
Eur. Phys. J. Plus         (2022) 137:296 
https://doi.org/10.1140/epjp/s13360-022-02493-1

Regular Art icle

A geometrical representation of entanglement

Shahabeddin M. Aslmarand1,a , Warner A. Miller1, Doyeol Ahn1,2, Paul M. Alsing1,3

1 Department of Physics, Florida Atlantic University, Boca Raton, FL 33431, USA
2 Department of Electrical and Computer Engineering, Center Quantum Information Processing, University of Seoul, Seoul 130-743, Republic of Korea
3 Air Force Research Laboratory, Information Directorate, Rome, NY 13441, USA

Received: 20 September 2021 / Accepted: 15 February 2022
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract We introduce a novel geometrical approach to characterize entanglement relations in large quantum systems. Our approach
is inspired by Schumacher’s singlet state triangle inequality, which used an entropy-based distance to capture the strange properties of
entanglement using geometry-based inequalities. Schumacher uses classical entropy and can only describe the geometry of bipartite
states. We extend his approach by using von Neumann entropy to create an entanglement monotone that can be generalized for
higher-dimensional systems. We achieve this by utilizing recent definitions for entropic areas, volumes, and higher-dimensional
volumes for multipartite quantum systems. This enables us to differentiate systems with high quantum correlation from systems with
low quantum correlation and differentiate between different types of multipartite entanglement. It also enable us to describe some of
the strange properties of quantum entanglement using simple geometrical inequalities. Our geometrization of entanglement provides
new insight into quantum entanglement. Perhaps by constructing well-motivated geometrical structures (e.g., relations among areas,
volumes, etc.), a set of trivial geometrical inequalities can reveal some of the complex properties of higher-dimensional entanglement
in multipartite systems. We provide numerous illustrative applications of this approach, and in particular to a random sample of a
thousand density matrices.

1 Introduction

Entanglement is considered the most non-classical manifestation of quantum mechanics with many strange features such as that
the knowledge of the whole system does not include the best possible knowledge of its parts, or it contains correlations that are
incompatible with assumptions of classical theories of physics [1–3]. These qualities resulted in the famous EPR paper and the
idea of an alternative theory which was later ruled out by Bell’s inequality, and its experimental confirmations [4–9]. Studies of
entanglement can be separated into two main categories: efforts regarding the applications of entanglement in quantum protocols
and efforts concerning the fundamental questions about the nature of entanglement [10,11].

On the applications side, it was shown that although entanglement in itself does not carry information, it can be helpful in many
tasks such as the reduction of classical communication complexity [12], quantum key distribution [13], and quantum teleportation
[14]. In other words, for one to perform fundamental quantum protocols, entanglement in the form of a maximally entangled state
must be consumed [15].

In real-world applications, entanglement ordinarily does not come in its pure form but rather as a mixture of pure states;
therefore, having a scalable way to detect and quantify entanglement can be important for quantum information processing. This
was the motivation for the creation of a class of functions for quantifying entanglement known as entanglement measures, such as
quantum discord [16], concurrence [17], squashed entanglement [18], operators or inequalities for detection of entanglement called
entanglement wittiness such as CHSH inequality [19], and partial transpose criteria [20,21]. All these innovative methods are geared
to, and work best for bipartite systems. Furthermore, despite some efforts to generalizes these methods to multipartite systems [22–
24], we are not aware of any efficient way to quantify and detect entanglement in high-dimensional multipartite quantum systems.
We propose one small step in this direction in this manuscript.

As a guide to our construction we use traditional motivations used for most approaches. In particular, it is well accepted that any
such measure must satisfy at least a set of three properties: (1) the monotonicity axiom [25]; (2) be vanishing for separable states
[26]; and (3) be invariant under local unitary operators. It is interesting to note that, from the measures and witnesses that we have
mentioned above, only concurrence satisfies all of these properties for bipartite systems.

