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Abstract We analyze the tomographic representation for the Friedmann–Robertson–Walker (FRW) model within the Loop Quantum
Cosmology framework. We focus on the Wigner quasi-probability distributions associated with Gaussian and Schrödinger cat states,
and then, by applying a Radon integral transform for those Wigner functions, we are able to obtain the symplectic tomograms which
define measurable probability distributions that fully characterize the quantum model of our interest. By appropriately introducing
the quantum dispersion for a rotated and squeezed quadrature operator in terms of the position and momentum, we efficiently
interpret the properties of such tomograms, being consequent with Heisenberg’s uncertainty principle. We also obtain, by means
of the dual tomographic symbols, the expectation value for the volume operator, which coincides with the values reported in the
literature. We expect that our findings result interesting as the introduced tomographic representation may be further benefited from
the well-developed measure techniques in the areas of Quantum optics and Quantum information theory.

1 Introduction

The tomographic representation stands for a probabilistic interpretation of quantum mechanics where quantum states are defined
through integral transforms of the density operators intending to obtain precise measures of the matrix elements belonging to those
states [1–5]. In particular, here we are interested in the tomographic representation obtained by means of the Radon integral transform
of the Wigner quasi-probability function (or simply Wigner function) associated with the density operator within the context of Phase
space Quantum Mechanics [6–8]. The obtained tomographic probability distribution, also called marginal distribution or simply a
tomogram, results in a positive probability distribution, in contrast to the Wigner function within the phase space representation.
As expected, the standard tomographic representation results equivalent to either the Schrödinger or the Heisenberg representations
being, however, a notorious distinction the generalized Fokker–Planck equation that defines quantum evolution [9]. The tomographic
representation has been extensively used, in particular in the fields of quantum optics and quantum information theory, to describe
quantum states employing the tomograms associated with a set of well-defined observables, allowing a natural discussion of relevant
issues such as quantumness, superposition, entanglement, quantum state reduction, and the reconstruction of coherent states, among
others [4,9–12]. Tomographic techniques have been also recently introduced in the contexts of Quantum Field Theory [13,14],
Statistical Mechanics [15] and the quantum cosmological scenario [16–21].

From our particular interest, we focus here on the introduction of the tomographic representation within the Loop Quantum Cos-
mology (LQC) scheme. The Loop Quantum Gravity (LQG) approach [22–25], (see also [26] for a state-of-the-art review), enforces
diffeomorphism covariance at the quantum level by applying a non-regular representation of the canonical commutation relations
which, for minisuperspace models, results in the so-called polymer representation for LQC. Recently, the polymer representation of
quantum mechanics was analyzed from the phase space perspective, obtaining a Wigner quasi-probability function constructed by
means of cylindrical functions defined on the Bohr compactification of the real line [27,28]. Further, in [29,30] such Wigner function,
together with a well-defined star-product, is recovered as a distributional limit of the Schrödinger representation (see also [31,32] for
an analogous description from a different perspective). Nevertheless, as mentioned above, the Wigner function may acquire negative
values on certain domains of the phase space. In consequence, with the purpose to obtain an unambiguous probability distribution,
we analyze the tomographic representation associated with the homogeneous and isotropic Friedmann–Robertson–Walker (FRW)
quantum model emerging within the LQC framework. In order to determine the quantum tomograms, our strategy is to apply the
Reduced Phase Space (RPS) approach of LQC [33–35], where the physical phase space is identified by solving, at the classical
level, the Hamiltonian constraint in terms of holonomies by means of Dirac observables.

In particular, we are able to completely determine the quantum tomograms corresponding to both coherent states and the cat
superposition of states considered as fiducial quantum states for the FRW Universe. As we will see below, the obtained tomograms
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are not just consequent with Heisenberg’s uncertainty relations but allow us to recover in a simple manner the expectation value of
the volume operator as discussed within the quantum bounce scenario in the simplified representation of LQC.

The rest of the paper is organized as follows. In Sect. 2, we briefly outline some relevant issues regarding the FRW model, in order
to introduce some notation and to recall the corresponding eigenfunctions obtained within the LQC setup. In Sect. 3, we introduce
the Weyl quantization map together with the Wigner quasi-probability function, putting special attention to the Wigner functions
associated with a coherent Gaussian and with the so-called Schrödinger cat quantum states, respectively. In Sect. 4, we analyze in
detail the tomographic representation for the dynamics of the FRW model as viewed from the LQC perspective. In particular, we
discuss the obtained tomograms for the coherent and cat quantum states, respectively, and we calculate the expectation values for
the volume operators in each case. Finally, we include in Sect. 5 some concluding remarks.

2 Dynamics in loop quantum cosmology

2.1 Classical dynamics

In this section, we start by summarizing some key features related to the dynamics of the loop quantization of cosmological models
(for more technical details, we refer the reader to [22–25]). For simplicity, we will focus our attention to study the quantization of
the flat, isotropic and homogeneous Friedmann–Robertson–Walker (FRW) model in the presence of a massless scalar field. The
metric in this model can be written as

ds2 = −N 2(x)dt2 + qabdx
adxb, (1)

where N (x) denotes the lapse function and qab entails the spatial part of the metric expressed as

qab = δi jω
i
aω

j
b = a2(t)oqab = a2(t)δi j

oωi
a
oω

j
b , (2)

where the function a(t) stands for the scale factor, while {oωi
a,

oeai } are a set of orthonormal cotriads and triads compatible with
the fiducial flat metric oqab, satisfying oωi

a
oeaj = δij . Within this cosmological setup, the classical dynamics is defined by the

Hamiltonian constraint
H = Hgrav + Hφ ≈ 0, (3)

where the gravitational part for the flat FRW model reads (see, e.g., [22,23])

Hgrav = −γ −2
∫
V
d3x Ne−1εi jk E

ai Ebj Fk
ab. (4)

In this expression, V describes an elementary cell embedded in a spacelike hypersurface with fiducial volume V0 = ∫
V d3x

√
oq.

Also, γ denotes the Barbero–Immirzi parameter, and εi jk represents the alternating tensor, while Ea
i is a densitized vector field for

which e = √| det E |. Finally, Fk
ab stands for the curvature associated with the SU (2) connection Ak

a .
The description of the quantum theory within the LQC framework is established by writing the curvature Fk

ab, also called the
field strength, in terms of holonomy variables around loops [22], just as it is the case for non-Abelian gauge theories,

Fk
ab = −2 lim

Ar�→0
tr

⎛
⎝h(μ)

�i j
− 1

μ2V 2/3
0

⎞
⎠ τ k oωi

a
oω

j
b , (5)

where h(μ)

�i j
indicates the holonomy around the square loop �i j spanned by a face of the elementary cell with area Ar� and whose

individual sides have length μV 1/3
0 with respect to the fiducial metric oqab. Thus, we may decompose h(μ)

�i j
as the product of

holonomies all over the four edges of the square loop �i j , that is,

h(μ)

�i j
= h(μ)

i h(μ)
j (h(μ)

i )−1(h(μ)
j )−1 . (6)

