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Abstract In this study, a new mathematical model for malaria dynamics featuring all the three categories of recurrent malaria—
recrudescence, relapse and re-infection—is presented and rigorously analysed. The formulated model is a nine-dimensional system
of ordinary differential equations describing the population dynamics of humans and mosquitoes interaction. The analysis carried
out reveals that the model exhibits a backward bifurcation phenomenon in the presence of re-infection, which is the recurrence
of malaria symptoms due to infection from new parasites, whenever the associated basic reproduction number is less than unity.
However, further investigation shows that the occurrence of backward bifurcation can be successfully ruled out in the absence of
re-infection. The global dynamics of the malaria model is established via Lyapunov functions method and the asymptotic behaviour
of the system is quantitatively illustrated.

1 Introduction

Malaria is an acute febrile illness caused by protozoan parasites of genus Plasmodium spread by infectious female Anopheles
mosquitoes when they seek blood meal for production of their eggs. There are five species of the parasites that cause malaria in
humans. These parasites include: Plasmodium falciparum; Plasmodium vivax; Plasmodium malariae; Plasmodium ovale; Plasmod-
ium knowlesi, of which Plasmodium falciparum and Plasmodium vivax pose the greatest threat. Malaria remains one of the major
public health challenges and life-threatening diseases worldwide [1]. Currently, an estimated 228 million people is at risk of malaria
and mortality rate stands at 405,000 worldwide. The disease is characterized by symptoms such as fever, headache, sweats, muscle
aches, chills, tiredness, nausea, vomiting, diarrhea, anaemia, jaundice, seizures [2] and malaria symptoms in individuals usually
appear about 10-15 days after the infected mosquito has taken its blood meal [3]. Malaria can be cured, but symptoms may recur if
the disease is not efficiently treated and properly controlled.

Recurrent malaria is referred to as the subsequent parasitaemic episodes occurring not later than seven days after receiving anti-
malaria treatment. Recurrent malaria constitutes greatest challenge to the total extinction of malaria in our community [4]. Recurrence
of malaria can be caused by recrudescence, relapse and re-infection. Recrudescence is the recurrence of malaria symptoms due to the
survival of malaria parasites in the blood. Relapse refers to the situation whereby symptoms reappear due to reactivation of dormant
hypnozoites in the liver cells after the total clearance of the parasites from the blood. In contrast, re-infection is the reappearance of
malaria symptoms due to infection from new mosquito bite [5–8].

A number of contemporary mathematical models have been developed after the pioneer works of Ross [9], Macdonald [10],
and Anderson and May [11] to assess the dynamical spread of malaria in human population (see, e.g., [5,12–19] and some of the
references therein). In [12], the author studied the bifurcation analysis of a mathematical model for malaria transmission using a
system of ordinary differential equation via the modification of models from literature and then incorporated some more realistic
features. Anguelov et al. [5] established a nonpolluting technique of curtailing the prevalence of female anopheles mosquito through
the release of sterile males using compartmental model. Olaniyi and Obabiyi [17] explored the implication of nonlinear incidence
function on the transmission dynamics of malaria in human population. The model incorporated the rate at which recovered
humans returned back to the susceptible and their infectious states due to lack of complete acquired immunity. Mbogo et al. [15]
proposed a mathematical model which is a modification of [22], where the disease dynamics of deterministic and stochastic models
were compared basically to determine the effect of randomness in malaria transmission dynamics. In [16], the authors formulated
a mathematical model to investigate the global stability of malaria transmission dynamics with vigilant compartment, where a
normalized system of ordinary differential equation with the concept that human may not have equal likelihood of being infected
with malaria parasites was considered. Traoré et al. [18] developed a system of retarded functional differential equations to investigate
transmission of malaria dynamics with maturation delay of a vector population in a periodic environment.

A limited number of studies have been presented on the mathematical analysis of recurrent malaria featuring relapse and re-
infection. Niger and Gumel [20] focused on the mathematical modelling of assessing the role of repeated exposure on the transmission
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dynamics of malaria disease in human population by formulating a comprehensive mathematical model. Li et al. [21] studied the fast
and slow dynamics of malaria model with relapse by considering two distinct mathematical models where the first dynamic model
was based on constant vector population and the second dynamic model was based on variable vector population sizes. Huo and Qui
[22] formulated a mathematical model to assess the stability of malaria transmission with relapse. In a related development, Ghosh
et al. [23] explored the analysis of recurrent malaria by considering only two of the phenomena of recurrent malaria representing
relapse and re-infection. The model presented in this study extends the features considered in [23]. Till date, and to the best of our
knowledge, the mathematical assessment of malaria transmission dynamics detailing all components of recurrent malaria has not
been studied in the literature.

Therefore, in this study, recovered human population is stratified into pseudo-recovered humans population with relapse, recovered
humans with possibility of re-infection, and recovered humans with recrudescence. Keeping this in mind, a more robust mathematical
model of malaria featuring all the classes of recurrent malaria is analysed using stability theory of differential equations. The
organization of the remaining aspects of the study is as follows: Sect. 2 presents the mathematical formulation and fundamental
properties of the recurrent malaria model. The possibility of existence of bifurcation and global stability analysis of the malaria
model around equilibria are presented in Sects. 3 and 4, respectively. Section 5 gives the concluding remarks of the study.

2 Formulation of the model

To develop the transmission dynamics of malaria model with recrudescence, relapse, and re-infection, the following six classes of
human population are considered: susceptible human class, denoted by Sh(t); exposed human class, denoted by Eh(t); infectious
human class Ih(t); pseudo-recovered human with possible reactivation of infection (relapse), denoted by R1h(t); recovered human
with re-infection possibility R2h(t); and recovered human with possibility of recrudescence, denoted by R3h(t). Hence, the total
human population at time t , denoted by Nh(t), is given by

Nh(t) = Sh(t) + Eh(t) + Ih(t) + R1h(t) + R2h(t) + R3h(t).