Entanglement is applicable to more than just quantum information processing. In fundamental physics of entanglement, the
questions are far more diverse and range from the implications of quantum entanglement and its relations to other parts of physics
such as general relativity [27,28] to deep philosophical questions related to causality in entangled systems [29] and questions
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regarding mathematical structure of entanglement. This latter issue is nicely captured in a quote by Bogdan Mielnik ‘What picture
does one see, looking at a physical theory from a distance, so that the details disappear? Since quantum mechanics is a statistical
theory, the most universal picture which remains after the details are forgotten is that of a convex set’ [30]. We take motivation
from this observation in our current work where one particular interpretation of this last questions would be the possibility of the
complexity of entanglement arising simply because we are not looking at it using the correct geometrical structures. We assert at a
well-motivated geometry may reduce the properties of entanglement to a set of trivial geometrical properties of convex sets.

As one can guess, answering the last question is of greater importance for the foundation of quantum mechanics and our
understanding of physical laws. Still, it can also be beneficial to the problems related to the application of quantum entanglement. If
one can simplify the entanglement and eliminate its complexities, he will also be able to quantify and detect it. This is the motivation
behind our current manuscript.

In this paper, we try to simplify the problem of entanglement by introducing entanglement monotones that play the role of
information distances, areas, volumes, and higher-dimensional volumes [31,32]. This approach enables us to distinguish separable
states from entangled states by examining the geometrical differences between them. It also gives us the ability to differentiate
between different types of entanglement in quantum systems. However, maybe the most interesting utility of our method would be
the ability to ‘filter’ or coarse grain the entanglement in large systems by using inequalities related to higher-dimensional geometrical
structures without requiring one to calculate all pairwise entanglement of nodes to determine whether a specific group of nodes in
the system is entangled with the rest of the network. As an observation, we will also show that these geometrical structures will
enable us to describe the specific case of monogamy of entanglement as a simple geometrical inequality. We do not claim that the
geometrical relations that we have defined here can completely characterize the geometry and complexity of quantum information;
nevertheless, we do show even simple geometrical constructs can describe and quantify entanglement with more utility than most of
the entanglement measures that are currently in use. This can be interpreted as further evidence that by constructing a well-defined
geometry, one should be able to reduce the complexity of the problem.

In Sect. 2, we will introduce our physical motivation for a new metric called the convoluted metric. Our definition is inspired
by the works of Schumacher [33] and Rolkin and Rajski [34,35]. We then prove that this metric is a valid distance measure,
satisfies all the requisite properties of an entanglement monotone, and the distances Mi j created using this method are indicators
of separability between nodes i , j , and the rest of the system. Later we show, for a tripartite system with at least one separable part,
these distances are equivalent to squashed entanglement [22]. In Sect. 3, we will generalize these distances to areas and volumes,
as well as higher-dimensional volumes using an approach introduced in [31,32], and we show that the areas are also invariant under
unitary transformations and is monotonically non-increasing under local operations and classical communication (LOCC), and are
convex. In Sect. 4, we will show how this approach will offer a new way to detect entanglement beyond the bipartite definition
of entanglement and apply it to some relevant applications. We conclude by suggesting a new function that might be useful for
approximating entanglement content of quantum systems. The proof of each proposition will be provided in appendix.

2 Convoluted metric an entanglement monotone

Rolkin [34] and Rajski [35] introduced an information metric

d12 = A1A2 = H(ρ1|2) + H(ρ2|1) (1)

between two random variables A1 and A2 with conditional probability density ρ1|2, where H(ρ1|2) is the usual conditional entropy.
Using this metric, Schumacher [33] was able to show that geometry created by entangled states has unique geometrical features; for
example, the shortest distance between points in this geometry might not be the direct distance, and this has been experimentally
shown by [36] using the measurements on polarization’s of entangled photons. Inspired by his work, we introduce two different
forms of distance for a random n-partite quantum network with quantum density matrix ρ123...n that we will define below as DAB

and ˜DAB . We label Hilbert spaces as A, B, ... and the von Neumann entropy as S = −Tr(ρ lnρ) of ρ [37]. So for ρAB , S(AB) is
the entropy of the state and S(A) is the entropy of TrB(ρAB). Then for ρABC , the entropy of register A conditioned on register B,
referred to as the conditional entropy, is: S(A|B) = S(AB) − S(B) . Using this, we define two types of information distance: For
ρABC , the distance DAB is defined as:

