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Abstract We study the transverse momentum, pT , broadening of charm and beauty quarks in the early stage of high energy nuclear
collisions. We aim to compare the diffusion in the evolving Glasma fields with that of a standard, Markovian–Brownian motion in
a thermalized medium with the same energy density of the Glasma fields. The Brownian motion is studied via Langevin equations
with diffusion coefficients computed within perturbative quantum chromodynamics. We find that for small values of the saturation
scale, Qs , the average pT broadening in the two motions is comparable that suggests that the diffusion coefficient in the evolving
Glasma fields is in agreement with the perturbative calculations. On the other hand, for large Qs , the pT broadening in the Langevin
motion is smaller than that in the Glasma fields. This difference can be related to the fact that heavy quarks in the latter system
experience diffusion in strong, coherent gluon fields that leads to a faster momentum broadening due to memory, or equivalently to
a strong correlation in the transverse plane.

1 Introduction

The research of the pre-thermalization phase of the system formed in high-energy collisions at the Relativistic Heavy Ion Collider
(RHIC) and at the Large Hadron Collider (LHC), and of its evolution to the Quark–Gluon Plasma (QGP) [1,2] is a fascinating topic
in the field of heavy-ion phenomenology. The high-energy collisions are modeled as those of two sheets of colored glass [3–9].
According to the effective field theory of color-glass condensate (CGC), the interaction of two colored glasses generates strong
longitudinal gluonic fields in the forward light cone. These fields are called the Glasma [10–20]. Glasma is a set of classical fields
due to their large intensity, Aa

μ � Qs/g, where Qs is the saturation scale and g is the coupling of quantum chromodynamics (QCD).
The time evolution of these gluon fields is described by Classical Yang–Mills (CYM) equations. In this work, we reserve the notation
EvGlasma for the evolving Glasma fields and preserve the name Glasma for the initial condition. The duration of the EvGlasma is
that of the pre-hydro stage; therefore, typical duration of this stage is of the order of 1 fm/c for AA collisions at the RHIC energy,
and approximately 0.3 fm/c for AA collisions at LHC.

Heavy quarks [21–48] are produced in the primordial stage of the high-energy nuclear collisions are noble probes of EvGlasma. In
fact, their production time is approximately τform ≈ 1/(2m), where m is the mass of heavy quark. Thus, heavy quarks are produced
shortly after the collision and potentially diffuse through the medium, testing in particular the pre-hydrostage of the system.

The diffusion of heavy quarks in the EvGlasma can be different from that in a thermal medium with uncorrelated noise. In fact,
in the former case, the heavy quarks diffuse among domains in which the fields are correlated that have transverse area ≈ 1/Q2

s ,
namely the flux tubes or the filaments. The arrangement of the filaments in the transverse plane is random, therefore if heavy quarks
are slow enough, they can diffuse within a single filament for a finite amount of time and experience the coherent gluon field. Instead,
if the transverse velocity of the heavy quark is large enough, it effectively jumps between uncorrelated filaments and its diffusion
is more similar to that in a random medium. A corollary of this qualitative picture is that heavy quarks with larger mass, namely
beauty quarks, experience the strong coherent gluonic field mode than the charm quarks. This is confirmed by our calculations, see
Section III for details.

It is of a certain interest to compare the motion of heavy colored probes in the EvGlasma, with that in a hot thermalized medium.
This is the main subject of our study. From previous studies [49–52] it is known that the evolution of heavy quarks in the strong
gluon fields produced in the early stage of high energy nuclear collisions is even qualitatively different from a standard Brownian
motion, due to memory effects that make the diffusion ballistic [53]. In fact, as a result of memory in the gluon fields, the transverse
momentum broadening in the evolving Glasma overshoots the one that the heavy quarks would experience in a hot QCD plasma. It
is useful to remark that this memory effect in the early stage is important due to the fact that the memory time, τmem ≈ 0.1 fm/c is
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comparable with the lifetime of the early stage, as well as to the fact that thermalization time τtherm � τearly: the combination of
these makes the perfect scenario for observing memory effects, as well as to make the early evolution of heavy quarks resemble a
diffusive motion with negligible drag.