On the other hand, the mosquito population is stratified into three classes, namely, susceptible Sm(t); exposed Em(t); and infectious
Im(t), so that the total mosquito population Nm(t) becomes

Nm(t) = Sm(t) + Em(t) + Im(t).

The susceptible human class is increased by the recruitment of humans, assumed susceptible, at a rate given by �h . However, due
to effective contact with infectious mosquito Im(t), the susceptible human class is reduced by the standard incidence of infection,
βhbSh Im/Nh , where βh and b are infection transmission probability in humans and biting rate of mosquitoes, respectively. The
population of susceptible human is further decreased by the natural mortality rate μh . Hence, the susceptible human class changing
with respect to time is given by

dSh
dt

= �h − βhbSh Im
Nh

− μh Sh (1)

Following the infection of the susceptible human class and the re-infection of the recovered human class, the population of exposed
human class is increased by βhbSh Im/Nh and εβhbR2h Im/Nh , where ε ∈ (0, 1) is the modification parameter responsible for the
reduced transmission probability of re-infection, which is due to the prior infection-acquired immunity by recovered individuals
[20,23]. Moreover, the population of exposed humans is increased by the relapse of pseudo-recovered human (at a rate θ ) and
decreased by both progression rate of exposed humans to the infectious class (Ih(t)) (at a rate αh) and natural mortality (at a rate
μh). Hence, the exposed human class changing with time is given by

dEh

dt
= βhbIm(Sh + εR2h)

Nh
+ θR1h − (αh + μh)Eh (2)

The infectious human class, (Ih(t)) increases following progression of the exposed humans at a rate αh . This class is further
increased due to recrudescence at a rate τ , while the class is reduced due to both recovery from infectious state at per capita rate γ

and the natural mortality rate μh . Therefore, the rate of change of the infectious human class with time is given by

d Ih
dt

= αh Eh + τ R3h − (γ + μh)Ih (3)

Following the relapse of recovered infectious humans, the population of pseudo-recovered humans with infection at the dormant
liver stage is generated by a fraction σ1 of the per capita recovery rate of infectious human. The population is reduced by relapse (at
a rate θ ) and the natural mortality rate μh . Therefore, the rate of change of the pseudo-recovered human class with time is given by

dR1h

dt
= σ1γ Ih − (θ + μh)R1h (4)
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The population of recovered human with re-infection possibility (R2h(t)) is increased by a fraction σ2 of the per capita recovery
rate of infectious human. Following effective re-infection from infectious mosquito, this population is diminished by the standard
incidence βhbεR2h/Nh and the natural mortality (at a rate μh). Thus, the rate of change of R2h(t) is given by

dR2h

dt
= σ2γ Ih − εβhbR2h Im

Nh
− μh R2h (5)

The population of recrudescent human is increased by the remaining fraction (1 − (σ1 + σ2)) of the per capita recovery rate of
infectious human. Following incomplete treatment of the disease, this population is downsized at per capita recrudescent rate τ , and
also reduced by the natural mortality rate μh . This translates to the equation specified by

dR3h

dt
= (1 − (σ1 + σ2))γ Ih − (τ + μh)R3h (6)

Moreover, the susceptible mosquito class is generated by the recruitment rate, �m , assumed susceptible and is decreased due
to effective contact with both infectious human and recrudescent human via standard incidences of the form βmbSm Ih/Nh and
βmbφSm R3h/Nh , where βm is the probability of transmission of infection in mosquitoes and φ ∈ (0, 1) is the modification parameter
reflecting the reduced infectiousness of recrudescent humans when compared to the infectious humans. The susceptible mosquito
population is further reduced by natural per capita death rate μm , so that

dSm
dt

= �m − βmbSm(Ih + φR3h)

Nh
− μmSm (7)

Following effective contact with both infectious human and recrudescent human, the class of exposed mosquito is increased by
the standard incidences βmbSm Ih/Nh and βmbφSm R3h/Nh . The exposed mosquito population is reduced both at the progression
rate αm and natural per capita death rate μm . Therefore, the rate of change of the population yields

dEm

dt
= βmbSm(Ih + φR3h)

Nh
− (αm + μm)Em (8)

The population of infectious mosquito class is increased as a result of progression from the exposed class at the rare αh . However,
the population is downsized at the natural mortality rate μm , so that

d Im
dt

= αmEm − μm Im (9)

In what follows, the mathematical model describing the transmission of malaria with recrudescence, relapse, and re-infection is
given by combining all the aforementioned equations to form the following system.

dSh
dt

= �h − βhbSh Im
Nh

− μh Sh

dEh

dt
= βhbIm(Sh + εR2h)

Nh
+ θR1h − (αh + μh)Eh

d Ih
dt

= αh Eh + τ R3h − (γ + μh)Ih

d R1h

dt
= σ1γ Ih − (θ + μh)R1h

dR2h

dt
= σ2γ Ih − εβhbR2h Im

Nh
− μh R2h

dR3h

dt
= (1 − (σ1 + σ2))γ Ih − (τ + μh)R3h

dSm
dt

= �m − βmbSm(Ih + φR3h)

Nh
− μmSm

dEm

dt
= βmbSm(Ih + φR3h)

Nh
− (αm + μm)Em

d Im
dt

= αmEm − μm Im

(10)
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Fig. 1 Schematic diagram for the
full recurrent malaria
dynamics (10)

Table 1 The description of variables of the malaria model (10)

Variable Description

Sh(t) Population of susceptible humans

Eh(t) Population of exposed humans

Ih(t) Population of infectious humans

R1h(t) Population of recovered humans with relapse

R2h(t) Population of recovered humans prone to re-infection

R3h(t) Population of recovered humans with possibility of recrudescence

Nh(t) Total human population

Sm (t) Population of susceptible mosquitoes

Em (t) Population of exposed mosquitoes

Im (t) Population of infectious mosquitoes

Nm (t) Total mosquito population

A schematic diagram representing the formulation of the model (10) is given in Fig. 1, while the descriptions of the variables and
parameters of the model (10) are provided in Tables 1 and 2, respectively.