DAB =S(A|B) + S(B|A)

=S(AB) − S(B) + [S(AB) − S(A)]
=2S(AB) − S(A) − S(B), (2)

and the distance D̃AB is defined as follows:

˜DAB ≡S(A|BC) + S(B|AC)

=S(ABC) − S(BC) + [S(ABC) − S(AC)]
=2S(ABC) − S(AC) − S(BC). (3)
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Fig. 1 Tripartite triangle formed
by the three qubits A1, A2, and A3

The physical motivation for defining such variables is quite simple; let us assume we have a triangle A1A2A3 illustrated in Fig. 1.
The distance of vertex A1 and A2 is usually a function of position of A1 and A2 and is independent of position of other points in

our geometry. However, if we assume in our geometry this distance will also depend on the position of other vertexes then we must
take this into account in our definition of distance. We call this the convoluted distance. This is a non-local effect in the sense it is a
measure of the asymmetry between A1 and A2 with respect to extra resource of the register A3.

Consequently, we define our metric MAB (convoluted metric) for ρABC as difference of the distances D and D̃:

MAB ≡DAB − ˜DAB

=2S(AB) − S(A) − S(B) − [2S(ABC) − S(AC) − S(BC)]
= − 2S(ABC) + 2S(AB) + S(AC) + S(BC) − S(A) − S(B). (4)

As one might think for the definition, this metric MAB provides the means of non-separability of ρAB from ρC , since it measures
distance of Alice and Bob’s registers both locally and non-locally.

For any density matrix ρABC , the convoluted metric MAB may be seen as a pseudo-metric. That is to say:

1. MAB = MBA,
2. MAB ≥ 0 and is equal to 0 iff ρABC = ρAB ⊗ ρC , and
3. MAB + MBC ≥ MAC .

For the special case of tripartite density matrix in the form of ρABC = ρAB ⊗ ρC , MAB is equal to the bipartite squashed
entanglement [22] up to a constant factor. This has been shown in appendix E. In other words, one can think of this metric as
geometrical representation of squashed entanglement in this case.

For the case of bipartite entanglement, it is sufficient to compare our distances to squashed entanglement and not other entan-
glements measures since there are many ways to write the entanglement of a bipartite system, e.g., distillable entanglement [25],
entanglement cost [38], the entanglement of formation [17], relative entropy of entanglement, squashed entanglement, since it has
been proved that many of these will equal to S(C) for pure states. The reason we compare it to squashed entanglement is simply
because, similar to squashed entanglement, our function looks at the entanglement of A and B from the point of view of register C.
In the end, however, as mentioned in the introduction, the distances and later volumes and areas, are entanglement monotones, and
can be used to create different entanglement measures or witnesses.

It is easy to show that convoluted metric MAB is an entanglement monotone and satisfies the following properties:

1. MAB is invariant under local and global isometries,
2. MAB is non-increasing under LOCC,
3. MAB is convex.

For a given a state ρABX , one could generally find many ways of decomposing it into an ensemble {pi , ρi }i∈� . In other words,
there are many ensembles whose average state is ρABX . The decomposition may vary in both the number of states in the ensemble,
|�|, and the choice of state ρi . This suggests an extra measure must be taken to expand the definition for mixed density matrices.
Therefore, for given ρABX , the convoluted metric, MAB , for a mixed quantum density matrix is defined as follows:

MAB ≡ inf{
∑

j

p j MAB(ρ
j
ABX )} (5)

where the infimum is taken over all possible decomposition’s of pure state density matrix ρ
j
ABX .

Convexity is an important property for our geometrical structures. This is why we choose to make our structures convex roof
monotones by adding the infimum to our definitions in Eq. 5 for mixed states. Since the set of entangled states is a convex set,
it seems logical for us to make sure any structure we create is convex. The reason for this is that we are dealing with geometrical
structures related to entanglement and entangled states. Additionally, convexity enables us to use many of the properties of convex
structures and theorems developed for convex structures in our paper. This is a handy tool in helping us simplify the problem further
and makes proving some of the properties of our functions being entanglement monotones trivial.
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Now that we have proved that our metric can be a useful tool in investigating separability problem in quantum systems, we
proceed by developing new geometrical features based on this metric.