Further, the holonomy h(μ)
k of the connection Ai

a along the line segment in the direction oeak with length μV 1/3
0 reads

h(μ)
k (c) = P exp

(∫ μV 1/3
0

0
τk A

k
adx

a

)
,

= cos(μc/2)I + 2 sin(μc/2)τk , (7)

where I denotes the unit 2 × 2 matrix, and τk = −iσk/2 stand for the basis elements of the su(2) Lie algebra, written in term of
the Pauli matrices σk . Considering that we are dealing with spatially flat, isotropic models, the gravitational phase space variables,
namely the connection Ai

a and the density-weighted triads Ea
i , may be explicitly determined as
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Ai
a = c oωi

aV
−1/3
0 , and Ea

i = p oeai
√

oqV−2/3
0 , (8)

where c = γ ȧV 1/3
0 and |p| = a2V 2/3

0 , are the symmetry reduced phase space variables satisfying the Poisson algebra {c, p} =
8πGγ /3, which may be demonstrated to be invariant under the choice of any fiducial metric [22,24].

In analogy to the full LQG scenario, and by considering the very useful identity

eia = 1

4πGγ

{
Ai
a, V

}
, (9)

the term comprising the triads in Eq. (4) can be expressed as

εi jke
−1Eai Ebj = sgn(p)

2πGγμV 1/3
0

∑
k

oεabc oωk
c tr

(
h(μ)
k

{
(h(μ)

k )−1, V
}

τi

)
, (10)

where V = |p|3/2 = a3V0 denotes the volume of the elementary cell V , this formula holds for any choice of μ [36]. By combining
expressions (5) and (10), the gravitational part of the total Hamiltonian reads [22],

Hgrav = lim
μ→0

H (μ)
grav, (11)

where we have defined

H (μ)
grav = − sgn(p)

2πGγ 2μ3

∑
i jk

Nεi jk tr
(
h(μ)
i h(μ)

j (h(μ)
i )−1(h(μ)

j )−1h(μ)
k

{
(h(μ)

k )−1, V
})

. (12)

In addition, the classical Hamiltonian corresponding to the massless scalar field can be written in terms of the gravitational conjugate
variables (c, p) as follows

Hφ = N

2
p2
φ |p|−3/2, (13)

where φ and pφ satisfy the Poisson commutation relation
{
φ, pφ

} = 1. Then, following the general considerations stated in [37],

the substitution of Eq. (7) into the expression that determines H (μ)
grav, allows us to obtain the total Hamiltonian constraint (3) within

the LQC framework as

H (λ) = N

(
− 3

8πGγ 2

sin2(λβ)

λ2 v + p2
φ

2v

)
≈ 0, (14)

where, following [22,24], we have defined a new set of canonical variables

β := c

|p|1/2 , v := |p|3/2 . (15)

In view of the quantum nature of geometry inherent to the loop quantization program, the parameter λ := μ|p|1/2 = μaV 1/3
0 ,

corresponds to a physical length whose value is related to the minimum eigenvalue of the area operator � = (2
√

3πγ )l2P in LQG
through the constraint λ2 = � and, in principle, it may be fixed by cosmological data [22,23]. The canonical variables (β, v) amount
to terms proportional to the Hubble parameter β = γ ȧ/a and the scale factor v1/3 = aV 1/3

0 , respectively.
In what follows, our strategy is to apply the Reduced Phase Space (RPS) approach of LQC (see, e.g., [33–35,38,39]) to the

Hamiltonian constraint depicted in (14). Contrary to the standard LQC scenario, where the Hamiltonian H (λ) (with the parameter
λ taken different from zero) is promoted to an operator acting on the Bohr representation for almost periodic functions, and then
imposing the total Hamiltonian constraint (14) only at the quantum level [25], within the RPS approach the point of departure is
to solve the modified Hamiltonian constraint in terms of holonomies at the classical level, and then, we may identify the physical
phase space by means of Dirac’s observables [40] which, subsequently, are employed to establish a quantum representation on
an appropriate Hilbert space. Both methods provide similar results, in particular, those related to the introduction of big bounce
scenarios and to the spectrum properties of the volume operator. Nevertheless, the RPS approach allows us to derive analytical
expressions which will be useful later in order to obtain the corresponding quantum tomograms by means of the Radon integral
transformation.

A function O is called a Dirac observable on the phase space spanned by the canonical variables (β, v, φ, pφ) if
{
O, H (λ)

}
≈ 0, (16)

where the Poisson bracket is defined to be

{·, ·} = 4πGγ

(
∂

∂β

∂

∂v
− ∂

∂v

∂

∂β

)
+

(
∂

∂φ

∂

∂pφ

− ∂

∂pφ

∂

∂φ

)
. (17)
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Following the construction stated in [34], one may realize that there are only two Dirac observables which parameterize the physical
phase space

O1 = pφ, O2 = φ − sgn(pφ)

3κ
arcoth(cos(λβ)). (18)

where κ2 = 4πG/3. This implies that even though our kinematic phase space is four dimensional, the solution of the total
Hamiltonian constraint (14) renders the physical phase space two dimensional. Finally, if one introduce the variables

q := β , p := 1

4πGγ
v , t := −sgn(pφ)

√
3πGφ , (19)

it can be proved [34] that the system evolves by means of the physical Hamiltonian

Hλ = 2

λ
√
G

p sin(λq), (20)

where a particular gauge fixing for the lapse function N has been selected in order to simplify the calculations, given that relative
dynamics is gauge independent.

In this manner, and according to Dirac’s prescription for constrained systems [41], one can assert that the dynamical initial
constraint has been solved. Within the Hamiltonian (20), the variable t corresponds to the intrinsic time for the relative dynamics
in terms of the scalar field φ, and the variable p results to be proportional to the total volume of space provided that the topology
is compact. Furthermore, Hλ is positive definite if q ∈ (0, π/λ) and p > 0, enabling us to remove the appearance of possible
dynamical instabilities.

2.2 Quantum dynamics

In order to perform the quantization of the system, let us introduce the Hilbert space H = L2([0, π/λ], dq), in this manner, the
position and momentum operator act on any ϕ ∈ H as usual (in natural units where h̄ = 1)

q̂ϕ(q) = qϕ(q), p̂ϕ(q) = −i
d

dq
ϕ(q). (21)

Since the Hamiltonian Hλ is positive definite if q ∈ (0, π/λ) and p > 0, the corresponding quantum Hamiltonian is given by the
symmetric operator

Ĥλ = 2

λ
√
G

̂sin1/2(λq) p̂ ̂sin1/2(λq) (22)

which proves to be equivalent to the normal ordered expression [42],

Ĥλ = 1

λ
√
G

(
p̂ ̂sin(λq) + ̂sin(λq) p̂

)
. (23)

By means of the Schrödinger representation of the position and momentum operators given in (21), the resulting Hamiltonian
operator reads

Ĥλϕ = − i

λ
√
G

(
2 sin(λq)

d

dq
+ λ cos(λq)