2.1 Fundamental properties

To begin with, since the parameters of the model governed by system (10) address the interaction between humans and mosquitoes,
then, it is worthy of mentioning that, all the associated parameters and state variables of the model are non-negative for all times.
Hence, it is cogent to show that all the variables of the model are also non-negative for t > 0.

2.1.1 Invariant region and positivity of solutions

Lemma 1 The feasible region of the malaria model (10), given by D = Dh × Dm ⊂ R
6+ × R

3+, where

Dh =
{
(Sh, Eh, Ih, R1h, R2h, R3h) ∈ R

6+ : Sh + Eh + Ih + R1h + R2h + R3h ≤ �h

μh

}
and

Dm =
{
(Sm, Em, Im) ∈ R

3+ : Sm + Em + Im ≤ �m

μm

}
,

is positively-invariant and attracting.

Proof It is straightforward from the rates of change of the total human population Nh(t) and total mosquito population Nm(t),
respectively, that

Nh(t) ≤ Nh(0) exp(−μht) + �h

μh
(1 − exp(−μht))
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Table 2 The description of parameters of the malaria model (10)

Parameter Description

�h Recruitment rate into human population

�m Recruitment rate into mosquito population

βh Transmission probability of infection in humans

βm Transmission probability of infection in mosquitoes

b Mosquitoes biting rate

μh Natural mortality rate of humans

μm Natural mortality rate of mosquitoes

αh Progression rate of humans from exposed class to the infectious class

αm Progression rate of mosquitoes from the exposed class to the infectious class

θ Relapse rate of recovered humans in R1h(t) class

ε Modification parameter due to re-infection of humans in (R2h(t)) class

τ Recrudescence rate of humans in R3h(t) class

γ Recovery rate of infectious humans

σ1 Fraction of recovered humans that goes to R1h(t) class

σ2 Fraction of recovered humans that goes to R2h(t) class

(1 − (σ1 + σ2)) Fraction of recovered humans that goes to R3h(t) class

φ Modification parameter due to infectiousness of humans in R3h(t) class

and

Nm(t) ≤ Nm(0) exp(−μmt) + �m

μm
(1 − exp(−μmt)).

Therefore, if Nh(0) ≤ �h
μh

and Nm(0) ≤ �m
μm

, then, Nh(t) ≤ �h
μh

and Nm(t) ≤ �m
μm

. Thus, the region D is positively-invariant. Further,

if Nh(0) ≥ �h
μh

and Nm(0) ≥ �m
μm

, then the solution either enters D in finite time or both Nh approaches �h
μh

and Nm approaches �m
μm

asymptotically as t → ∞. Hence, the region D attracts all solutions in R
9+.

On this note, it is therefore suffices to consider the dynamics of malaria transmission governed by a system of differential equation
(10) in the biologically feasible region D, where the model is epidemiologically and mathematically well posed. �	

Theorem 1 The solution set, {(Sh, Eh, Ih, R1h, R2h, R3h, Sm, Em, Im)} of the malaria model (10) with positive initial data Sh(0),
Eh(0), Ih(0), R1h(0), R2h(0), R3h(0), Sm(0), Em(0), and Im(0)) in D, remain positive in D for all time, t > 0.

Proof The first equation of the model (10) gives rise to the following differential inequality

dSh
dt

≥ −
(

βhbIm
Nh

+ μh

)
Sh .

so that,

d

dt

[
Sh(t) exp

(
−

∫ t

0

βhbIm(ψ)

Nh(ψ)
dψ + μht

)]
> 0

It therefore follows that,

Sh(t) ≥ Sh(0) exp

[
−

∫ t

0

βhbIm(ψ)

Nh(ψ)
dψ + μht

]
> 0, for all t > 0.

The remaining state variables Eh , Ih , R1h , R2h , R3h , Sm , Em , Im can also be shown in a similar manner. Hence, the solution set
(Sh, Eh, Ih, R1h, R2h, R3h, Sm, Em, Im) is non-negative ∀ t > 0. �	

3 Equilibrium points and bifurcation analysis

This section explores the existence of equilibrium points and the type of bifurcation the model (10) exhibits.
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3.1 Disease-free equilibrium

At malaria-free equilibrium, it is assumed that there is no infection, such that, all the infection related variables in the malaria model
(10) are set to zero. Therefore, the disease-free equilibrium of the malaria model (10), designated by E0, is given by

E0 = (S∗
h , E

∗
h , I

∗
h , R∗

1h, R
∗
2h, R

∗
3h, S

∗
m, E∗

m, I ∗
m) =

(
�h

μh
, 0, 0, 0, 0, 0,

�m

μm
, 0, 0

)
(11)

The basic reproduction number, R0, of the malaria model (10) can be obtained using the well-known next generation operator
approach as described in [24]. Evaluating the matrices F (of the new infection terms) and V (of the transition terms) at the given
point E0 (11), respectively, gives

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 βhb
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0
βmb�mμh

�hμm
0

βmbφ�mμh

�hμm
0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

V =

⎛
⎜⎜⎜⎜⎜⎜⎝

k1 0 −θ 0 0 0
−αh k2 0 −τ 0 0

0 −σ1γ k3 0 0 0
0 x 0 k4 0 0
0 0 0 0 k5 0
0 0 0 0 −αm μm

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where k1 = (αh + μh), k2 = (γ + μh), k3 = (θ + μh), k4 = (τ + μh), k5 = (αm + μm) and x = [1 − (σ1 + σ2)]γ . It follows that
the spectral radius of FV−1, denoted by ρ(FV−1), is the basic reproduction number given by

R0 =
√

βhb2αmβmμh�mαhk3(k4 + φx)

μ2
m�hk5[k1k3(k2k4 − τ x) − θαhσ1γ k4] . (12)

Keeping in mind that the denominator in (12) is positive by algebraic simplification. Thus, it follows that

μ2
m�hk5[k1k3(k2k4 − τ x) − θαhσ1γ k4] = μ2

m�hk5[μhk3[τk1 + μhk2 + τ(σ1 + σ2)γ ]
+αhμh[μh(θ + k2) + τ(σ1 + σ2)γ ] + θαh[μh(1 − σ1) + τσ2]] (13)

The basic reproduction number, R0, of the malaria model (10) is the threshold parameter that determines the spread potential of the
disease when an infectious individual enters a completely susceptible population.