In particular, we perform a systematic comparison of the diffusion in the EvGlasma and in a hot medium, computing the transverse
momentum, pT , broadening

σp = 1

2
〈(px (t) − p0x )

2 + (py(t) − p0y)
2〉, (1)

where p0x and p0y are the initial x and y components of the initial transverse momentum. Hence, p2
T = p2

x + p2
y . In realistic

collisions, the geometry of the early stage is that of a longitudinally expanding medium. However, we firstly analyze the diffusion
in a static box. The use of the static box is necessary because the estimate and the comparison of the diffusion coefficients of the
heavy quarks in the two systems should be done firstly for configurations with a fixed energy density, or equivalently with a fixed
temperature. After this scenario is clarified, it is possible to elucubrate on similarities and differences of the diffusion in systems
with expansion. Therefore, the use of a static box is far from being academic: it is the natural framework to define the diffusion
coefficients. In the EvGlasma case, we find that σp ∝ t2 in the very early stage, while σp ∝ t in the later stage in analogy with the
standard Brownian motion. This behavior that was anticipated in [53] leads to a fast increase in the σp , in fact faster than that found
within Langevin equation with the pQCD diffusion coefficient.

The main difference between [53] and the present study is that here we adopt the diffusion coefficient computed within pQCD
depending on temperature and momentum, while in [53], the diffusion coefficient is a constant extracted from the momentum
broadening of heavy quarks in the evolving Glasma. The use of pQCD is justified by the fact that the saturation scale in the problem
is quite large, Qs = O(1GeV) that in turn leads to a large effective temperature of the medium, T = O(Qs). The motivation is to
analyze the quantitative difference between the motion of the heavy quarks in the intense Glasma fields, and that in a plasma with a
perturbative dynamics.

We analyze briefly the role of the longitudinal expansion on pT broadening in the EvGlasma fields. We show that in this case, σp

tends to saturate at the end of the EvGlasma phase. This late time behavior looks similar to that of the standard Brownian motion and
in that context it is understood as the equilibration of the heavy quarks with the medium: however, the reason why σp saturates in the
EvGlasma is not related to the equilibration of the heavy quarks, rather to the dilution of the energy density during the expansion.

The implications of this early stage scenario are far from being purely abstract. As a matter of fact, it has been shown that the
diffusion in the evolving Glasma can affect observables, namely the nuclear modification factor, RAA, the elliptic flow and the
momentum broadening parameter of hadrons containing heavy quarks [49,50,54].

The plan of the article is as follows. In Section II, we review the formalism of the work. In Section III, we present our results on
σp for the EvGlasma, the thermalized medium and the EvGlasma with longitudinal expansion. Finally, in Section IV, we present
our conclusions and discuss possible improvements that will be implemented in future works.

2 Formalism

2.1 Glasma and classical Yang–Mills equations for its evolution

We summarize here the McLerran–Venugopalan (MV) model. According to the effective field theory of color-glass condensate
(CGC), the two colliding objects can be described as two thin Lorentz-contracted sheets of a colored glass where fast parton
dynamics is frozen by time dilation. These fast partons act as the sources for the slow gluon fields in the saturation regime and thus
behave like classical fields.

In the MV model, the sources of the CGC fields are the fast partons which are represented by the randomly distributed static
color charge densities in the two colliding nuclei that we label as A and B. The static color charge densities ρa

A on the colliding
nucleus A are considered as random variables which are normally distributed with zero mean and variance specified by

〈ρa
A(xT )ρb

A(yT )〉 = (gμA)2δabδ(2)(xT − yT ). (2)

Here, a and b indicate the adjoint color index. This work is limited to the SU (2) color group, hence a, b = 1, 2, 3. μ is the density
of the color charge carriers in the transverse plane; therefore, gμ denotes the color charge density; g2μ = O(Qs) [55] where Qs is
the saturation momentum.