3 Higher-dimensional structures

In order to study and characterize higher-dimensional entanglement networks, we are interested in coarse-graining quantum networks.
One example of questions one needs to answer for coarse-graining is if we have a density matrix of the form ρABCD = ρA ⊗
ρBCD using the distances and squashed entanglement we can only state that ρABCD is non-separable or entangled but the type of
entanglement such as bipartite or tripartite needs extra calculations. For such purposes, we introduce higher-dimensional structures
such as areas and volumes.

For ρA1...An following the procedure for distances, we define two different areas: the AreaAi A j Ak and ˜AreaAi A j Ak , which are
defined as followed:

AreaAi A j Ak = − [

S(ρAi |A j Ak ) ∗ S(ρA j |Ai Ak )

+ S(ρAi |A j Ak ) ∗ S(ρAk |A j Ai )

+ S(ρAk |Ai A j ) ∗ S(ρA j |A j Ak )
]

(6)

˜AreaAi A j Ak = −[

S(ρAi |A j Ak ..An ) ∗ S(ρA j |Ai Ak ...An )

+ S(ρAi |A j Ak ...An ) ∗ S(ρAk |A j Ai ...An )

+ S(ρAk |Ai A j ...An ) ∗ S(ρA j |A j Ak ....An )
]

(7)

Then using this two different areas, we define our convoluted area 2MAi A j Ak for ρA1...An as:

2MAi A j Ak = Area − ˜Area, (8)

and later, we expand this to mixed states by taking the infimum over all possible decompositions of density matrix. Therefore,
for a mixed density matrix ρA1...An , the convoluted area 2MAi A j Ak will equal to

2MAi A j Ak = inf

⎡

⎣

∑

j

p j
2MAi A j Ak (ρ

j
A1...An

)

⎤

⎦ ≥ 0 (9)

We conjecture that for ρA1...An the convoluted area 2MAi A j Ak is convex. Furthermore, in Appendix C we proved that this area
2MAi A j Ak satisfies the following three properties: (1) It is invariant under local unitary operators; (2) it will vanish if subsystems
Ai A j Ak are separable from the rest of the system; and (3) it is non-increasing under LOCC.

We can naturally generalize this to volumes and higher-dimensional volumes using definition introduced recently in [31]. Con-
sequently, given ρA1...An two type of volumes (m−1)VA1A2...Am and (m−1)

˜VA1A2...Am are defined as:

(m−1)VA1A2...Am := (−1)m
Am
∑

a1,a2,...am=A1

(

1 + εa1a2...am

2

)

Sa1|a2...am Sa2|a1a3...am . . . Sam−1|a1a2...am−am
︸ ︷︷ ︸

product of m conditional entropies

, (10)

and

(m−1)
˜VA1A2...Am := (−1)m

Am
∑

a1,a2,...am=A1

(

1 + εa1a2...am

2

)

Sa1|a2...an Sa2|a1a3...an . . . Sam−1|a1a2...am−an
︸ ︷︷ ︸

product of m conditional entropies

. (11)

This allows us to define the m-dimensional convoluted volume (m−1)MA1A2...Am as:

(m−1)MA1A2...Am := (m−1)VA1A2...Am − (m−1)
˜VA1A2...Am (12)

and again we can expand this to mixed density matrices as:

(m−1)MA1A2...Am := inf

⎛

⎝

∑

j

p j
(m−1)M(ρ j )

⎞

⎠ (13)

where the infimum is taken over all possible decompositions.
Again, as conjecture we suggest that the mMAi A j Ak ..Am is convex. It is also possible for these higher dimensions to show that this

convoluted volume is (1) invariant under local and global isometries and (2) non-increasing under LOCC.
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Now that we showed that these structures are entanglement monotones, in the next section we will examine a few applications
of these entanglement monotones and highlight their potential utility.