)
ϕ, (24)

where ϕ ∈ D(Ĥλ) ⊂ H, and D(Ĥλ) denotes a densely defined domain of the operator Ĥλ. The equation associated with the
Hamiltonian operator thus takes the explicit eigenvalue form

− i

λ
√
G

(
2 sin(λq)

dϕ

dq
+ λ cos(λq)ϕ

)
= Eϕ, (25)

where E ∈ R. The corresponding eigenfunctions are given by

ϕE = C√
sin(λq)

exp

{
i

2

√
GE ln

∣∣∣∣tan

(
λq

2

)∣∣∣∣
}

, (26)

where C = (λ
√
G/4π)1/2 is a normalization constant such that the solutions satisfy the orthonormality condition

〈ϕE , ϕE ′ 〉 = δ(E − E ′). (27)

Furthermore, according to the von Neumann’s theorem [43], it is shown that the symmetric operator Ĥλ, also defines a self-adjoint
operator on the dense domain [44], specified by

D(Ĥλ) = span {ηn, n ∈ Z} , (28)

123



Eur. Phys. J. Plus         (2022) 137:283 Page 5 of 13   283 

where

ηn(q) =
∫ ∞

−∞
dE fn(E)ϕE (q), for fn(E) ∈ C∞

0 (R). (29)

This means, by means of the spectral theorem, that the spectrum of Ĥλ belongs to the real axis (other properties related to this
Hamiltonian operator, but in the context of the zeros of the Riemann zeta function, can be found in [45]).

In the next section, our purpose is to determine the Wigner function and the quantum tomogram associated with the FRW model
within the LQC framework. Since eigenfunctions (26) are confined to a finite interval, in order to obtain the Wigner function, the
Hamiltonian given in (20) should be complemented by introducing an infinite barrier potential. However, the implementation of this
procedure is rather cumbersome as shown in [46,47]. To surpass such difficulty, let us consider the mapping U : L2([0, π/λ], dq) →
L2(R, dQ), defined by

Uϕ(q) =
√

2

λ
√
G

√
sin(λq)ϕ(q) := ψ(Q), (30)

where ϕ(q) ∈ L2([0, π/λ], dq) = H and ψ(Q) ∈ L2(R, dQ) = H′. By using this transform, the eigenfunctions ϕE (q) are mapped
into plane waves [24,42] as

U : ϕE (q) → ψE (Q) = 1√
2π

ei EQ . (31)

This map also defines an isometry and hence, a unitary transform between the Hilbert spaces H and H′, since

〈ϕ1, ϕ2〉H =
∫ π/λ

0
dq ϕ1(q)ϕ2(q),

=
∫ ∞

−∞
dQ ψ1(Q)ψ2(Q),

= 〈ψ1, ψ2〉H′ . (32)

Finally, under this unitary transform, it can be proved that the Hamiltonian operator, Ĥλϕ(q), acting on ϕ ∈ H, is mapped into the
operator P̂ψ(Q) = −idψ(Q)/dQ, acting on ψ(Q) ∈ H′, as

P̂ψ(Q) = U−1 P̂Uϕ(q) = Ĥλϕ(q). (33)

Consequently, the time evolution given in the Hilbert space H merely corresponds to a translation in the Hilbert space H′, since

Ûϕ(q) := e−i Ĥλtϕ(q) = e−i P̂tψ(Q) = ψ(Q − t), (34)

this means that the shape acquired by probability distributions is preserved in time, and the quantum dynamics results in shifting
the initial state in the position variable Q, as discussed in detail in [42].

3 Phase space quantum mechanics

3.1 Weyl quantization and Wigner function

The general quantization procedure, known as Weyl quantization [48], [49], is based on the construction of a map between real-
valued functions, defined on the classical phase space, and self-adjoint operators acting on a Hilbert space, such that, the algebraic
properties of classical functions are preserved by the quantum operators. Let us consider f ∈ S ′(R2) an arbitrary function on the
phase space R

2, where S ′(R2) stands for the Schwartz space of tempered distributions, this means, the space defined by continuous
linear functionals on the Schwartz space of rapidly decreasing smooth functions, S(R2), [50]. We define the Weyl quantization map
of f , as an operator acting on the Hilbert space L2(R, dQ) = H′, by

Q( f ) = 1

4π2

∫
R2

dλdξ f̃ (λ, ξ)ei(λQ̂+ξ P̂), (35)

where f̃ (λ, ξ) denotes the Fourier transform,

f̃ (λ, ξ) =
∫
R2

dQdP f (Q, P)e−i(λQ+ξ P), (36)

and the operators Q̂, P̂ satisfy the canonical commutator relations[
Q̂, P̂

]
ψ(Q) = iψ(Q) , (37)

[
Q̂, Q̂

]
ψ(Q) = 0 = [P̂, P̂]ψ(Q) , (38)
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for ψ(Q) ∈ H′. By substituting the expression of the Fourier transform (36) into (35), the Weyl quantization map associated with
the function f reads

f̂ = Q( f ) = 1

2π

∫
R2

dQdP f (Q, P)�̂(Q, P), (39)

where the integral operator �̂(Q, P) is given by

�̂(Q, P) = 1

2π

∫
R2

dλdξe−iλ(Q−Q̂)−iξ(P−P̂). (40)

The integral operator �̂(Q, P) corresponds to the so called Weyl–Stratonovich quantizer [51], and satisfies the following properties

�̂†(Q, P) = �̂(Q, P), (41)

tr
{
�̂(Q, P)

}
= 1, (42)

tr
{
�̂(Q, P)�̂(Q′, P ′)

}
= 2πδ(Q − Q′)δ(P − P ′), (43)

Now, given an operator f̂ acting on the Hilbert space H′, and by making use of relation (43), also known as the compatibility
condition, we can define its corresponding Weyl symbol [52], as

W f̂ (Q, P) := tr
{
f̂ �̂(Q, P)

}
, (44)

which can be understood as the inverse relation of the Weyl quantization map, since Q(W f̂ (Q, P)) = f̂ . For the specific case of
the density operator ρ̂ = |ψ〉〈ψ |, associated with a quantum state ψ ∈ H′, its Weyl symbol reads

ρ(Q, P) := Wρ̂ (Q, P) = tr
{
ρ̂�̂(Q, P)

}
,

= 1

2π

∫
R

dY ψ̄

(
Q + Y

2

)
ψ

(
Q − Y

2

)
ei PY . (45)

This real-valued function, defined on the phase space R

2, is called the Wigner function associated with the Hilbert space H′. As one
may easily check [53], it is normalized ∫

R2
dQ dP ρ(Q, P) = 1, (46)

and the projections onto the positions and momentum variables lead to the marginal probability densities
∫
R

dQ ρ(Q, P) = |ψ(P)|2, (47)
∫
R

dP ρ(Q, P) = |ψ(Q)|2. (48)

In addition, by employing the Cauchy–Schwartz inequality, ρ(Q, P) results to be bounded