The static color sources ρ generate pure gauge fields outside and on the light cone. They combine in the forward light cone
and give the initial boost-invariant Glasma fields. To determine these fields, firstly we solve the Poisson’s equations for the gauge
potentials generated by the color charge distribution of the i th nuclei,

− ∂2⊥�(i)(xT ) = ρ(i)(xT ), (3)
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where i = A, B. The Wilson lines are calculated as V †(xT ) = e−ig�(A)(xT ) and W †(xT ) = e−ig�(B)(xT ) and the gauge fields of the
two colliding objects are given as

α
(A)
i = −i

g
V ∂i V

†, (4)

α
(B)
i = −i

g
W∂iW

†. (5)

The solution of the CYM in the forward light cone at initial time, namely the Glasma gauge potential in terms of the gauge fields
can be written as:

Ai = α
(A)
i + α

(B)
i , Az = 0, (6)

where i = x, y. Assuming z to be the direction of the collision, the initial longitudinal Glasma fields are

Ez = −ig
∑

i=x,y

[
α

(B)
i , α

(A)
i

]
, (7)

Bz = −ig

([
α(B)
x , α(A)

y

]
+

[
α(A)
x , α(B)

y

])
, (8)

while the transverse fields vanish at the initial time.
The evolution of the pre-equilibrium period of the heavy-ion collisions, namely the Glasma fields is described by the classical

Yang-Mills (CYM) equations. We look after the QCD evolution of the dense gluonic background fields at the classical level using
CYM equations which are nothing just the non-abelian generalization of the well-known Maxwell equations in the empty space.
The equations of the motion of the fields and the conjugate momenta, i.e., the CYM equations are

dAa
i (x)

dt
= Ea

i (x), (9)

dEa
i (x)

dt
= ∂ j F

a
ji (x) + g f abc Ab

j (x)F
c
ji (x), (10)

where f abc = εabc with ε123 = +1 and Fa
i j is the magnetic part of the field strength tensor given by

Fa
i j (x) = ∂i A

a
j (x) − ∂ j A

a
i (x) + g f abc Ab

i (x)A
c
j (x) (11)

Here, we have used the standard Einstein summation convention. In this work, we do not include the color current carried by the
heavy quarks: this would be necessary to take the energy loss effects into account, but its effect has been studied previously and it
has been shown that it does not lead to any substantial effect within the time range in which EvGlasma is physically relevant [53].

2.2 Wong equations for the heavy quarks

Heavy quarks are created in the initial phase of the relativistic heavy-ion collisions in a very short time of 0.1 fm/c. The equations
of motion of these colored probes in the EvGlasma are the Wong equations [49–51,54,56]

dxi
dt

= pi
E

, (12)

dpi
dt

= gQaF
a
iν
pν

E
, (13)

with i = x, y, z and E = √
p2 + m2 where m is the mass of the heavy quark. These equations are the well-known Hamilton

equations of motion for the position and its conjugate momentum. In our setup, the term on the right-hand side of (13) is the force
that the EvGlasma fields exert on the heavy quarks. Since the distribution of these fields is almost random in the transverse plane
that force can be equated to the random diffusive force in the Langevin equations, see below. For the sake of nomenclature, we call
this the Lorentz force, because it is formally the nonabelian version of the force that the quarks would experience in electromagnetic
fields.

The third set of equations describes the conservation of the color current, namely

dQa

dt
= gεabc Aμ

b
pμ

E
Qc, (14)

where a = 1, 2, . . . , N 2
c − 1 and Qa is the charm quarks effective color charge. Here, we initialize this color charge on a

3−dimensional sphere with radius one; QaQa corresponds to the total squared color charge which is conserved in the evolu-
tion. Differently from previous work, for example [53], in this work, we use the QCD coupling, g, explicitly, to facilitate the
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comparison with the Langevin evolution with pQCD diffusion coefficients. For each heavy quark, we fix an anti-quark with the
same initial position that of the companion quark but opposite momentum, while the color charge is chosen again randomly.