The local asymptotic stability of the disease-free equilibrium (DFE) (11) follows from Theorem 2 in [24]. Hence, the following
result is claimed.

Lemma 2 The DFE, denoted by E0, of the malaria model (10) is locally asymptotically stable in D if R0 < 1 and unstable
otherwise.

The epidemiological implication of Lemma 2 is that malaria can be effectively curtailed in the population if the initial sizes of the
infected individuals (humans and mosquitoes) of the malaria model (10) are in the basin of attraction of the DFE, such that R0 < 1.

3.2 Endemic equilibrium

The endemic equilibrium point of the malaria model (10) is a non-trivial steady state where the disease is present in the population.
Due to the complexity of the model which incorporates the features of recurrent malaria, the analytical expression of the endemic
equilibrium point is not shown, as multiple endemic equilibria could be obtained. This possibility leads to the investigation of
bifurcation property of the malaria model (10) in the next section.

3.3 Bifurcation property

The center manifold theory made popular by Castillo-Chavez and Song [25] is employed to show the type of bifurcation that the
malaria model (10) will exhibit. To apply this theory, it is convenient to perform the following changes of variables.

123



Eur. Phys. J. Plus         (2022) 137:292 Page 7 of 16   292 

Let the malaria model (10) be written in the vector form dX/dt = F(X), where X = (x1, x2, . . . , x9)
ᵀ and F =

( f1, f2, . . . , f9)ᵀ, so that Sh = x1, Eh = x2, Ih = x3, R1h = x4, R2h = x5, R3h = x6, Sm = x7, Em = x8, Im = x9.
Then, the malaria model (10) becomes:

dx1

dt
≡ f1 = �h − βhbx1x9∑6

i=1 xi
− μhx1

dx2

dt
≡ f2 = βhbx9(x1 + εx5)∑6

i=1 xi
+ θx4 − (αh + μh)x2

dx3

dt
≡ f3 = αhx2 + τ x6 − (γ + μh)x3

dx4

dt
≡ f4 = σ1γ x3 − (θ + μh)x4

dx5

dt
≡ f5 = σ2γ x3 − εβhbx5x9∑6

i=1 xi
− μhx5

dx6

dt
≡ f6 = (1 − (σ1 + σ2))γ x3 − (τ + μh)x6

dx7

dt
≡ f7 = �m − βmbx7(x3 + φx6)∑6

i=1 xi
− μmx7

dx8

dt
≡ f8 = βmbx7(x3 + φx6)∑6

i=1 xi
− (αm + μm)x8

dx9

dt
≡ f9 = αmx8 − μmx9

(14)

Consider the case when βh = β∗
h is chosen as the bifurcation parameter. Solving for βh = β∗

h at R0 = 1 in (12) yields

β∗
h = μ2

m�hk5[k1k3(k2k4 − τ x) − θαhσ1γ k4]
b2αmβmμh�mαhk3(k4 + φ[1 − (σ1 + σ2)]γ )

The Jacobian matrix of (14) evaluated at disease-free equilibrium (E0) with βh = β∗∗
h , is given by

J (E0) |β∗
h
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−μh 0 0 0 0 0 0 0 −β∗
h b

0 −k1 0 θ 0 0 0 0 β∗
h b

0 αh −k2 0 0 τ 0 0 0
0 0 σ1γ −k3 0 0 0 0 0
0 0 σ2γ 0 −μh 0 0 0 0
0 0 x 0 0 −k4 0 0 0
0 0 −y 0 0 −z −μm 0 0
0 0 y 0 0 z 0 −k5 0
0 0 0 0 0 0 0 αm −μm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

where k1 = (αh+μh), k2 = (γ +μh), k3 = (θ+μh), k4 = (τ+μh), k5 = (αm+μm), x = [1−(σ1+σ2)]γ , y = (βmbμh�m)/�hμm ,
z = (φβmbμh�m)/�hμm .

Solving for the eigenvalues of the Jacobian matrix (15) gives simple zero eigenvalue and the other eight eigenvalues hav-
ing negative real part. It follows that a right eigenvector corresponding to the simple zero eigenvalue is given by w =
(w1, w2, w3, w4, w5, w6, w7, w8, w9)

ᵀ, where

w1 = −
[

β∗
h b

2αmβmμh�m(k4 + φ[1 − (σ1 + σ2)]γ )

�hμhμ2
mk4k5

]
w3,

w2 = θσ1γ�hμ
2
mk4k5 + αmβ∗

h b
2βmμh�m(k4 + φ[1 − (σ1 + σ2)]γ )

�hμ2
mk1k3k4k5

w3,

w3 = w3 > 0, w4 = σ1γ

k3
w3,
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w5 = σ2γ

μh
w3 w6 = [1 − (σ1 + σ2)]γ

k4
w3,

w7 = −
[

βmbμh�m(k4 + φ[1 − (σ1 + σ2)]γ )

�hμ2
mk4

]
w3,

w8 = βmbμh�m(k4 + φ[1 − (σ1 + σ2)]γ )

�hμmk4k5
w3,

w9 = αmβmbμh�m(k4 + φ[1 − (σ1 + σ2)]γ )

�hμ2
mk4k5

w3. (16)

In addition to the right eigenvectors, the Jacobian matrix has a left eigenvector v = (v1, v2, v3, v4, v5, v6, v7, v8, v9)
ᵀ, where

v1 = 0, v2 = αh

k1
v3,

v3 = v3 > 0, v4 = θαh

k1k3
v3, v5 = 0,

v6 = τ�hμ
2
mk1k5 + φαhβ

∗
hαmβmb2μh�m

�hμ2
mk1k4k5

v3,

v7 = 0, v8 = αhαmβ∗
h b

μmk1k5
v3,

v9 = αhβ
∗
h b

μmk1
v3.