− 1

π
≤ ρ(Q, P) ≤ 1

π
, (49)

which means that the Wigner function for a quantum state is allowed to acquire negative values on certain regions of the phase
space. Therefore, it cannot be merely interpreted as a probability distribution in the sense of standard statistical mechanics and,
as a consequence, it is usually referred to as a quasi-probability distribution. However, this apparently odd feature of the Wigner
function has been proved to be a useful tool as an indicator of quantumness by measuring correlations and coherence effects between
quantum states, such as squeezing and superposition, precisely by means of its negative values [54]. Moreover, the Wigner function
can be used to calculate the expectation value of any operator by integrating its corresponding Weyl symbol over the phase space,

〈 f̂ 〉 := 〈ψ, f̂ ψ〉 =
∫
R2

dQ dP ρ(Q, P)W f̂ (Q, P). (50)

All these properties suggest, that the Wigner function represents in phase space the closest object to define a probability distribution
for a quantum system and, similarly, the Weyl map corresponds to the quantum analogue of the characteristic generating functions
in classical probability theory.
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3.2 Wigner functions for the LQC model

In Sect. 2.2, we addressed the analysis of the quantum dynamics associated with the Friedmann–Robertson–Walker model in the
presence of a massless scalar field within the Reduce Phase Space approach of LQC. As mentioned before, by means of the unitary
transformation U stated in (30), we were allowed to map the quantum physical Hamiltonian Ĥλ, defined on the Hilbert space
H = L2([0, π/λ], dq), to the standard momentum operator P̂ , acting on the Hilbert space H′ = L2(R, dQ). This means, that the
eigenvalue problem P̂�P = P�P , has as solution,

�(Q) =
∫
R

dP c(P)ψP (Q), (51)

where ψP (Q) is an eigenstate of the P̂ operator, and the wave packet profile c(P) is represented as follows

c(P) = e−α(P−P0)2
. (52)

The reason to focus on Gaussian states, centered in P0 with dispersion α, lies on the possibility to describe the semiclassical behavior
of minisuperspace models of the Universe by means of decoherence between relevant degrees of freedom, such as the scale factor,
and irrelevant degrees of freedom, such as those associated with perturbations [55–57]. Furthermore, even if the initial state is not
Gaussian, the corresponding Wigner function can be approximated with a Gaussian distribution by taking the quantum moments
that describe the quantum system, up to quadratic order.

By using expression (45) and the states with Gaussian profile (51), the Wigner function reads

ρ(Q, P) = 1

π
e− Q2

2α
−2α(P−P0)2

, (53)

which, as we can observe, results to be a positive function, exhibiting the semiclassical behavior of the state. Moreover, according
to Hudson’s theorem [58], this characteristic proves to be equivalent to the definition of a coherent state.

In addition, let us consider now a superposition of two Gaussian packets centered at ±P0. This configuration, known as a
Schrödinger cat state, allows us to analyze decoherence in non-semiclassical situations which, within the LQC scenario of our
interest, may be related to a Universe in a superposition of two different orientation of the triads [42,59]. The wave function
corresponding to a cat state is given by

�(Q) = B0√
2(2πα)1/4

(
e− Q2

4α
+i P0Q + e− Q2

4α
−i P0Q

)
, (54)

where the normalization factor B0 occurs to be

B0 = 1√
1 − e−2P2

0 α

, (55)

which means that the two Gaussian wave functions are not orthogonal. By substituting (54) into the definition of the Wigner function
(45), the result is

ρ(Q, P) = B2
0

π
e− Q2

2α
−2αP2

[
cos(2P0Q) + cosh(4αP0P)e−2αP2

0

]
. (56)

The appearance of the oscillatory cosine term represents the interference between the two Gaussian wave packets. Evidently, this
Wigner function takes both positive and negative values, and then, it cannot be interpreted as a probability distribution in the sense
of classical statistical mechanics, as mentioned above. Furthermore, as P0 → ∞ the amplitude of the interference pattern does
not diminish, implying that the Wigner function associated with a cat state is not reduced to a classical probability distribution in
the macroscopic limit. Finally, since the evolution operator corresponds to translations as stated in (34), the linear properties of the
Wigner function in phase space [53], allow us to determine straightforwardly the time-dependent Wigner functions associated with
the Gaussian state and the cat state, by substituting the position variable Q with Q − t , in expressions (53) and (56), respectively.

4 Quantum tomography

In this section, we will consider the quantum dynamics corresponding to the FRW model in the LQG scheme, within the tomographic
representation of quantum mechanics.

4.1 The tomographic representation

As a first step, let us consider the quadrature associated with the quantum observable X̂ , which corresponds to a generic linear
combination of the position and momentum operators Q̂ and P̂ of the form

X̂ = χ Q̂ + ν P̂, (57)

123



  283 Page 8 of 13 Eur. Phys. J. Plus         (2022) 137:283 

where χ, ν ∈ R, denote real numbers labeling an ensemble of rotated and scaled reference frames in the phase space at which
the observable X̂ is measured [60]. Given ρ̂, the density operator associated with a quantum system, we define the characteristic
function G(ζ ), as the mean value of the exponential of the operator X̂

G(ζ ) := 〈eiζ X̂ 〉 = tr
{
ρ̂eiζ X̂

}
. (58)

Then, by applying the Fourier transform to the characteristic function G(ζ ), we obtain

w(X, χ, ν) := 1

2π

∫
R

dζ G(ζ )e−iζ X . (59)

The function w(X, χ, ν) constitutes a marginal distribution as established in [1], [2] and, as we shall observe, it completely
characterizes the state of a quantum system by means of genuine probability distributions. By writing the trace of the density
operator ρ̂ in terms of the Wigner function, as defined in (45), the function w(X, χ, ν) reads

w(X, χ, ν) = 1

2π

∫
R3

dζ dQ dP ρ(Q, P)e−iζ(X−χQ−νP). (60)

In a general sense, the integral transform of the Wigner function stated in (60), corresponds to a Radon transform known as
the symplectic tomogram. The reason of this terminology follows from the fact that the operator X̂ together with its conjugate
Ŷ = −s2νQ+ s−2χ P , satisfies the canonical commutation relations [X, Y ] = [Q, P] = i , where s is a scaling parameter, such that
χ = s cos θ and ν = s sin θ , with an orientation labeled by θ . This implies that the observable X̂ yields a new position operator after
a quantum canonical transformation. By evaluating the expectation value (58) through eigenstates of the operator X̂ , that is, |X〉
such that X̂ |X〉 = X |X〉, it can be verified that the symplectic tomogram is proportional to 〈X, ρ̂X〉, which means that w(X, χ, ν)

results in a positive and normalized function, i.e., a probability distribution, since∫
R

dX w(X, χ, ν) = 1. (61)

In case that χ = cos θ and ν = sin θ , where the rotation angle θ labels the reference frame in classical phase space, the marginal
distribution defined by the symplectic tomogram (60) constitutes the homodyne distribution used in optical tomography [61]. Formula
(60) can be inverted, allowing us to express the Wigner function in terms of the tomogram as

ρ(Q, P) = 1

2π

∫
R3

dX dχ dν w(X, χ, ν)e−i(χQ+νP−X). (62)

Considering that the Wigner function ρ(Q, P) suffices to characterize the quantum state of a system and, on the other hand, the
Wigner function is formulated in terms of the quantum tomogram, this means that the information associated with a quantum state
is contained in w(X, χ, ν), which consists in a probability distribution formed by an ensemble of rotated and squeezed quadratures.