2.3 Brownian motion and Langevin dynamics

The motion of a Brownian particle with mass m is governed by the Langevin equations, namely

dxi
dt

= pi
E

, (15)

dpi
dt

= −γ pi + ξi (t). (16)

Here, γ is the drag coefficient and ξ is the random force. It is assumed that the latter is a Gaussian random variable that satisfies the
conditions

〈ξi (t)〉 = 0 (17)

and

〈ξi (t1)ξ j (t2)〉 = 2Dδi jδ(t1 − t2), (18)

where D is the diffusion coefficient. The assumption in Eq. (18) is that the motion is a Markovian process, namely that no correlation
of the random force at two different times exists.

For what follows, it is useful to consider the momentum broadening, that for a one-dimensional motion reads σp = 〈(p− p0)
2〉;

in the case of the Brownian motion, we have [53]

σp = p2
0(e−γ t − 1)2 + D

γ
(1 − e−2γ t ). (19)

For times smaller than the equilibration time, t 	 1/γ , we find σp ≈ 2Dt .

3 Results

In our calculations, we fix the saturation scale, Qs , and the QCD coupling, g. For the latter, we use the one-loop QCD αs at the scale
Qs ; then, we compute g = √

4παs . Therefore, we have g = g(Qs). From these two parameters, we fix gμ, to be used in Eq. (2),
by virtue of gμ ≈ Qs/0.6g [55]. For each set of parameters, we perform Nevents initializations and evolutions up to t = 1 fm/c,
then average physical quantities over all the events. Unless specified differently, all the results correspond to Nevents = 150, having
verified that this is enough to achieve convergence.

dummy

3.1 Momentum broadening in the static box

In Fig. 1, we plot σp , defined in Eq. (1), for charm quarks versus proper time, for several values of Qs : tuning this parameter results
in the change of the energy density, thus of the effective temperature, of the EvGlasma medium in which heavy quarks diffuse. In
the lower panel of Fig. 1, we zoom to the very early stage, up to τ = 0.4 fm/c that roughly corresponds to the time range in which
the EvGlasma is relevant in realistic collisions. Calculations correspond to the initial value pT = 0.5 GeV; results for different
initializations are similar.

It is interesting that in the very early time, σp versus time is not linear, differently from the standard Brownian motion, see (19).
As analyzed in [53], this difference is due to the correlations of the Lorentz force acting on the charm quarks at different times,
namely to the memory of the gluon fields. In [53], the memory argument has been supported by a calculation of the color-electric
field in the EvGlasma: a direct calculation of the gauge-invariant correlator of the Lorentz force acting on the heavy quarks confirms
this scenario [57]. The memory time, τmem, has been estimated in [53] by means of the decay of the correlator of the electric field
in the EvGlasma, and it has been found τmem ≈ 1/Qs . After the initial transient, σp grows up linearly as in the Brownian motion
without a drag [53]. The shift among the two regimes happens on a time scale t ≈ τmem.

In Fig. 2, we plot σp for beauty quarks; the results agree qualitatively with those obtained for the charm quarks. The only relevant
difference that we have found is that σp of beauty quarks is slightly larger than that of charms.

In order to explore this difference in more detail, in Fig. 3, we plot σp for Qs = 3 GeV and for several values of the heavy
quark mass; we limit to show results up to 0.4 fm/c since after that time momentum diffusion is already in the linear regime and
nothing exciting happens. In the figure, we have put τform = 0.02 fm/c for all quarks, that is the initialization time of beauty. We
find that increasing the heavy quark mass results in the increase in σp and in its faster evolution. This can be understood easily: on
average, heavy quarks with larger mass and same pT have smaller transverse velocity, therefore they spend more time within one
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Fig. 1 σp versus proper time for
charm quarks, for the initial values
pT = 0.5 GeV. The calculation
corresponds to evolving Glasma
fields in a static box

correlation domain (that is, the same flux tube) of the EvGlasma and are accelerated more efficiently by the gluon field, resulting
in σp ∝ t2; then their speed becomes large enough that they can move within uncorrelated domains and experience a Brownian
motion, resulting in the linear increase in σp .