4 Illustrative applications

4.1 Filtering the entanglement in quantum networks

Filtering the entanglement is of significant importance for quantum computing purposes in large quantum networks. One of the
applications of our convoluted structures is the ability to filtering the entanglement. It is possible in future that there will be services
offering cloud quantum computing. Let us assume we have a quantum cloud system of N nodes, which we call �N . Since these
types of technologies will be used by multiple users, it is necessary to be able to filter entanglement to avoid the disruption and
leakage of information from nodes being used by one user to the other. Therefore, it is essential to be able to find islands of entangled
nodes that are separable from rest of system. One can rephrase this question in this way ‘is it possible to find out if a group of m
nodes �m ⊆ �N is entangled to the rest of systems without calculating pairwise entanglement?’. One can answer this by using the
m − 1-dimensional convoluted volumes. This can be expressed as the following observation.

Observation 1 For the density matrices ρA1...AN to find whether a group of nodes Ai |i ∈ L is entangled to the rest of system, one
has to calculate the |L|−1MAi ,i∈L; if the systems are of form ρA1...AN = ρAi ,i∈L ⊗ρA j , j /∈L , then |L|−1MAi ,i∈L will vanish. Therefore,
by using these higher-dimensional structures one can filter the entanglement in quantum network without a need to calculate all the
bipartite entanglements.

4.2 Categorizing the entanglement

Second illustrative application that we want to present is the ability of these entanglement monotones to differentiate between
different types of entanglement. Let us imagine we have a quantum state ρABCD . While the joint quantum state of ABCD factors
into a product, one for A, B, C, and D is fully separable (and so are mixtures of these products), one can have two bipartite non-
separable states as ρAB ⊗ρCD or tripartite non-separable state, etc. We can question, regardless of the entanglement content of these
quantum systems; how can we find out what type of entanglement is present? We show here that by using convoluted structures, we
can answer this question.

Observation 2 For the two density matrices ρABCD = ρAB ⊗ρCD and ρ̃ABCD = ρABC ⊗ρD with the same entanglement content,
one can easily differentiate between the type of entanglement by looking at their different geometrical structure in terms of areas,

2MABC (ρ) �= 0 MAB(ρ) = MCD(ρ) = 0,

2MABC (ρ̃) = 0 MAB �= 0, MCD �= 0. (14)

This illustrates that the type of entanglement in the ρ is bipartite entanglement and ρ̃ is of tripartite nature.

4.3 Simplifying complex properties of entanglement

The third application of these structures can be the ability to simplify the complex properties of entanglement to a set of trivial
geometrical features. As an example, here we show that special cases of entanglement monogamy can be reduced to a well-known
trivial geometrical inequality known as Ono’s theorem [39]. Ono’s Theorem states that for a triangle ABC with acute or right angles
we have

27
[

a2 + b2 − c2]2 [

a2 + c2 − b2]2 [

c2 + b2 − a2]2 ≤ (4A)6 (15)

Observation 3 For a state ρABC , if two qubits A and B are maximally correlated they cannot be correlated at all with a third qubit
C.

Proof We will assume that for a ρABCD = ρABC ⊗ ρD , parts A, B are maximally entangled to each other and they are also to some
degree entangled to C meaning

MAB �= 0 (16)

In this case, the defined distances DAC and DBC will take their maximum value and will be equal to each other. This makes two sides
of the triangle equal to each other, knowing that the max of DAB can only be equal to DAC = DBC since A and B are maximally
entangled. In this case, the triangle will have acute angles. We will show this will lead to violation of Ono’s inequality; therefore,
two maximally entangled qubits cannot be correlated at all with a third qubit. We know that for ρABCD our convoluted Area

2MABC = 0 (17)
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since ρABC is separable from ρD . Therefore,
[

M2
AB + M2

AC − M2
BC

]2 [

M2
AB + M2

BC − M2
AC

]2 [

M2
AC + M2

BC − M2
AB

]2 ≤ 0 (18)

so one or all of the terms in the left hand side of the inequality must be zero

M2
AB + M2

AC − M2
BC = 0 (19)

M2
BC + M2

AB − M2
AC = 0 (20)

M2
BC + M2

AC − M2
AB = 0 (21)

Now using the fact that since ρAB is maximally entangled and symmetric then

MAC = MBC �= 0 (22)