Within the symplectic tomographic scheme, and by using the approach developed in [10,14], the tomographic symbol associated
with an operator f̂ ∈ L(H′), denoted by T f̂ (Q, P), is obtained by means of the operator

�̂T (X, χ, ν) = δ(X 1̂ − χ Q̂ − ν P̂), (63)

where X, χ, ν ∈ R and 1̂ denotes the identity operator. This means that

T f̂ (Q, P) = tr
{
f̂ �̂T (X, χ, ν)

}
. (64)

In analogy to the Weyl quantization, the compatibility condition (43) within the tomographic representation reads

tr
{
�̂T (X, χ, ν)C(X ′, χ ′, ν′)

}
= δ(X − X ′)δ(χ − χ ′)δ(ν − ν′), (65)

where the operator Ĉ(X, χ, ν) is given by

Ĉ(X, χ, ν) = 1

2π
ei(X 1̂−ν P̂−χ Q̂). (66)

One can invert relation (64) by using the compatibility condition (65), so that

f̂ =
∫
R3

dX dχ dν f (Q, P)Ĉ(X, χ, ν). (67)

To finish this section, it is worthwhile to mention that the symplectic tomogram can be applied to calculate the expectation value
of any quantum observable f̂ ∈ L(H′). By making use of the Wigner function ρ(Q, P) in terms of the tomographic representation
(62), and relation (67) between operators and its tomographic symbols, we obtain

〈 f̂ 〉 = tr
{
ρ̂ f̂

}
= tr

{∫
R3

dX dχ dν w(X, χ, ν)Ĉ(X, χ, ν) f̂

}
, (68)
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which can be written as

〈 f̂ 〉 =
∫
R3

dX dχ dν w(X, χ, ν)T d
f̂
(X, χ, ν), (69)

where we have defined T d
f̂
(X, χ, ν), as the dual tomographic symbol to the operator f̂ , given by

T d
f̂
(X, χ, ν) = 1

2π
tr

{
f̂ ei(X 1̂−ν P̂−χ Q̂)

}
. (70)

Therefore, and in close analogy with the Wigner approach, the expectation values of quantum observables are calculated by integrating
the product of the quantum tomogram with the dual tomographic symbol associated with the observable. Nevertheless, contrary to
the Wigner function, the tomographic scheme provides a genuine positive measurable probability distribution which, consistently,
may be related with the classical counterpart of the system [62].

4.2 Tomography in LQC

With the preceding calculations, we now determine the quantum tomograms corresponding to the coherent state and the cat super-
position, as fiducial quantum states of the FRW universe within the LQC framework. First, let us compute the Radon transform (60)
of the time-dependent Wigner function associated with the Gaussian profile (53). We have, then

w(X, χ, ν, t) = 1

2π2

∫
R3

dζ dQ dP e− (Q−t)2
2α

−2α(P−P0)2
e−iζ(X−χQ−νP),

= 1√
2πσX

e
− (X−〈X̂〉)2

2σ2
X , (71)

where the expectation value 〈X̂〉 is given by 〈X̂〉 = χ 〈Q̂〉 + ν 〈P̂〉 = χ t + νP0, and σX stands for the quantum dispersion of the

variable X in the coherent state, σX =
√

〈X̂2〉 − 〈X̂〉2
, which results in

σ 2
X = χ2σQ + ν2σP + 2χνσQP = χ2α + ν2

4α
. (72)

Analogously, the quantum tomogram for the cat state (54) takes the form

w(X, χ, ν, t) = B2
0√

2πβ
e
− X2+〈X̂〉2

2β2

[
cosh

(
X 〈X̂〉
β2

)
+ cos

(
2αχX 〈X̂〉

νβ2

)]
, (73)

where β2 = χ2α + ν2

4α
, and B0 is the normalization factor depicted in (55). We can observe that, contrary to the case of the Wigner

function, these quantum tomograms define positive measurable probability distributions, as both satisfy the normalization condition
(61). This implies that the expressions obtained in (71) and (73) completely characterize the quantum system within the symplectic
tomographic scheme.

In order to further analyze the properties of the introduced states, let us determine the quantum moments, and the quantum
dispersions of the position and momentum operators by means of the quantum tomograms. Since the method requires the dual
tomographic symbol to evaluate the expectation value of an observable (70), we have that

T d
Q̂

(X, χ, ν) = 1

2π
tr

{
Qei(X 1̂−ν P̂−χ Q̂)

}

= 1

(2π)2

∫
R2

dQ dP Qei(X−χQ−νP)

= iei X δ ′(χ)δ(ν) (74)

and, analogously, we obtain

T d
P̂

(X, χ, ν) = iei X δ(χ)δ ′(ν) , (75)

T d
Q̂2(X, χ, ν) = −ei X δ ′′(χ)δ(ν) , (76)

T d
P̂2(X, χ, ν) = −ei X δ(χ)δ ′′(ν) , (77)

T d
1
2 (Q̂ P̂+P̂ Q̂)

(X, χ, ν) = −ei X δ ′(χ)δ ′(ν). (78)

123



  283 Page 10 of 13 Eur. Phys. J. Plus         (2022) 137:283 

Thus, by using formula (69), the mean value of the position operator for the Gaussian tomogram (71) associated with a coherent
state reads,

〈Q̂〉 =
∫
R3

dX dχ dν w(X, χ, ν)T d
Q̂

(X, χ, ν)

= t. (79)

In the same way, we determine that 〈P̂〉 = P0, 〈Q̂2〉 = α + t2, 〈P̂2〉 = 1
4α

+ P2
0 and 〈 1

2 (Q̂ P̂ + P̂ Q̂)〉 = t P0. This means, that the
quantum dispersions take the values

σ 2
Q = 〈Q̂2〉 − 〈Q̂〉2 = α , σ 2

P = 〈P̂2〉 − 〈P̂〉2 = 1

4α
(80)

and, in addition, the covariance satisfies

CQP = 1

2
〈Q̂ P̂ + P̂ Q̂〉 − 〈Q̂〉 〈P̂〉 = 0. (81)

Using the above relations, it can be verified that the Heisenberg uncertainty relation is satisfied, since

σ 2
Qσ 2

P − C2
QP ≥ 1

4
. (82)

Now, let us consider the case in which the quantum tomogram w(X, χ, ν, t), corresponds to a Schrödinger cat superposi-
tion of coherent states, as given in (73). In this circumstance, by employing equation (69), one can verify that the mean val-

ues, the quantum dispersions and the covariance are given by, 〈Q̂〉 = t , 〈P̂〉 = 0, σ 2
Q = B2

0α
[
1 + e−2αP2

0 (1 − 4αP2
0 )

]
,

σ 2
P = 1

4α

[
e−2αP2

0 + (1 + 4αP2
0 )

]
, and CQP = 0, respectively. From these expressions, the Heisenberg uncertainty relation follows

σ 2
Qσ 2

P − C2
QP = 1

4
(1 + ξ(αP2

0 )) ≥ 1

4
, (83)

since ξ(αP2
0 ) corresponds to a positive function as discussed in [42]. The obtained relations constitute an important characteristic of

the quantum states within the tomographic description as the uncertainty relations may provide constraints on admissible tomographic
probabilities, which in turn should be validated by experimental measurements as done within the quantum optics context in [63]
and [64].