This picture is supported by the spatial diffusion in the transverse plane. In Fig. 4, we plot σx ,

σx = 1

2

〈
(x(t) − X0)

2 + (y(t) − Y0)
2〉 , (20)

where X0 and Y0 are the initial transverse plane coordinates of the heavy quark. Besides, the results in Fig. 4 show that the average
velocity of beauty quarks is smaller than that of charm quarks, as the formers spread more slowly in the transverse plane. Therefore,
beauty quarks spend more time within a correlation domain and get accelerated coherently by the gluon fields.

In Fig. 5, we plot the time averaged σp versus Qs ,

Avσp = 1

t

∫ t

0
σp(t

′)dt ′. (21)

This quantity is of some interest because it allows us to compare, on average, the momentum broadening of heavy quarks in the
EvGlasma and pQCD-plasma, despite the different time dependence of σp in the two cases. We have computed the average for
t = 0.4 fm/c (orange diamonds) and t = 1 fm/c (green squares). In the upper panel, we show the results for the charm quarks, while
in the lower panel, we plot those for the beauty quarks. Comparing the results of charm and beauty, again we notice the slightly
higher values obtained for the latter.

3.2 Comparison with the Langevin dynamics

Next, we turn to the comparison of momentum diffusion in the EvGlasma with those of a standard, collisional Langevin dynamics.
We prepare a bulk of thermalized massless gluons with the same energy density, ε, of the EvGlasma, putting

ε = 2(N 2
c − 1)

∫
d3 p

(2π)3

p

eβp − 1
= (N 2

c − 1)π2T 4

15
, (22)
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Fig. 2 σp versus proper time for
beauty quarks. Initial values of
pT = 0.5 GeV. The calculation
corresponds to evolving Glasma
fields in a static box

Fig. 3 σp versus time for several
values of the heavy quark mass
and for Qs = 3 GeV

where T = 1/β is the temperature of the gluon system. We use (22) to compute T for a given ε. Then, we run simulations of the
Langevin equation with the pQCD diffusion coefficient computed at the temperature T with the coupling g = g(Qs) used for the
EvGlasma calculation. We show for completeness the T versus Qs in Appendix A. As expected, we find T = O(Qs).

In Langevin Eq. (16) and in the thermal noise average (18), we use the kinetic coefficients of c� → c� and b� → b�, where �

denotes a massless gluon in the thermal medium. The basic equations for the diffusion coefficient are well-known and can be found
in the literature, see for example [58,59]. Here, it is enough to quote the expression of the squared invariant scattering amplitude;
for example, for the c� → c� scattering, this is given by
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Fig. 4 σx versus time for charm
quarks (solid lines) and beauty
quarks (dot-dashed lines)

Fig. 5 Time average of σp versus
Qs for charm quarks (upper panel)
and beauty quarks (lower panel).
Average has been computed on the
time ranges t = 0.4 fm/c and
t = 1 fm/c, respectively

|Mc�→c�|2 = π2α2
s

[
32(s − m2)(m2 − u)

(t − m2
D)2

+64

9

(s − m2)(m2 − u) + 2M2(s + m2)

(s − m2)2

+64

9

(s − m2)(m2 − u) + 2m2(m2 + u)

(m2 − u)2
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Fig. 6 pQCD diffusion
coefficient versus momentum, for
three temperatures, used in the
Langevin equation

+16

9

m2(4m2 − t)

(s − m2)(m2 − 4)

+16
(s − m2)(m2 − u) + m2(s − u)

(t − m2
D)(s − m2)

−16
(s − m2)(m2 − u) − m2(s − u)

(t − m2
D)(m2 − u)

]
, (23)

where s, t and u denote the standard Mandelstam variables and m is the mass of the charm quark. A similar expression holds for
the beauty. mD is the Debye mass that we assume to be

mD = gT . (24)