This will reduce the equations to

MAB = 0 (23)

or

M2
AB = 2M2

AC (24)

but the second equation is not possible since MAC is the maximum value that M can take since we already assumed that A and B
are maximally entangled; therefore, MAB must be zero which is contradiction and this proves our claim. 
�
4.4 Approximating entanglement content of quantum systems

As the fourth and final use case, we will try to harvest these geometrical structures to approximate the entanglement content of the
quantum system. The argument is that the entanglement content of a tripartite density matrix is the sum of bipartite entanglement
of quantum systems and the entanglement shared between three parts; using this logic for the n-partite system, we can suggest the
following. Given ρA1...An , the entanglement content of system can be approximated by E :

E(ρa1a2..am ) = 1

2!
∑

ai a j

Mai a j

+ 1

3!
∑

ai a j ak

3Maia j ak + 1

4!
∑

ai a j akal

4Maia j akal + ... (25)

The coefficient are normalization factors to avoid the multiple counting. For mixed quantum density matrix,

ρa1a2..am =
∑

i

λiρ
i
a1a2..am (26)

will equal to

E(ρa1a2..am ) = in f
(
∑

n

λi E(ρi )
)

. (27)

E(ρ) satisfies the following two properties: (1) It is invariant under local and global isometries; and (2) it is non-increasing under
LOCC. Furthermore, E(ρ) is also convex due to convexity of each of its individual parts. By way of illustration of this point, we
can demonstrate that the E(ρ) function can approximate the entanglement content of a quantum system. For example, we analyzed
the entanglement content of quantum networks with four parts. Because we want to compare our hypothesis to concurrence (C),
we generated 1000 random density matrices of form ρ12 ⊗ ρ34 using [40]. The entanglement content of this system would be equal
to C(ρ12) + C(ρ34). Next, we calculate the values of E(ρ1234) and normalize them by putting Eρbell⊗ρbell equal to 2 ( we divide

all the values by
Eρbell⊗ρbell

2 ) . After this, we sorted the density matrices based on the value of concurrence and plot the values of
concurrence and E . Figure 2 illustrates that E can be used to approximate the entanglement content of quantum systems.

We conjecture that replacing the von Neumann entropy with Shannon entropy in the definitions of metric and volumes, one might
be able to generate an experimental lower bond for the entanglement that would be useful for applications such as quantum optics
and information theory [36].

5 Conclusion

In this work, we attempted to simplify the problem of multipartite entanglement by introducing entanglement monotones that play
the role of distances, areas, and higher-dimensional information volumes. This approach enables us to distinguish separable states
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Fig. 2 Comparison of
concurrence and E(ρ1234) for a
random sample of a thousand
density matrices of the form
ρ1234 = ρ12 ⊗ ρ34. We
normalized E by setting
Eρbell⊗ρbell = 2

from entangled states by examining their geometrical differences through inequalities—a sort of ‘filtering of quantum entanglement.’
To us, the most interesting utility of our method is to filter entanglement without requiring an exponentially increasing number of
calculations to determine whether a specific group of nodes in the system is entangled with the rest of the network. As an observation,
we also showed that these geometrical structures will enable us to describe the specific case of monogamy of entanglement as a simple
geometrical inequality. We do not claim that that the geometry we have created is a complete geometry of quantum information;
nevertheless, we show even such a simple geometric constructs can describe and quantify entanglement with more utility than most
of the entanglement measures that are currently in use. This can be interpreted as further evidence that by constructing a well-defined
geometry, one should be able to reduce the complexity of the higher-dimensional entangled systems. We suggest by exploring these
higher-dimensional entropic geometries one can gain a deeper insight into some of the strange properties of entangled networks,
though realizing that this approach offers but another independent glimpse into entanglement.
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Appendix

In this section, we will present the proves for our proposed claims in the manuscript.

