finite regime admits the stationary points P(�=0)
0 = (0, 0) and P(�=0)

1 =
(

4h
I 2
0
,− 2

I0

)
which exist for

I0 �= 0 and it is physically accepted when I0 < 0, because y ≥ 0. The eigenvalues of the linearized system around point P(�=0)
0 are

−6
√

3 and 3
√

3, which means that the point is saddle. Similarly, for point P(�=0)
1 we derive the eigenvalues 6

√
3 and 3

√
3 which means

Fig. 20 Phase-space portraits for Szekeres associated to system (A1), (A2) for different values of the free parameters I0 and h and zero value for the
cosmological constant, i.e. � = 0. Figures of the first row are in the local variables (x, y), while figures of the second row are for the compactified variables
(X, Y )
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that P(�=0)
1 is a source. Thus, do not exists stationary point at the finite regime. As far as the analysis at infinity is concerned, we can

easily conclude from the results of Sect. 4 that results for � < 0 and I0 < 0 apply also when � = 0 and I0 < 0. Therefore, the trajectories
can end at infinity, while they are originated at infinity or the source point P(�=0)

1 .
In Fig. 20 phase-space portraits for the Szekeres system with zero cosmological constant terms for different values of the free variables

are presented. We observe that the trajectories of the dynamical systems end at infinity.
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