We aim to compare the diffusion within the Langevin dynamics with that in the EvGlasma with the same energy density. To this
end, for each EvGlasma calculation with a Qs , we compute the temperature of the thermalized medium by means of (22). This
temperature enters in the Debye mass (24) and in the distribution functions of the thermalized gluon medium. Moreover, we use
the same αs = αs(Qs) in both the Langevin and the EvGlasma calculations: this enters both as an overall factor in |Mc�→c�|2 and
in the Debye mass. For completeness, in Fig. 6, we plot the diffusion coefficient that we use in the Langevin equation; we show D
versus momentum for three values of temperature that are of interest in this study.

In Fig. 7, we plot σp versus time for EvGlasma and pQCD Langevin dynamics; results for both charm and beauty quarks are
shown. In the legend, the Qs for the Langevin calculations is a reminder that the calculation has been performed on the top of a
gluon bulk with the energy density of the EvGlasma with that Qs . In Fig. 8, we plot the time averaged σp at t = 1 fm/c and t = 0.4
fm/c for both EvGlasma and Langevin cases.

The Langevin results in Figs. 7 and 8 are quite interesting. Firstly, we notice that σp versus time is qualitatively different from
that of the EvGlasma because in the former there is no memory, therefore σp ∝ t in the time range considered (drag would make
the growth of σp slower for times of the order of the thermalization time of the heavy quarks).

However, looking in particular in Fig. 8, we note that for small Qs , namely when the fields of the EvGlasma are not intense,
the average σp in the two calculations is comparable. This is due to the fact that for small Qs the energy density is small so the
EvGlasma is closer to a dilute gluon system and momentum diffusion is similar to that of a collisional dynamics. For large Qs , the
discrepancy between the two systems becomes substantial, and it is due to the fact that heavy quarks in the EvGlasma experience
strong coherent gluon fields while the dynamics remains collisional in the Langevin case. Therefore, one way to read Fig. 8 is that
on average, the diffusion coefficient of EvGlasma and pQCD are similar for small Qs , in the sense that on the same time scale, the
momentum spreading is comparable in the two cases.

One interesting point in Fig. 8 is that in the Langevin case, σp decreases with the quark mass, while the opposite behavior is
found for the EvGlasma. This qualitative difference can be understood easily. In the pQCD Langevin, the scattering rate of the heavy
quarks with the thermal bath decreases with the mass, because the velocity of the quarks themselves decreases with the mass and
the scattering rate is proportional to the cross section times the velocity. On the other hand, in the EvGlasma case, the larger mass
of the quark implies a smaller velocity in the transverse plane, hence a larger time spent within a flux tube where the gluon field
is coherent; therefore, beauty quarks experience the nonlinear growth σp ∝ t2 for a longer time than charm quarks do, eventually
leading to larger σp .
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Fig. 7 σp versus time for
EvGlasma and pQCD Langevin
dynamics. The Qs in the legend
for each Langevin calculation
reminds that the calculation has
been performed on the top of a
gluon bulk with the energy density
of the EvGlasma with that Qs

3.3 Momentum broadening for the system with the longitudinal expansion

In this subsection, we report on the momentum broadening of charm quarks obtained in a gluon system subject to a boost-invariant
longitudinal expansion, and we compare it with that of the gluon system in a static box. Again, we show some results up to τ = 1
fm/c for illustrative purposes only, keeping in mind that in realistic collisions at the LHC the expanding EvGlasma is relevant up to
τ ≈ 0.4 fm/c.