Appendix A

For any density matrix ρABC , the convoluted metric MAB may be seen as a pseudo-metric. That is to say:

1.1 MAB = MBA

1.2 MAB ≥ 0 and is equal to 0 iff ρABC = ρAB ⊗ ρC .
1.3 MAB + MBC ≥ MAC

Proof 1.1 In Eq.4, A and B are interchangeable.
1.2 We know from strong subadditivity of quantum entropy (SSA) inequality [41] that for tripartite separable density matrix

S(ρABC ) ≤ S(ρAC ) + S(ρBC ) − S(ρC ) (28)

One can write this inequality in two different ways

S(ρABC ) ≤ S(ρAC ) + S(ρAB) − S(ρA) (29)

S(ρABC ) ≤ S(ρBC ) + S(ρAB) − S(ρB) (30)
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Now by summing up these inequalities, one will reach to

S(ρABC ) + S(ρABC ) ≤ S(ρBC ) + S(ρAB) − S(ρB) + S(ρAC ) + S(ρAB) − S(ρA) (31)

This will lead to
[

S(ρABC ) − S(ρBC )
] + [

S(ρABC ) − S(ρAC )
] ≤ S(ρAB) − S(ρB) + S(ρAB) − S(ρA) (32)

which is equal to

˜DAB ≤ DAB; (33)

hence, MAB is

0 ≤ DAB − ˜DAB = MAB . (34)

Furthermore, MAB is zero if and only if ρABC = ρAB ⊗ ρC . Since

S(ABC) =S(AB) + S(C)

S(AC) =S(A) + S(C)

S(BC) =S(B) + S(C) (35)

for ρABC = ρAB ⊗ ρC and plugging in 35 in Eq. 4 will make MAB = 0.
1.3 For triangle inequality, we start with definition of MAB

MAB = S(ρA|B) + S(ρB|A) − S(ρA|BC ) − S(ρB|AC ) (36)

MAB = 2S(ρAB) − 2S(ρABC ) + S(ρBC ) + S(ρAC ) − S(ρA) − S(ρB) (37)

Now plugging in the definition into

MAB + MBC ≥ MAC (38)

and after canceling the terms, we have

2S(ρAB) − 2S(ρABC ) + 2S(ρBC ) − 2S(ρB) ≥ 0. (39)

This is strong subadditivity equation [41]

S(ρAB) + S(ρBC ) ≥ S(ρABC ) + S(ρB) (40)

and is true for any arbitrary density matrix. �
For n-partite systems to show M12 is a metric, one just needs to adjust ρ3 to ρ3...n .

Appendix B

Given ρABX , the convoluted metric MAB is an entanglement monotone for detecting separability between the registers AB and X
satisfies the following properties:

2.1 MAB is invariant under local and global isometries
2.2 MAB is non-increasing under LOCC
2.3 MAB is convex.

Proof If we write the MAB in terms of conditional mutual information

MAB = − 2S(ABC) + 2S(AB) + S(AC) + S(BC) − S(A) − S(B)

=[S(AB) + S(AC) − S(ABC) − S(A)] + [S(AB) + S(BC) − S(ABC) − S(B)]
=I (B : C |A) + I (A : C |B) (41)

2.1 von Neumann entropy is invariant under unitary operation; therefore, MAB is invariant under unitary operation.
2.2 Conditional mutual information is non-increasing under LOCC [22]; therefore, MAB is non-increasing under LOCC.
2.3 Conditional mutual information is convex [22]; therefore, MAB is convex since the sum of two convex functions is also convex.


�
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Appendix C

Given ρA1...An , the 2MAi A j Ak satisfies the following properties:

3.1 is invariant under local and global isometries
3.2 is convex.
3.3 is non-increasing under LOCC.

Proof 3.1 The von Neumann entropy is invariant under unitary operation; therefore, 2MAi A− j Ak is invariant under unitary operation.
3.2 By adding and subtracting the terms

S(ρA1|A2A3) ∗ S(ρA2|A1A3A4....n ) (42)

S(ρA2|A1A3) ∗ S(ρA3|A1A2A4....n ) (43)

S(ρA3|A1A2) ∗ S(ρA1|A2A3A4....n ) (44)

To 2MA1A2A3 make it equal to

2MA1A2A3 = −
{

S(ρA1|A2A3) ∗ [

S(ρA2|A1A3) − S(ρA2|A1A3A4....n )
]

+ S(ρA2|A1A3A4....n ) ∗ [

S(ρA1|A2A3) − S(ρA1|A2A3A4....n )
]