(17)

Noting that v.w = 1 as required in [25]. The non-varnishing partial derivatives (evaluated at E0 with βh = β∗
h ) of the right hand side

of the system (14) are given by

∂2 f2
∂x5∂x9

= εβ∗
h bμh
�h

,
∂2 f5

∂x5∂x9
= − εβ∗

h bμh
�h

,

∂2 f7
∂x3∂x7

= −βmbμh
�h

,
∂2 f7

∂x6∂x7
= −φβmbμh

�h
,

∂2 f8
∂x3∂x7

= βmbμh
�h

,
∂2 f8

∂x6∂x7
= φβmbμh

�h
,

∂2 f1
∂x9∂βh

= −b, ∂2 f2
∂x9∂βh

= b.

(18)

Using the partial derivatives in (18), the bifurcation coefficient a is computed as follows

a =
9∑

k,i, j=1

vkwiw j
∂2 fk

∂xi∂x j
(E0)

= αhσ2γ εβ∗
h bμh A

�2
hμhμ2

mk1k4k5
v3w

2
3 − αhβ

∗
h b

2βmμh A

�2
hμ

3
mk1k4

(1 + φxk4)v3w
2
3,

(19)

where A = αmβmbμh�m(k4 + φx) and x = [1 − (σ1 + σ2)]γ . Further, the bifurcation coefficient b is obtained by

b =
9∑

k,i=1

vkwi
∂2 fk

∂xi∂βh
(E0)

=
[

αhαmβmb2μh�m(k4 + φx)

�hμ2
mk1k4k5

]
v3w3.

(20)

Since the parameters of the model are positive, then it is expected that the bifurcation coefficient b is positive. Therefore, the sign
of the bifurcation coefficient a determines the type of bifurcation to be exhibited by the malaria model (10). The following results
is then established using the Theorem 4.1 in [25].
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Theorem 2 The malaria model (10) exhibits backward bifurcation as R0 crosses unity whenever the bifurcation coefficient a in
(19) is positive. That is,

αhσ2γ εβ∗
h bμh A

�2
hμhμ2

mk1k4k5
v3w

2
3 >

αhβ
∗
h b

2βmμh A

�2
hμ

3
mk1k4

(1 + φxk4)v3w
2
3 . (21)

The occurrence of backward bifurcation in epidemiological models makes the disease control difficult. In other words, the necessary
requirement of having R0 < 1, when backward bifurcation occurs, is not sufficient to control malaria effectively in the community
(see, [20,23]). Thus, the implication of Theorem 2 is that the possibility of controlling malaria when R0 < 1 would be dependent
on the initial sizes of the infected sub-populations of the malaria model (10). Now, to rule out the occurrence of this backward
bifurcation, the next analysis is carried out.

3.3.1 Non-existence of backward bifurcation

The malaria model (10) may not undergo a backward bifurcation property if an endemic equilibrium does not exist at R0 < 1. To
ensure the non-existence of endemic equilibrium when R0 < 1, let the modification parameter due to re-infection, denoted by ε, be
set to zero, i.e. ε = 0. Thus, the malaria model (10) with ε = 0 will possess unique endemic equilibrium when R0 > 1. This result
is summarized as follows.

Theorem 3 The malaria model (10) in the absence of re-infection (ε = 0) has no endemic equilibrium whenever R0 < 1, and a
unique endemic equilibrium point exists whenever R0 > 1.

It is worthy of note that the presence or absence of both relapse rate, θ , and recrudescence rate, τ , does not affect the backward
bifurcation property of the malaria model (10). Thus, Theorem 3 indicates that the possibility of backward bifurcation can only be
ruled out when re-infection seizes to occur. This result is further confirmed by setting ε = 0 in (19), so that the bifurcation coefficient
a becomes

a = −αhβ
∗
h b

2βmμh A

�2
hμ

3
mk1k4

(1 + φxk4)v3w
2
3 < 0. (22)

Since a < 0, it follows that the malaria model (10) with ε = 0 will not undergo backward bifurcation property at R0 = 1. Hence,
the following result, which is equivalent to Theorem 3 is claimed.

Theorem 4 The malaria model (10) in the absence of re-infection rate, (i.e., when ε = 0), exhibits forward bifurcation as R0

crosses unity.

The epidemiological implication of Theorem 4 is that the disease will only persist at the basic reproduction number above the unity.
It also implies that the unique endemic equilibrium of the malaria model is locally asymptotically stable, meaning that a small influx
of infected humans or mosquitoes will cause malaria to persist in the population. This endemism is, however, dependent on the
initial sizes of the infected individuals in the population.

4 Global asymptotic dynamics of the model

In this section, the global asymptotic dynamics of the malaria model (10) around the disease-free equilibrium (E0) and endemic
equilibrium (εe) are explored to show the behaviour of the model regardless of the initial sizes of the infected individuals in the
population.

4.1 Global asymptotic stability of E0

Theorem 5 The disease-free equilibrium point E0, given in (11), of the model (10) in the absence of re-infection rate ε, is globally
asymptotically stable if the basic reproduction R0 is less than one.

Proof Consider the continuously differentiable linear Lyapunov function [26–29] given by

V = v1Eh + v2 Ih + v3R1h + v4R3h + v5Em + v6 Im, (23)
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where

v1 = αhk3(k4 + φx)

B
, v2 = k1k3(k4 + φx)

B
, v3 = θαh(k4 + φx)

B
,

v4 = τk1k3 + φ(k4 + φx − θαhσ1γ )

B
, v5 =

√
�hβhαmαhk3(k4 + φx)

βmμh�mk5B
,

v6 =
√

�hβhαhk3k5(k4 + φx)

αmβmμh�mB
,

and where B = [k1k3(k2k4 − τ x) − θαhσ1γ k4] > 0 as shown in (13). The time derivative of the Lyapunov function (23), denoted
by V̇, along the solution path of (10) with ε = 0, is given by

V̇ =αhk3(k4 + φx)

B

[
βhbIm Sh

Nh
+ θR1h − (αh + μh)Eh

]
+ k1k3(k4 + φx)