In the case of the longitudinally expanding medium it is convenient to shift from (t, z) to (τ, η) coordinates, to take advantage
of the boost invariance of the EvGlasma fields. In this case, the initial longitudinal, η−components of the fields are given by

Eη = −ig
∑

i=x,y

[
α

(B)
i , α

(A)
i

]
, (25)

Bη = −ig
([

α(B)
x , α(A)

y

]
+

[
α(A)
x , α(B)

y

])
, (26)

while the transverse components vanish; the αi fields are defined as in (4) and (5). The CYM equations read

Ei = τ∂τ Ai , (27)

Eη = 1

τ
∂τ Aη, (28)

and
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Fig. 8 Time average of σp at
t = 1 fm/c (upper panel) and
t = 0.4 fm/c (lower panel) versus
Qs for EvGlasma and pQCD
Langevin dynamics. Calculations
correspond to the static box
geometry

Fig. 9 Energy density, ε, versus
proper time for the static (solid
green) and the longitudinally
expanding (dot-dashed blue)
boxes. Calculations correspond to
Qs = 2 GeV. Dashed black line
guides the eyes on the free
streaming τ−1 behavior of ε, that
occurs for Qst ≈ 1 namely for
t ≈ 0.1 fm/c

∂τ E
i = 1

τ
DηFηi + τDj Fji , (29)

∂τ E
η = 1

τ
Dj Fjη. (30)

Finally, the energy density is given by

ε = Tr

[
1

τ 2 E
i Ei + EηEη + 1

τ 2 B
i Bi + BηBη

]
. (31)
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Fig. 10 σp versus proper time for
charm quarks. Values of Qs used
in the calculations are shown in
the legend. In the upper panel, we
perform calculations up to τ = 1
fm/c, while in the lower panel, we
zoom in the range up to τ = 0.4
fm/c

Fig. 11 Time average of σp for
charm quarks, in the case of the
longitudinally expanding box

In Fig. 9, we plot, for the sake of reference, the energy density versus the proper time for Qs = 2 GeV, in the cases of a static
box and a longitudinally expanding medium. Obviously, ε stays constant in the case of the static box, while it decays with the free
streaming behavior ε ∝ τ−1 after a short transient in the case of the expanding system. The transition from the initial state to the
free streaming solution happens around Qst ≈ 1.

In Fig. 10, we plot σp of charm quarks, computed for a system subject to a boost-invariant longitudinal expansion, and we compare
it with that obtained for a static box. The longitudinal expansion mimics better the initial stage of the high energy nuclear collisions.
In the lower panel of Fig. 10, we offer a zoom of the upper panel for very early time, up to τ ≈ 0.4 fm/c, which corresponds to the
effective time range in which our calculation is phenomenologically interesting.

For the sake of completeness, in Fig. 11, we plot the time average of σp for charm quarks, in the case of the longitudinally
expanding box; results for beauty are similar. In comparison with the results of the static box, see Fig. 8, we note that the expansion
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lowers the average σp of a factor of about 2–5: this is expected due to the dilution of the energy density for the expansion. However,
as shown already in [51], this is enough to tilt the spectrum of the heavy quarks, see also [50]. A systematic study of the potential
effects on the observables will be the subject of a future study.

4 Conclusions

We have analyzed in some detail the diffusion of heavy quarks, charm and beauty, in the strong gluon fields that are produced in the
early stage of relativistic heavy ion collisions. The dynamics of the fields is described by the classical Yang–Mills equations with
the Glasma initialization, while heavy quarks are evolved via the relativistic kinetic Wong equations in the probe approximation.
The evolving gluon fields have been baptized as the EvGlasma, where Ev stands for evolving.

We have studied the transverse momentum broadening, σp , as well as the diffusion in the transverse coordinate plane, σx , for
both c and b. We have found that differently from the standard Brownian motion, σp ∝ t2 in the very early stage, while the linear
behavior σp ∝ t is achieved in the later stage. The early stage behavior is related to the memory in the Lorentz force acting on the
heavy quarks; the linear increase in σp with time in the later stage is interpreted by noticing that heavy quarks get enough transverse
velocity by the color fields, so on average they can jump from one flux tube to another; since the tubes are placed randomly in the
transverse plane, fast heavy quarks experience, on average, a diffusion in a random medium like particles in the standard Brownian
motion without a drag force, hence σp ∝ t .