+ S(ρA2|A1A3) ∗ [

S(ρA3|A1A2) − S(ρA3|A1A2A4....n )
]

+ S(ρA3|A1A2A4....n ) ∗ [

S(ρA2|A1A3) − S(ρA2|A1A3A4....n )
]

+ S(ρA3|A1A2) ∗ [

S(ρA1|A2A3) − S(ρA1|A2A3A4....n )
]

+ S(ρA1|A2A3A4....n ) ∗ [

S(ρA3|A1A2) − S(ρA3|A1A2A4....n )
]

}

(45)

Then we rewrite this as
2MA1A2A3 = − [

S(ρA1|A2A3) + S(ρA3|A1A2A4....n )
] ∗ [

S(ρA2|A1A3) − S(ρA2|A1A3A4....n )
]

− [

S(ρA3|A1A2) + S(ρA2|A1A3A4....n )
] ∗ [

S(ρA1|A2A3) − S(ρA1|A2A3A4....n )
]

− [

S(ρA2|A1A3) + S(ρA1|A2A3A4....n )
] ∗ [

S(ρA3|A1A2) − S(ρA3|A1A2A4....n )
]

(46)

One can express this in terms of conditional mutual information as
2MA1A2A3 =[

I (A1; A2A3) + I (A3; A1A2A4....n) − S(A1) − S(A3)
] ∗ [

I (A2; A4....n |A1A3)
]

+ [

I (A3; A1A2) + I (A2; A1A3A4....n) − S(A3) − S(A2)
] ∗ [

I (A1; A4....n |A2A3)
]

+ [

I (A2; A1A3) + I (A1; A2A3A4....n) − S(A1) − S(A2)
] ∗ [

I (A3; A4....n |A1A3)
]

(47)

Now since we know subsystems Ai A j Ak is separable from the rest of the system 2MAi A j Ak will equal to zero due to
I (Ai ; A4....n|A j Ak) = 0.

3.3 To prove that 2MA1A2A3 is non-increasing under LOCC, we have to use the proposition by [22]

Proposition 1 A convex function f does not increase under LOCC if and only if

a) f is invariant under local unitary operators
b) if f satisfies

f

(

∑

i

piρ
i
AB ⊗ |i〉x〈i |

)

=
∑

i

pi f (ρ
i
AB). (48)

Since 2MA1A2A3 satisfies both of these, then it is non-increasing under LOCC.

Appendix D

Given ρA1...An , the E(ρ) satisfies the following properties:

6.1 E(ρ) is invariant under local and global isometries;
6.2 E(ρ) is non-increasing under LOCC; and
6.3 E(ρ) is convex.

Proof 1. E(ρ) is invariant under local unitary operators due to mMAi ...Am being invariant under local unitary operators.
2. From our previous discussions, we know thatmMAi ...Am are non-increasing under LOCC, and we know that sum of non-increasing

terms will also be non-increasing under LOCC. Then E(ρ) is non-increasing under LOCC.
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Appendix E

For a given state ρAB , squashed entanglement is given by

Esq(ρAB) = 1

2
in f I (A : B|E), (49)

with

I (A : B|E) = S(AE) + S(BE) − S(ABE) − S(E). (50)

It is obvious from the equation above that I (A : B|E) = I (B : A|E). We have stated that if C is separable from AB our method
will give answer similar to squashed entanglement, this is because the degree of entanglement of A and B in this case will equal to
entanglement of the ρAC part with ρB , or the ρBC part withρC . In appendix B, we have shown that

MAB = −2S(ABC) + 2S(AB) + S(AC) + S(BC) − S(A) − S(B)

= [S(AB) + S(AC) − S(ABC) − S(A)] + [S(AB) + S(BC) − S(ABC) − S(B)]
= I (B : C |A) + I (A : C |B).

If we write this for either MAC or MBC after applying our convex roof method, we will simply get a constant number multiplied
by Eq. 49, which means MAC multiplied by value of squashed entanglement. The motivation we choose to mention getting result
similar to squashed entanglement is the reason we compare it to squashed entanglement is simply because, similar to squashed
entanglement our function look at entanglement of A and B from point of view of register C.
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