B

× [
αh Eh + τ R3h − (γ + μh)Ih

] + θαh(k4 + φx)

B

[
σ1γ Ih − (θ + μh)R1h

]

+ τk1k3 + φ(k4 + φx − θαhσ1γ )

B

[
(1 − (σ1 + σ2))γ Ih − (τ + μh)R3h

]

+
√

�hβhαmαhk3(k4 + φx)

βmμh�mk5B

[
βmbSm(Ih + φR3h)

Nh
− (αm + μm)Em

]

+
√

�hβhαhk3k5(k4 + φx)

αmβmμh�m B
[αmEm − μm Im]

(24)

Algebraic simplification of (24) gives

V̇ =
⎛
⎝αhβhbk3(k4 + φx)Sh

BNh
−

√
μ2
m�hβhαhk3k5(k4 + φx)

αmβmμh�m B

⎞
⎠ Im − Ih − φR3h

+ βmbSm
Nh

√
�hβhαmαhk3(k4 + φx)

βmμh�mk5B
(Ih + φR3h),

which, after substituting the limiting value Nh = �h/μh together with the bounds Sh ≤ �h/μh and Sm ≤ �m/μm in D, becomes

V̇ ≤
⎛
⎝αhβhbk3(k4 + φx)

B
−

√
μ2
m�hβhαhk3k5(k4 + φx)

αmβmμh�mB

⎞
⎠ Im

+
(

βmb�mμm

μm�h

√
�hβhαmαhk3(k4 + φx)

βmμh�mk5B
− 1

)
Ih

+
(

βmb�mμm

μm�h

√
�hβhαmαhk3(k4 + φx)

βmμh�mk5B
− 1

)
φR3h

=
⎛
⎝

√
μ2
m�hβhαhk3k5(k4 + φx)

αmβmμh�m B
(R0 − 1)

⎞
⎠ Im + (R0 − 1) Ih + φ (R0 − 1) R3h

This shows that V̇ < 0 for R0 < 1, and V̇ = 0 provided that Ih = Im = R3h = 0. Then, it follows that
(S∗

h , E
∗
h , I

∗
h , R∗

1h, R
∗
2h, R

∗
3h, S

∗
m, E∗

m, I ∗
m) = (�h/μh, 0, 0, 0, 0, 0,�m/μm, 0, 0) as t → ∞. Accordingly, by LaSalle’s invariance
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principle [30], the largest compact invariant set for which V̇ = 0 is the singleton {E0}. Hence, the disease-free equilibrium, E0, of
the model (10) is globally-asymptotically stable. �	

The asymptotic behaviour of the model (10) is quantitatively illustrated at different initial sizes of the sub-population of the model
(see, Fig. 2).

4.2 Global asymptotic stability of endemic equilibrium

Following the non-existence of backward bifurcation of the model (10) without re-infection as shown in Theorem 3 and Theorem 4,
a special case of the malaria model (10), in the absence of the re-infection compartment R2h , is hereby presented as follows.

dSh
dt

= �h − βhbSh Im
Nh

− μh Sh

dEh

dt
= βhbIm Sh

Nh
+ θR1h − (αh + μh)Eh

0 500 1000 1500 2000 2500 3000
0

0.2
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0.6
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1
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2 x 105

 time (days)

 I
h

(t)

(a)

0 20 40 60 80 100 120
0

0.5
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3h
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(b)

0 50 100 150 200 250 300
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1

2
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4

5

6

7

8 x 105

 time (days)

 I m
(t)

(c)

Fig. 2 Simulations showing global asymptotic behaviour of the recurrent malaria model (25) with different initial conditions. Parameter values used include
b = 0.3, βh = 0.05, βm = 0.15, �h = 2.5, �m = 1000, μh = 0.0000548, μm = 0.066, σ1 = 0.25, σ2 = 0.5, ε = 0, θ = 0.0028, γ = 0.01, φ = 0.75,
αm = 1/18, αh = 1/17, τ = 0.2, so that R0 = 0.5537 < 1
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d Ih
dt

= αh Eh + τ R3h − (γ + μh)Ih

d R1h

dt
= σ1γ Ih − (θ + μh)R1h

dR3h

dt
= (1 − σ1)γ Ih − (τ + μh)R3h

dSm
dt

= �m − βmbSm(Ih + φR3h)

Nh
− μmSm

dEm

dt
= βmbSm(Ih + φR3h)

Nh
− (αm + μm)Em

d Im
dt

= αmEm − μm Im (25)

Let the unique endemic equilibrium of the model (25) be arbitrarily given by

εe = (S∗∗
h , E∗∗

h , I ∗∗
h , R∗∗

1h , R
∗∗
3h , S

∗∗
m , E∗∗

m , I ∗∗
m ).

Since the model (25) is obtained by setting σ2 and ε to zero, the corresponding basic reproduction number for the special case
model (25) is now given by

R0|σ2=0 =
√

βhb2αmβmμh�mαhk3(k4 + φ(1 − σ1)γ )

μ2
m�hk5[k1k3(k2k4 − τ(1 − σ1)γ )) − θαhσ1γ k4] (26)

Therefore, the global asymptotic stability of the model (25) around the endemic equilibrium εe is investigated next.

Theorem 6 The endemic equilibrium point of system (25), denoted by εe, is globally-asymptotically stable whenR0|σ2=0 > 1 with
S∗∗
m Em ≤ SmE∗∗

m and R1h ≤ R∗∗
1h .