We have found that momentum diffusion in the EvGlasma is enhanced by the quark mass; we understand this by noticing that
that the larger the mass, the slower the heavy quark is, therefore a large mass quark spends more time within a single flux tube than
a light quark, and experiences the nonlinear growth of σp resulting in a larger averaged σp . This interpretation is supported by the
coordinate diffusion that instead is suppressed by the quark mass confirming that the large mass quarks diffuse into small regions
of the transverse plane.

We have then compared the diffusion in the EvGlasma with that of a standard Langevin dynamics: the kinetic coefficients in the
latter case have been computed within pQCD at finite temperature. To this end, we have prepared a bath of thermalized, massless
gluons with energy density, ε, equal to that of the EvGlasma for a given value of Qs . From ε, we have extracted the temperature,
T , that we have used to compute the screened cross sections in the thermal medium. The strong coupling used in the Langevin
calculations is the same that we have used for the EvGlasma, g = g(Qs).

We have found that for small Qs , the average σp in the two systems is fairly the same. This can be interpreted by noticing that
for small Qs the EvGlasma is made of diluted gluon fields, thus the dynamics of the heavy quarks is expected to be similar to a
collisional one. This result also shows that the diffusion coefficient of heavy quarks in the EvGlasma is in agreement with that of
pQCD, in the case of small energy density.

On the other hand, quantitative differences appear for large Qs : in this case, the dynamics of the heavy quarks in the EvGlasma
cannot be reduced to a collisional one because the gluon fields are too intense. In particular, the Langevin dynamics with pQCD
coefficients underestimates the σp , meaning that one would need to input a larger diffusion coefficient in the Langevin equations
to reproduce the σp in the EvGlasma. As a result, one cannot use the Langevin equations with pQCD coefficients to analyze
the diffusion in intense EvGlasma and the relativistic kinetic equations coupled to the evolving gluon fields have to be consid-
ered.

Another interesting result, shown in Fig. 8, is that beauty quarks are more affected by the evolution in the EvGlasma: this is
understood because beauty quarks are slower, then they spend more time within a single filament and experience more the coherent
gluonic fields that lead to σp ∝ t2.

We have also studied the effect of the longitudinal expansion on the transverse momentum broadening. For this, we have
limited to a few representative values of Qs and to the charm quarks, since results for different Qs and beauty quarks are
similar. We have found that in this case, σp tends to saturate while for the static box it increases indefinitely. We can explain
this easily in terms of the dilution of the energy density due to the expansion, that implies that the average magnitude of
the color fields, thus of the force acting on the heavy quarks, becomes smaller and the EvGlasma diffuses pT less effi-
ciently.

In the future, we would like to study in a more systematic way the impact of the momentum broadening in the early stage
on some observables: among these, collective flows and two-particle correlations are of a certain interest, both in pA and in AA
collisions.

We could improve our calculations in several ways. Firstly, the drag force could be introduced by adding the color current
carried by c and b in the Yang–Mills equations. This force would slow down the evolution of σp with time; however, as shown
in [53], the equilibration time of heavy quarks in th EvGlasma is of the order of τequil ≈ 10 fm/c at least, and any effect of
the drag would become evident only for t ≈ τequil. Therefore, this would not affect the early evolution in a substantial way;
however, its inclusion is possible, and we plan to add it in our future works. Another improvement will be the formulation
with three colors. Finally, we aim to prepare realistic initializations that include initial state fluctuations, the correct geomet-
rical shape of the initial state and the small-x evolution of the initial color charges. We plan to add all these things in future
works.
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Fig. 12 Temperature of a
massless gluon system versus Qs
obtained by means of Eq. (22),
where ε is the energy density of
Glasma corresponding to the
specified value of Qs
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Appendix A: Temperature

In Fig. 12, we plot, for completeness, the temperature of a massless gluon system versus Qs obtained by means of Eq. (22), where
ε is the energy density of Glasma corresponding to the specified value of Qs . This is the temperature that we use to compute the
diffusion coefficient in pQCD that we have used in the Langevin equation in Sect. 3.2.
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