Further, based on the properties of the tomographic distribution, one can calculate the expectation value of the Dirac observable
associated with the volume operator, which due to (19), reads

v̂ = 4πGγ p̂. (84)

By using the isometry mapping U defined in (30), the volume operator can be written in terms of the position Q̂ and momentum P̂
operators (with G = l2P = 1/m2

P ) [40], as

v̂ = 2πl3Pγ λP̂ cosh

(
2Q̂√
G

)
. (85)

The dual tomographic symbol corresponding to v̂ is thus given by

T d
v̂

(X, χ, ν) = 1

2π
tr

{
v̂ei(X 1̂−ν P̂−χ Q̂)

}

= πl3Pγ λiei X δ ′(ν)

[
δ

(
χ − 2i√

G

)
+ δ

(
χ + 2i√

G

)]
, (86)

where a generalized delta function with complex arguments has been introduced [65]. Then, by means of formula (69) and the
Gaussian tomogram (71), we find the expectation value of the volume operator

〈v̂〉 =
∫
R3

dX dχ dν w(X, χ, ν)T d
v̂

(X, χ, ν)

= 2πl3Pγ λP0e
2α/G cosh

(
2t√
G

)
. (87)

By substituting the time variable t in terms of the scalar field φ as depicted in (19), our last expression reads

〈v̂〉 = 2πl3Pγ λP0e
2α/G cosh

(√
12πGφ

)
, (88)
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which coincides with the results presented in [24], [44], where the quantum bounce scenario is analyzed within the simplified
representation of LQC. From (88) we realize that the minimum value admitted by the coherent Gaussian state reads

〈v̂〉min = 2πl3Pγ λP0e
2α/G . (89)

Now, in the particular case of the Schrödinger cat state (73), an analogous calculation shows that the expectation value of the volume
yields 〈v̂〉 = 0, suggesting that the superposition of states describing different orientations of the triad cancels each other. However,
as studied in [59], one may introduce decoherence by considering interaction with fermionic matter, which may be viewed as a way
to single out a preferred orientation during the cosmic evolution. In addition, a more detailed analysis of the evolution of a quantum
superposition state within the tomographic framework must be addressed, remarkably, in the case where the initial state is given by
a symmetric superposition of expanding and contracting cosmologies, for which a non-vanishing expectation value for the volume
operator is anticipated by means of the appearance of a quantum bounce, as established in [66], thus confirming the cosmological
bounce as a universal prediction in LQC. This latter issue will be addressed elsewhere.

5 Conclusions

In this paper, we have studied the tomographic representation associated with the Wigner quasi-probability function for the FRW
model as prescribed by the LQC scenario. As mentioned above, the tomographic representation allows us to define a positive
probability distribution for an arbitrary quantum state, which perfectly suits to analyze quantumness, entanglement and semiclassical
conditions as discussed in the literature. In our case of interest, we thus focused on Gaussian and Schrödinger cat states constructed
from the eigenvalues of the quantum Hamiltonian operator for the FRW model. Such states are labeled by a parameter that corresponds
to a physical length which, in the loop quantization program, is related to the minimum eigenvalue of the area operator. By considering
the Phase Space quantum mechanics program, we are able to obtain their Wigner functions and, by implementing a Radon integral
transform, we adequately establish the tomograms corresponding to either the coherent Gaussian or a superposition of quantum
states. These tomograms completely characterize the quantum FRW model within the symplectic tomographic representation and
allow us to realize in a simpler manner certain attributes of the model of our interest. Particularly, we have demonstrated that
Heisenberg’s uncertainty relation straightforwardly ensues from the quantum dispersion of the rotated and squeezed quadrature
operator X̂ . Further, the properties of the tomographic distributions allowed us to recognize in a simple manner the expectation
values of the Dirac observable held by the volume operator. Indeed, for the coherent Gaussian state, we recover the expectation
value for the volume operator as reported for the quantum bounce scenario in the simplified representation of LQC, while for the
Schrödinger cat state the vanishing of the expectation value for the same operator portrayed the cancellation of superposed states
with different orientations for the involved triads.

Accordingly, we expect that the introduced tomographic representation for the FRW model in the LQC context will be relevant
in order to discuss some other important issues, such as entanglement, tomographic entropy, semiclassical conditions, and relative
quantum fluctuations of observables, which in turn may display some features associated with the cosmic microwave background.
Furthermore, the characterization of quantum states in Cosmology by means of the Radon transformations of the Wigner functions
may conceivable lead to methods of direct experimental authentication for tomograms within the LQC scenario, in particular, by
considering that this approach presents a natural framework to analyze the transition from quantum to classical perturbations, thus
allowing in principle to correlate primordial fluctuations with the large scale structure currently observed as discussed, for example,
in [16], and therefore taking advantage of the well-developed techniques in the areas of Quantum optics and Quantum information
theory. This will be done elsewhere.

Acknowledgements The authors would like to acknowledge financial support from CONACYT-Mexico under the project CB-2017-283838.
Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

1. S. Mancini, V.I. Man’ko, P. Tombesi, Wigner function and probability distribution for shifted and squeezed quadratures. Quantum Semiclass. Opt. 7,
615 (1995)

2. S. Mancini, V.I. Man’ko, P. Tombesi, Symplectic tomography as classical approach to quantum systems. Phys. Lett. A 213, 1 (1996).
arXiv:quant-ph/9603002

3. V.I. Man’ko, G. Marmo, A. Simoni, E.C.G. Sudarshan, F. Ventriglia, A tomographic setting for Quasi-distribution function. Rep. Math. Phys. 61, 337
(2008). arXiv:quant-ph/0604148v2

4. A. Ibort, V.I. Man’ko, G. Marmo, A. Simoni, F. Ventriglia, An introduction to the tomographic picture of quantum mechanics. Phys. Scr. 79, 065013
(2009). arXiv:0904.4439 [quant-ph]

5. M. Asorey, A. Ibort, G. Marmo, F. Ventriglia, Quantum tomography 20 years later. Phys. Scr. 90, 074031 (2015). arXiv:1510.08140
6. C.K. Zachos, D.B. Fairlie, T.L. Curtright, QuantumMechanics ins Phase Space: An Overview with Selected Papers (World-Scientific, Singapure, 2005)
7. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Deformation theory and quantization I & II. Ann. Phys. 111, 61 (1978)
8. M. Bordemann, Deformation quantization: a survey. J. Phys. Conf. Ser. 103, 012002 (2008)