Proof Consider the following nonlinear Lyapunov function of Goh-Volterra type [31–34]

D = d1

(
Sh − S∗∗

h − S∗∗
h ln

Sh
S∗∗
h

)
+ d2

(
Eh − E∗∗

h − E∗∗
h ln

Eh

E∗∗
h

)

+d3

(
Ih − I ∗∗

h − I ∗∗
h ln

Ih
I ∗∗
h

)
+ d4

(
R1h − R∗∗

1h − R∗∗
1h ln

R1h

R∗∗
1h

)

+d5

(
R3h − R∗∗

3h − R∗∗
3h ln

R3h

R∗∗
3h

)
+ d6

(
Sm − S∗∗

m − S∗∗
m ln

Sm
S∗∗
m

)

+d7

(
Em − E∗∗

m − E∗∗
m ln

Em

E∗∗
m

)
+ d8

(
Im − I ∗∗

m − I ∗∗
m ln

Im
I ∗∗
m

)
, (27)

where d1 = d2 = βm S∗∗
m (I ∗∗

h +φR∗∗
3h )

βh S∗∗
h I ∗∗

m
, d3 = βm S∗∗

m (I ∗∗
h +φR∗∗

3h )

αh E∗∗
h

[
bμh
�h

+ θR∗∗
1h

βh S∗∗
h I ∗∗

m

]
,

d4 = βm S∗∗
m (I ∗∗

h +φR∗∗
3h )

σ1γ I ∗∗
h αh E∗∗

h

[
bμh
�h

+ θR∗∗
1h

βh S∗∗
h I ∗∗

m

]
τ R∗∗

3h + βmbμh S∗∗
m (I ∗∗

h +φR∗∗
3h )

2σ1γ I ∗∗
h �h

+ βm S∗∗
m (I ∗∗

h +φR∗∗
3h )θR∗∗

1h
σ1γ I ∗∗

h βh S∗∗
h I ∗∗

m
,

d5 = βm S∗∗
m (I ∗∗

h +φR∗∗
3h )

(1−σ1)γ I ∗∗
h αh E∗∗

h

[
bμh
�h

+ θR∗∗
1h

βh S∗∗
h I ∗∗

m

]
τ R∗∗

3h + βmbμh S∗∗
m (I ∗∗

h +φR∗∗
3h )

2(1−σ1)γ I ∗∗
h �h

, d6 = d7 = 1,

d8 = βmbμh S∗∗
m (I ∗∗

h +φR∗∗
3h )

αm E∗∗
m �h

.

The time derivative of D in (27) is given by

dD

dt
= d1

(
1 − S∗∗

h
Sh

)
dSh
dt + d2

(
1 − E∗∗

h
Eh

)
dEh
dt + d3

(
1 − I ∗∗

h
Ih

)
d Ih
dt

+d4

(
1 − R∗∗

1h
R1h

)
dR1h
dt + d5

(
1 − R∗∗

3h
R3h

)
dR3h
dt + d6

(
1 − S∗∗

m
Sm

)
dSm
dt

+d7

(
1 − E∗∗

m
Em

)
dEm
dt + d8

(
1 − I ∗∗

m
Im

)
d Im
dt

(28)
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Substituting the expressions on the right hand sides of the model (25) into (28) gives

dD

dt
= d1

(
1 − S∗∗

h

Sh

)(
�h − βhbSh Im

Nh
− μh Sh

)
+ d2

(
1 − E∗∗

h

Eh

)

×
(

βhbIm Sh
Nh

+ θR1h − (αh + μh)Eh

)
+ d3

(
1 − I ∗∗

h

Ih

)

× (αh Eh + τ R3h − (γ + μh)Ih) + d4

(
1 − R∗∗

1h

R1h

)
(σ1γ Ih − (θ + μh)R1h)

+d5

(
1 − R∗∗

3h

R3h

)
((1 − σ1)γ Ih − (τ + μh)R3h)

+d6

(
1 − S∗∗

m

Sm

) (
�m − βmbSm(Ih + φR3h)

Nh
− μmSm

)
+ d7

(
1 − E∗∗

m

Em

)

×
(

βmbSm(Ih + φR3h)

Nh
− (αm + μm)Em

)
+ d8

(
1 − I ∗∗

m

Im

)
(αmEm − μm Im) (29)

Clearly, it can be shown from (25) that the following equilibrium relations hold.

�h = βhbμh S∗∗
h I ∗∗

m

�h
+ μh S

∗∗
h , (αh + μh) = βhbμh I ∗∗

m S∗∗
h

�h E∗∗
h

+ θR∗∗
1h

E∗∗
h

,

(γ + μh) = αh E∗∗
h

I ∗∗
h

+ τ R∗∗
3h

I ∗∗
h

, (θ + μh) = σ1γ I ∗∗
h

R∗∗
1h

,

(τ + μh) = (1 − σ1)γ I ∗∗
h

R∗∗
3h

, �m = βmbμh S∗∗
m (I ∗∗

h + φR∗∗
3h )

�h
+ μmS

∗∗
m ,

(αm + μm) = βmbμh S∗∗
m (I ∗∗

h + φR∗∗
3h )

�h E∗∗
m

, μm = αmE∗∗
m

I ∗∗
m

. (30)

Further algebraic simplification of (29) using (30) yields

dD

dt
= u1

(
8 − S∗∗

h
Sh

− Sh Im E∗∗
h

S∗∗
h I ∗∗

m Eh
+ Ih

I ∗∗
h

− I ∗∗
h Eh

Ih E∗∗
h

− S∗∗
m
Sm

+ Ih+φR3h
I ∗∗
h +φR∗∗

3h

(
1 − Sm E∗∗

m
S∗∗
m Em

)

− I ∗∗
m Em
Im E∗∗

m
− R1h

R∗∗
1h

− R∗∗
1h Ih

R1h Ih
− R3h

R∗∗
3h

− R∗∗
3h Ih

R3h I ∗∗
h

)

+u2

(
2 − Sh

S∗∗
h

− S∗∗
h
Sh

)
+ u3

(
3 − R1h E∗∗

h
R∗∗

1h Eh
− I ∗∗

h Eh

Ih E∗∗
h

− R∗∗
1h Ih

R1h I ∗∗
h

)

+u4

(
3 − I ∗∗

h R3h

Ih R∗∗
3h

− R∗∗
3h Ih

R3h I ∗∗
h

+ Ih
I ∗∗
h

− R1h
R∗∗

1h
− R∗∗

1h Ih
R1h I ∗∗

h

)