123

http://arxiv.org/abs/quant-ph/9603002
http://arxiv.org/abs/quant-ph/0604148v2
http://arxiv.org/abs/0904.4439
http://arxiv.org/abs/1510.08140


  283 Page 12 of 13 Eur. Phys. J. Plus         (2022) 137:283 

9. S. Mancini, V.I. Man’ko, P. Tombesi, Classical-like description of quantum dynamics by means of symplectic tomography. Found. Phys. 27, 801 (1997).
arXiv:quant-ph/9609026

10. M.A. Man’ko, V.I. Man’ko, R. Vilela-Mendes, Tomograms and other transforms: a unified view. J. Phys. A Math. Gen. 34, 8321 (2001).
arXiv:math-ph/0101025

11. G.M. D’Ariano, M.G.A. Paris, M.F. Sacchi, Quantum tomography. Adv. Imag. Electron Phys. 128, 205–308 (2003). arXiv:quant-ph/0302028
12. J. Helsen, J. Battistel, B.M. Terhal, Spectral quantum tomography. npj Quantum Inf. 5, 74 (2019). arXiv:1904.00177
13. M.A. Man’ko, V.I. Man’ko, N.C. Thanh, Tomographic-probability representation of the quantum scalar field. J. Russ. Laser Res. 30, 1 (2009)
14. J. Berra-Montiel, R. Cartas-Fuentevilla, Deformation quantization and the tomographic representation of quantum fields. IJGMMP 14, 2050207 (2020).

arXiv:2006.07688 [hep-th]
15. V.I. Man’ko, R.V. Mendes, Lyapunov exponent in quantum mechanics. A phase-space approach. Phys. D 145, 330–348 (2000). arXiv:quant-ph/0002049
16. S. Capozziello, V.I. Man’ko, G. Marmo, C. Stornaiolo, A tomographic description for classical and quantum cosmological perturbations. Phys. Scr. 80,

045901 (2009). arXiv:0905.1244 [gr-qc]
17. S. Capozziello, V.I. Man’ko, G. Marmo, C. Stornaiolo, Tomographic representation of minisuperspace quantum cosmology and Noether symmetries.

Gen. Relativ. Gravit. 40, 2627 (2008). arXiv:0706.3018 [gr-qc]
18. V.I. Man’ko, G. Marmo, C. Stornaiolo, Radon transform of the Wheeler-De Witt equation and tomography of quantum states of the universe. Gen.

Relativ. Gravit. 37, 99 (2005). arXiv:gr-qc/0307084
19. C. Stornaiolo, Tomographic analysis of quantum and classical de Sitter cosmological models. Int. J. Mod. Phys. D 28, 2040009 (2019)
20. C. Stornaiolo, Emergent classical universes from initial quantum states in a tomographical description. IJGMMP 17, 2050167 (2020). arXiv:2007.03726

[gr-qc]
21. C. Stornaiolo, The tomographic Wheeler De Witt equation. Preprints (2021) 2021020076. https://www.preprints.org/manuscript/202102.0076/v1
22. A. Ashtekar, T. Pawlowski, P. Singh, Quantum nature of the big bang: improved dynamics. Phys. Rev. D 74, 084003 (2006). arXiv:gr-qc/0607039
23. A. Ashtekar, M. Bojowald, J. Lewandowski, Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys. 7, 233 (2003).

arXiv:gr-qc/0304074
24. A. Ashtekar, A. Corichi, P. Singh, Robustness of key features of loop quantum cosmology. Phys. Rev. D 77, 024046 (2008). arXiv:0710.3565 [gr-qc]
25. A. Ashtekar, P. Singh, Loop quantum cosmology: a status report. Class. Quantum Grav. 28, 213001 (2011). arXiv:1108.0893 [gr-qc]
26. A. Ashtekar, E. Bianchi, A short review of loop quantum gravity. Rep. Prog. Phys. 84, 042001 (2021). arXiv:2104.04394 [gr-qc]
27. C.J. Fewster, H. Sahlmann, Phase space quantization and loop quantum cosmology: a Wigner function for the Bohr-compactified real line. Class.

Quantum Grav. 25, 225015 (2008). arXiv:0804.2541v1 [math-ph]
28. L. Perlov, Uncertainty principle in loop quantum cosmology by Moyal formalism. J. Math. Phys. 59, 032304 (2018). arXiv:1610.06532v4 [gr-qc]
29. J. Berra-Montiel, A. Molgado, Polymer quantum mechanics as a deformation quantization. Class. Quantum Grav. 36, 025001 (2019).

arXiv:1805.05943v2 [gr-qc]
30. J. Berra-Montiel, A. Molgado, Quasi-probability distributions in Loop Quantum Cosmology. Class. Quantum Grav.37, 215003 (2020). arXiv:2007.01324

[gr-qc]
31. A. Stottmeister, T. Thiemann, Coherent states, quantum gravity, and the Born- Oppenheimer approximation. II. Compact Lie groups. J. Math. Phys. 57,

073501 (2016). arXiv:1504.02170
32. A. Stottmeister, T. Thiemann, Coherent states, quantum gravity, and the Born-Oppenheimer approximation. III.: Applications to loop quantum gravity.

J. Math. Phys. 57, 083509 (2016). arXiv:1504.02171
33. P. Malkiewicz, W. Piechocki, Energy scale of the big bounce. Phys. Rev. D 80, 063506 (2009). arXiv:0903.4352 [gr-qc]
34. P. Dzierzak, P. Malkiewicz, W. Piechocki, Turning big bang into big bounce: 1. Classical dynamics. Phys. Rev. D 80, 104001 (2009). arXiv:0907.3436
35. K. Giesel, T. Thiemann, Algebraic quantum gravity (AQG): IV. Reduced phase space quantisation of loop quantum gravity. Class. Quantum Grav. 27,

175009 (2010). arXiv:0711.0119
36. T. Thiemann, Introduction to Modern Canonical Quantum General Relativity (Cambridge University Press, Cambridge, 2007)
37. A. Perez, Regularization ambiguities in loop quantum gravity. Phys. Rev. D 73, 044007 (2006). arXiv:gr-qc/0509118
38. P. Dzierzak, J. Jezierski, P. Malkiewicz, W. Piechocki, The minimum length problem of loop quantum cosmology. Acta Phys. Pol. B 41, 717 (2010).

arXiv:0810.3172 [gr-qc]
39. P. Malkiewicz, W. Piechocki, P. Dzierzak, Bianchi I model in terms of nonstandard loop quantum cosmology: quantum dynamics. Class. Quantum Grav.

28, 085020 (2010). arXiv:1010.2930 [gr-qc]
40. P. Malkiewicz, W. Piechocki, Turning big bang into big bounce: II. Quantum dynamics. Class. Quantum Grav. 27, 225018 (2010). arXiv:0908.4029
41. P.A.M. Dirac, Generalized Hamiltonian dynamics. Can. J. Math. 2, 129 (1950)
42. J.P. Gazeau, J. Mielczarek, W. Piechocki, Quantum states of the bouncing universe. Phys. Rev. D 87, 123508 (2013). arXiv:1303.1687 [gr-qc]
43. M. Reed, B. Simon, Methods of Modern Mathematical Physics, vol. I (Academic Press, United States, 1975)
44. J. Mielczarek, W. Piechocki, Evolution in bouncing quantum cosmology. Class. Quantum Grav. 29, 065022 (2012). arXiv:1107.4686 [gr-qc]
45. J. Berra-Montiel, A. Molgado, Polymeric quantum mechanics and the zeros of the Riemann zeta function. IJGMMP 15, 1850095 (2018).

arXiv:1610.01957
46. N.C. Dias, J.N. Prata, Wigner functions with boundaries. J. Math. Phys. 43, 4602 (2002). arXiv:quant-ph/0012140
47. N.C. Dias, J.N. Prata, Deformation quantization of confined systems. Int. J. Quantum Inf. 5, 257 (2007). arXiv:quant-ph/0612022
48. H. Weyl, The Theory of Groups and Quantum Mechanics (Dover Publications, New York, 1950)
49. J.E. Moyal, Quantum mechanics as a statistical theory. Proc. Camb. Phil. Soc. 45, 99–124 (1949)
50. M. Reed, B. Simon, Methods of Modern Mathematical Physics, vol. II (Academic Press, United States, 1975)
51. R.L. Stratonovich, On the statistical interpretation of quantum theory. Sov. Phys. JETP 31, 1012 (1956)
52. G. B. Folland, Harmonic Analysis in Phase Space (Princeton University Press, Princeton NJ, 1989)
53. T.L. Curtright, D.B. Fairlie, C.K. Zachos, A Concise Treatise on Quantum Mechanics in Phase Space (World Scientific, Singapore, 2014)
54. A. Kenfack, K. Zyczkowski, Negativity of the Wigner function as an indicator of non-classicality. J. Opt. B: Quantum Semiclass. Opt. 6, 396 (2004).

arXiv:quant-ph/0406015
55. J. Mielczarek, W. Piechocki, Gaussian state for the bouncing quantum cosmology. Phys. Rev. D 86, 8 (2012). arXiv:1108.0005 [gr-qc]
56. P. Diener, B. Gupt, M. Megevand, P. Singh, Numerical evolution of squeezed and non-Gaussian states in loop quantum cosmology. Class. Quantum

Grav. 31, 16 (2014). arXiv:1406.1486 [gr-qc]
57. W.H. Zurek, S. Habib, J.P. Paz, Coherent states via decoherence. Phys. Rev. Lett. 70, 1187 (1993)
58. R.L. Hudson, When is the Wigner quasi-probability density non-negative? Rep. Math. Phys. 6, 249 (1974)
59. C. Kiefer, C. Schell, Interpretation of the triad orientations in loop quantum cosmology. Class. Quantum Grav. 30, 035008 (2013). arXiv:1210.0418

[gr-qc]

123

http://arxiv.org/abs/quant-ph/9609026
http://arxiv.org/abs/math-ph/0101025
http://arxiv.org/abs/quant-ph/0302028
http://arxiv.org/abs/1904.00177
http://arxiv.org/abs/2006.07688
http://arxiv.org/abs/quant-ph/0002049
http://arxiv.org/abs/0905.1244
http://arxiv.org/abs/0706.3018
http://arxiv.org/abs/gr-qc/0307084
http://arxiv.org/abs/2007.03726
https://www.preprints.org/manuscript/202102.0076/v1
http://arxiv.org/abs/gr-qc/0607039
http://arxiv.org/abs/gr-qc/0304074
http://arxiv.org/abs/0710.3565
http://arxiv.org/abs/1108.0893
http://arxiv.org/abs/2104.04394
http://arxiv.org/abs/0804.2541v1
http://arxiv.org/abs/1610.06532v4
http://arxiv.org/abs/1805.05943v2
http://arxiv.org/abs/2007.01324
http://arxiv.org/abs/1504.02170
http://arxiv.org/abs/1504.02171
http://arxiv.org/abs/0903.4352
http://arxiv.org/abs/0907.3436
http://arxiv.org/abs/0711.0119
http://arxiv.org/abs/gr-qc/0509118
http://arxiv.org/abs/0810.3172
http://arxiv.org/abs/1010.2930
http://arxiv.org/abs/0908.4029
http://arxiv.org/abs/1303.1687
http://arxiv.org/abs/1107.4686
http://arxiv.org/abs/1610.01957
http://arxiv.org/abs/quant-ph/0012140
http://arxiv.org/abs/quant-ph/0612022
http://arxiv.org/abs/quant-ph/0406015
http://arxiv.org/abs/1108.0005
http://arxiv.org/abs/1406.1486
http://arxiv.org/abs/1210.0418


Eur. Phys. J. Plus         (2022) 137:283 Page 13 of 13   283 

60. G.M. D’Ariano, S. Mancini, V.I. Man’ko, P. Tombesi, Reconstructing the density operator by using generalized field quadratures. Quantum Semiclass.
Opt. 8, 1017 (1996). arXiv:quant-ph/9606034

61. K. Vogel, H. Risken, Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A
40, 2847 (1989)

62. O.V. Man’ko, V.I. Man’ko, O.V. Pilyavets, Probability representation of classical states. J. Russ. Laser Res. 26, 429 (2005)
63. V. D’Auria, S. Fornaro, A. Porzio, S. Solimeno, S. Olivares, M.G.A. Paris, Full characterization of Gaussian bipartite entangled states by a single

Homodyne detector. Phys. Rev. Lett. 102, 020502 (2009). arXiv:0805.1993 [quant-ph]
64. D.T. Smithey, M. Beck, M.G. Raymer, A. Faridani, Measurement of the Wigner distribution and the density matrix of a light mode using optical

homodyne tomography: application to squeezed states and the vacuum. Phys. Rev. Lett. 70, 1244 (1993)
65. R.A. Brewster, J.D. Franson, Generalized delta functions and their use in quantum optics. J. Math. Phys. 59, 012102 (2018). arXiv:1605.04321 [quant-ph]
66. D.A. Craig, P. Singh, Consistent probabilities in loop quantum cosmology. Class. Quantum Grav. 30, 205008 (2013). arXiv:1306.6142 [gr-qc]

123

http://arxiv.org/abs/quant-ph/9606034
http://arxiv.org/abs/0805.1993
http://arxiv.org/abs/1605.04321
http://arxiv.org/abs/1306.6142

	Tomography in loop quantum cosmology
	Abstract
	1 Introduction
	2 Dynamics in loop quantum cosmology
	2.1 Classical dynamics
	2.2 Quantum dynamics

	3 Phase space quantum mechanics
	3.1 Weyl quantization and Wigner function
	3.2 Wigner functions for the LQC model

	4 Quantum tomography
	4.1 The tomographic representation
	4.2 Tomography in LQC

	5 Conclusions
	Acknowledgements
	References