+u5

(
3 − I ∗∗

h R3h

Ih R∗∗
3h

− R∗∗
3h Ih

R3h I ∗∗
h

+ Ih
I ∗∗
h

− R1h
R∗∗

1h
− R∗∗

1h Ih
R1h I ∗∗

h

)
+ μmS∗∗

m

(
2 − Sm

S∗∗
m

− S∗∗
m
Sm

)
,

(31)

where

u1 = βmbμh S∗∗
m (I ∗∗

h +φR∗∗
3h )

�h
, u2 = βm S∗∗

m (I ∗∗
h +φR∗∗

3h )

βh I ∗∗
m

, u3 = βm S∗∗
m (I ∗∗

h +φR∗∗
3h )θR∗∗

1h
βh S∗∗

h I ∗∗
m

,

u4 = βmbμh S∗∗
m (I ∗∗

h +φR∗∗
3h )τ R∗∗

3h
�hαh E∗∗

h
, u5 = βm S∗∗

m (I ∗∗
h +φR∗∗

3h )θR∗∗
1h τ R∗∗

3h
αh E∗∗

h βh S∗∗
h I ∗∗

m
.

Thus, using the given inequality conditions S∗∗
m Em ≤ SmE∗∗

m and R1h ≤ R∗∗
1h , then,

(
1 − Sm E∗∗

m
S∗∗
m Em

)
≤ 0 and

(
1 − R∗∗

1h
R1h

)
≤ 0 with

equalities if and only if S∗∗
m
Sm

= E∗∗
m

Em
and R1h = R∗∗

1h . As a consequence,

dD

dt
= u1

(
7 − S∗∗

h

Sh
− Sh Im E∗∗

h

S∗∗
h I ∗∗

m Eh
− I ∗∗

h Eh

Ih E∗∗
h

− S∗∗
m

Sm
− R3h

R∗∗
3h

− R∗∗
3h Ih

R3h I ∗∗
h

− I ∗∗
m Em

Im E∗∗
m

)

+u2

(
2 − Sh

S∗∗
h

− S∗∗
h

Sh

)
+ u3

(
3 − E∗∗

h

Eh
− I ∗∗

h Eh

Ih E∗∗
h

− Ih
I ∗∗
h

)

+u4

(
2 − I ∗∗

h R3h

Ih R∗∗
3h

− R∗∗
3h Ih

R3h I ∗∗
h

)
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+u5

(
2 − I ∗∗

h R3h

Ih R∗∗
3h

− R∗∗
3h Ih

R3h I ∗∗
h

)
+ μmS

∗∗
m

(
2 − Sm

S∗∗
m

− S∗∗
m

Sm

)
(32)

By AM-GM inequality: the arithmetic mean is greater than or equal to the geometric mean, it follows that

(
7 − S∗∗

h

Sh
− Sh Im E∗∗

h

S∗∗
h I ∗∗

m Eh
− I ∗∗

h Eh

Ih E∗∗
h

− S∗∗
m

Sm
− R3h

R∗∗
3h

− R∗∗
3h Ih

R3h I ∗∗
h

− I ∗∗
m Em

Im E∗∗
m

)
≤ 0,

(
2 − Sh

S∗∗
h

− S∗∗
h

Sh

)
≤ 0,

(
3 − E∗∗

h

Eh
− I ∗∗

h Eh

Ih E∗∗
h

− Ih
I ∗∗
h

)
≤ 0,

(
2 − I ∗∗

h R3h

Ih R∗∗
3h

− R∗∗
3h Ih

R3h I ∗∗
h

)
≤ 0,

(
2 − Sm

S∗∗
m

− S∗∗
m

Sm

)
≤ 0. (33)
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Fig. 3 Simulations showing global asymptotic behaviour of the recurrent malaria model (25) with different initial conditions. The parameter values used
are the same as in Fig. 2, except that σ2 = 0, so that R0 = 3.8581 > 1
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Hence, dD/dt ≤ 0 with dD/dt = 0 if and only if Sh = S∗∗
h , Eh = E∗∗

h , Ih = I ∗∗
h , R1h = R∗∗

1h , R3h = R∗∗
3h , Sm = S∗∗

m , Em = E∗∗
m ,

Im = I ∗∗
m , which indicates that

(Sh, Eh, Ih, R1h, R3h, Sm, Em, Im) → (S∗∗
h , E∗∗

h , I ∗∗
h , R∗∗

1h , R
∗∗
3h , S

∗∗
m , E∗∗

m , I ∗∗
m )

as t → ∞. Thus, by Lasalle’s invariance principle [30], the endemic equilibrium of the system (25) is globally-asymptotically
stable. �	

The quantitative illustration of Theorem 6 at various initial sizes of the sub-populations of the system (25) is given in Fig. 3.

5 Concluding remarks

A mathematical model representing the time-evolution of malaria spread with a nine-dimensional system of ordinary differential
equations is presented. The model takes into account all the three classes of recurrent malaria, which are relapse, re-infection and
recrudescence. Theoretical analysis of the model is performed to understand the behaviour of the system, and the following major
findings are obtained.

i. The model reveals backward bifurcation property, which is due to the existence of re-infection of recovered humans in the
population. However, the presence of both relapse and recrudescence in malaria dynamics do not cause the phenomenon of
backward bifurcation. Hence, the possibility of backward bifurcation can only be ruled out when re-infection seizes to occur.

ii. The global asymptotic dynamics of the model without re-infection is established; showing that the resulting model has a
globally-asymptotically stable disease-free equilibrium point whenever the basic reproduction number is below one, and a
globally-asymptotically stable unique endemic equilibrium point if the basic reproduction number is above one.

iii. Simulations of the recurrent malaria model are done to support the theoretical results; showing the convergence of solutions at
various initial sizes of sub-populations of the model to the equilibrium points.

Since the occurrence of backward bifurcation driven by re-infection shows how hard it is to control or eliminate the transmission of
malaria even when the basic reproduction is below one, it is, therefore, imperative to scale up efforts or measures toward interrupting
malaria re-infection in the community. More attention should be given to the control of recurrent malaria in order to achieve a
malaria-free community.
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